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We give a simple proof that there is no positive loop inside the component of a fiber

in the space of Legendrian embeddings in the contact manifold ST∗M , provided that

the universal cover of M is Rn. We consider some related more general results in the

space of one-jet of functions on a compact manifold and we give an application dealing

with positive isotopies in homogeneous neighbourhoods of surfaces in a tight contact

three-manifold.

1 Introduction and formulation of the results

1.1 Presentation

On the Euclidean unit 2-sphere, the set of points which are at a given distance of the

north pole is in general a circle. When the distance is π , this circle becomes trivial: it

is reduced to the south pole. Such a focusing phenomenon cannot appear on a surface

of constant, non-positive curvature. In this case, the image by the exponential map of

a unit circle of vectors tangent to the surface at a given point is never reduced to one

point.
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2 V. Colin et al.

In this article, we generalize this remark in the context of contact topology

(In particular, no Riemannian structure is involved). Our motivation comes from the

theory of the orderability of the group of contactomorphisms of Eliashberg, Kim and

Polterovitch [11, 12].

Before we come to the central result of this article, Theorem 4 below, we will

formulate and prove independently some of its consequences (Theorems 1 and 2), which

are more directly related to the remark above, and which will help us to introduce the

subject in a natural way.

1.2 Positive isotopies

Consider a (2n+1)-dimensionalmanifoldV endowedwith a cooriented contact structure

ξ . At each point of V , the contact hyperplane then separates the tangent space in a

positive and a negative side.

Definition 1. A smooth path Lt = ϕt(L), t ∈ [0, 1], in the space of Legendrian embeddings

(resp. immersions) of an-dimensional compactmanifold L in (V , ξ) is calledaLegendrian

isotopy (resp. homotopy). If, in addition, for every x ∈ L and every t ∈ [0, 1], the velocity

vector ϕ̇t(x) lies in the positive side of ξ at ϕt(x), then this Legendrian isotopy (resp.

homotopy) will be called positive. !

Remark 1. This notion of positivity does not depend on the parametrization of

the Lt’s. !

If the cooriented contact structure ξ is induced by a globally defined contact

form α, the above condition can be rephrased as α(ϕ̇t(x)) > 0. In particular, a positive

contact Hamiltonian induces positive isotopies.

A positive isotopy (resp. homotopy) will be also called a positive path in the

space of Legendrian embeddings (resp. immersions). We will call a closed positive path

a positive loop.

Example 1. The space J1(N) = T∗N × R of one-jet of functions on a n-dimensional

manifold N has a natural contact one-form α = du − λ, where λ is the Liouville one-

form of T∗N and u is the R-coordinate. The corresponding contact structure will be

denoted by ζ . Given a smooth function f : N → R, the image of its one-jet extension

is a Legendrian submanifold which will be denoted by j1f . A one-parameter family of

functions gives then rise to an isotopy of Legendrian embeddings.
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Positive Isotopies 3

A path ft, t ∈ [0, 1], of functions on N such that, for any fixed q ∈ N , ft(q) is an

increasing function of t, gives rise to a positive Legendrian isotopy j1ft, t ∈ [0, 1], in
J1(N).

Conversely, one can check that a positive isotopy consisting only of one-jet exten-

sions of functions is always of the above type. In particular there are no positive loops

consisting only of one-jet extensions of functions. !

Remark 2. In particular a positive loop never contracts to a constant Legendrian L

through positive loops since a small positive loop would yield a positive loop amongst

1-jet extensions of functions in the 1-jet space neighbourhood of L. !

Example 2. Consider a Riemannian manifold (N ,g). Its unit tangent bundle π : S1N →
N has a natural contact one-form: If u is a unit tangent vector to N , and v a vector

tangent to S1N at u, then

α(u) · v = g(u,Dπ(u) · v).

The corresponding contact structure will be denoted by ζ1. The constant contact

Hamiltonian h = 1 induces the geodesic flow.

Any fiber of π : S1N → N is Legendrian. Moving a fiber by the geodesic flow is a

typical example of a positive path. !

1.3 Formulation of the results

Let N be a closed manifold.

Theorem 1. There is no positive loop in the component of the space of Legendrian

embeddings in (J1(N), ζ ) containing the one-jet extensions of functions. !

The Liouville one-form of T∗N induces a contact distribution on the fiber-wise

spherization ST∗N . This contact structure is contactomorphic to the ζ1 of Example 2.

Our generalization of the introductory Paragraph 1.1 is as follows.

Theorem 2. There is no positive path of Legendrian embeddings between two distinct

fibers of π : ST∗N → N , provided that the universal cover of N is Rn. !
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4 V. Colin et al.

Theorem 3. o. Any compact Legendrian submanifold of J1(Rn) belongs to a positive

loop of Legendrian embeddings, which is contractible amongst loops of Legendrian

embeddings.

i. There exists a component of the space of Legendrian embeddings in

(J1(S1), ζ ) whose elements are homotopic through smooth embeddings to

the zero section j10 and which contains a positive loop.

ii. There exists a positive loop of Legendrian immersions in (J1(S1), ζ ) based at

the zero section.

iii. Given any connected surface N , there exists a positive path of Legendrian

immersions between any two fibers of π : ST∗N → N . !

Laudenbach [16] proved the following generalization of Theorem 3 ii: for any closed N ,

there exists a positive loop in the space of Legendrian immersions in (J1(N), ζ ), based

at the zero section.

Theorem 3 o implies that for any contact manifold (V , ξ), there exists a con-

tractible positive loop of Legendrian embeddings (just consider a Darboux ball and

embed the example of Theorem 3 o).

A Legendrian submanifold L ⊂ (J1(N), ζ ) will be called positive if it is con-

nected by a positive path to the one-jet extension of the zero function. The one-jet

extension of a positive function is a positive Legendrian submanifold. But, in general,

the value of the u-coordinate can be negative at some points of a positive Legendrian

submanifold.

Consider a closed manifold N and fix a function f : N → R. Assume that 0 is

a regular value of f . Denote by '( f ) the union for λ ∈ R of the j1(λf ). It is a smooth

embedding of R × N in J1(N), foliated by the j1(λf ). We denote by '+( f ) the subset
⋃

λ>0(j
1(λf )) ⊂ '( f ).

Example 3. In J1(S1), if f : S1 → R is θ '→ sin θ , then '( f ) is the cylinder

{(θ , λ cos θ , λ sin θ), θ ∈ R/2πZ, λ ∈ R}. !

Consider the manifold M = f −1([0,+∞[) ⊂ N . Its boundary ∂M is the set f −1(0).

Fix some field K and denote by b( f ) the total dimension of the homology of M with

coefficients in that field (b( f ) = dimK H∗(M ,K)). We say that a point x ∈ J1(N) is above

some subset of the manifold N if its image under the natural projection J1(N) → N

belongs to this subset.
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Positive Isotopies 5

Theorem 4. For any positive Legendrian submanifold L ⊂ (J1(N), ζ ) in general position

with respect to'( f ), there exists at least b( f ) points of intersection of Lwith'+( f ) lying

above M \ ∂M .

More precisely, for a generic positive Legendrian submanifold L, there exists at

least b( f ) different positive numbers λ1, . . . , λb( f ) such that L intersects each manifold

j1(λif ) above M \ ∂M . !

Remark 3. Theorem 4 implies the Morse estimate for the number of critical points of

a Morse function F on N . This can be seen as follows. By adding a sufficiently large

constant to F , one can assume that L = j1(F) is a positive Legendrian submanifold. If f

is a constant positive function, then M = N , and intersections of L = j1F with ' are in

one to one correspondence with the critical points of F . Furthermore, F is Morse if and

only if L is transverse to '( f ).

In fact, one can prove that Theorem4 implies (aweak formof) Arnold’s conjecture

for Lagrangian intersection in cotangent bundles, proved by Laudenbach and Sikorav

[17], and generalized in the Legendrian setting by Chekanov [6] and Chaperon [5]. This

is no accident. Our proof relies on the main ingredient of those works: the technique of

generating families (see Theorem 8).

One can also prove that Theorem 4 implies Theorem 1. Theorem 5 below, which

in turn implies Theorem 2, is also a direct consequence of Theorem 4. !

Theorem 5. Consider a line in Rn. Denote by ' the union of all the fibers of π : ST∗Rn →
Rn above this line. Consider one of these fibers and a positive path starting from this

fiber. The end of this positive path is a Legendrian sphere. This sphere must intersect

' in at least 2 points. !

1.4 A remark about stabilized knots and exotic contact structures

Consider a Legendrian knot L in a 3D contact manifold (V , ξ). By a relative Darboux The-

orem, a neighbourhood of L in (V , ξ) is contactomorphic to a neighbourhood of the zero

section in (J1(L), ζ ). A stabilization of L is a Legendrian knot L′ obtained by modifying

L inside this neighbourhood near one point, to the effect that L′ has a small Z-shaped

front in the J1(L) model (we recall the notion of front in Section 2.1).

Remark 4. Any stabilized knot belongs to a positive loop. Indeed, circulating the

Z−shaped piece along the L direction (i.e., the 0−section in the J1(L) model) can be

done in a positive way. !
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6 V. Colin et al.

This remark provides a rough way, independent from the original work of Ben-

nequin [3], to show that J1(S1) is tight. Recall that an overtwisted disc in a contact

manifold is an embedded disc which is everywhere transverse to the contact structure

in its interior, except at one point, and tangent to the contact structure along its bound-

ary. If a contact manifold contains such a disc, then it is called overtwisted, and tight

otherwise.

A folklore result is that, if L is a Legendrian knot in an overtwisted contact

manifold such that L does not intersect the overtwisted disc, then L is a stabilization.

This can be seen in an elementaryway byworking in an explicit model neighbourhood of

an overtwisted disc. Hence, if J1(S1) were not tight, the above remark would contradict

Theorem 1.

1.5 An application to positive isotopies in homogeneous neighbourhoods of a surface in a

tight contact three-manifold

In Theorems 4 and 5, we observe the following feature: The submanifold ' is foliated

by Legendrian submanifolds. We pick one of them, and we conclude that we cannot

disconnect it from ' by a positive contact isotopy. In dimension 3, our ' is a surface

foliated by Legendrian curves (in a non-generic way).

Recall that, generically, a closed oriented surface S contained in a contact three-

manifold (V , ξ) is convex: there exists a vector field tranversal to S and whose flow

preserves ξ . Equivalently, a convex surface admits a homogeneous neighbourhood U *
S × R, S * S × {0}, where the restriction of ξ is R-invariant. Given such a homogeneous

neighbourhood, we obtain a smooth, canonically oriented, multicurve *U ⊂ S, called the

dividing curve of S, made of the points of S where ξ is tangent to the R-direction. It is

automatically transverse to ξ . According to Giroux [14], the dividing curve *U does not

depend on the choice of U up to an isotopy amongst the multicurves transverse to ξ in S.

The characteristic foliation ξS of S ⊂ (V , ξ) is the integral foliation of the singular line

field TS ∩ ξ .

Let S be a closed oriented surface of genus g(S) ≥ 1 and (U , ξ), U * S × R, be a

homogeneous neighbourhood of S * S × {0}. The surface S is ξ-convex, and we denote

by *U its dividing multicurve. We assume that ξ is tight on U , which, after Giroux, is

the same as to say that no component of *U is contractible in S.

Theorem 6. In this setting, assume L is a Legendrian curve in S having minimal (in its

smooth isotopy class in S) geometric intersection 2k > 0 with *U . If (Ls)s∈[0,1] is a positive

Legendrian isotopy in U such that L = L0 then +(L1 ∩ S) ≥ 2k. !
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Positive Isotopies 7

Remark 5. The positivity assumption is essential: if we push L in the homogeneous

direction, we get an isotopy of Legendrian curves which becomes instantaneously

disjoint from S. If k = 0, this is a positive isotopy of L that disjoints L from S. !

Remark 6. For a small positive isotopy, the result is obvious. Indeed, L is an integral

curve of the characteristic foliation ξS of S, which contains at least one singularity

in each component of L \ *U . For two consecutive components, the singularities have

opposite signs.Moreover, when onemoves L by a small positive isotopy, the positive sin-

gularities are pushed in S×R+ and the negative ones in S×R−. Between two singularities

of opposite signs, we will get one intersection with S. !

The relationship to the preceding results is given by the following corollary

of Theorem 4, applied to N = S1 and f (θ) = cos(kθ), for some fixed k ∈ N. In this

situation, the surface ' of Theorem 4 will be called 'k. It is an infinite cylinder foliated

by Legendrian circles. Its characteristic foliation ξ'k has 2k infinite lines of singularities

which consist of all those (θ ,p, 0) ∈ J1(S1),p ∈ R, where θ is such that f (θ) = 0. The

standard contact space (J1(S1), ζ ) is itself a homogeneous neighbourhood of 'k, and the

corresponding dividing curve consists in 2k infinite lines, alternating with the lines of

singularities.

Let L0 = j10 ⊂ 'k. Theorem 4 gives:

Corollary 1. Let L1 be a generic positive deformation of L0. Then +{L1 ∩ 'k} ≥ 2k. !

Indeed, there are k intersections with 'k,+, and k other intersections which are

obtained in a similar way by considering the function −f . "
This corollary will be the building block to prove Theorem 6.

1.6 Organization of the article

This article is organized as follows. The proof of Theorem 3, which in a sense shows

that the hypothesis of Theorems 1 and 2 are optimal, consists essentially in a collec-

tion of explicit constructions. It is done in the next section, and it might serve as an

introduction to the main notions and objects discussed in this paper. The rest of the

article is essentially devoted to the proof of Theorems 1, 2, 4, 5, and 6, but contains a

few statements which are slightly more general than the theorems mentioned in this

introduction.
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8 V. Colin et al.

2 Proof of theorem 3

2.1 A positive loop

In order to prove statement i of Theorem 3, we begin by the description of a positive

loop in the space of Legendrian embeddings in J1(S1). Due to Theorem 1, this cannot

happen in the component of the zero section j10.

Denote by (q,p) some canonical coordinates on T∗S1, so that the contact form

α of J1(S1) is α = du − pdq. Recall that the front of a Legendrian curve L ⊂ J1(S1)

is its projection on the 0−jet space S1 × R, which is obtained by forgetting p. Given

some function f on S1, the front of j1f is the graph of f . But, in general, the front of L

is a singular curve. In a generic situation, the singularities of the front are transverse

self-intersections and cusps. One may then recover L from its front, since the missing

coordinate p is a slope which is well defined on the front and equal to du
dq outside of the

cusps (see [2]).

Consider for example the Legendrian curve L defined by the front drawn in

Figure 1. The slope is everywhere positive, hence we can assume that it lies in the

half-space {p > 2ε} ⊂ J1(S1). One can also prove (e.g., by showing an explicit path where

we create two double points as in Figure 2 and eliminate successively pairs of opposite

u

Fig. 1. The front projection of an L ⊂ {p > 2ε}, which is homotopic to j10 through Legendrian

immersions.
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Positive Isotopies 9

Fig. 2. An intermediate position in the deformation from L to j10

cusps along a swallowtail singularity) that this L is homotopic to j10 through Legendrian

immersions. In addition, it is isotopic to j10 through smooth embeddings.

Consider the contact flow ϕt : (q,p,u) → (q−t,p,u−tε), t ∈ R. The corresponding

contact Hamiltonian h(q,p,u) = −ε + p is positive near ϕt(L), for all t ∈ R, and hence

ϕt(L) gives rise to a positive path which will move the front downwards in a kind of

helicoidal movement.

On the other hand, one can go from ϕ2π (L) back to L just by increasing the

u-coordinate, which is also a positive path. This proves statement i of Theorem 3.

2.2 A positive loop of immersions based at the zero section

We now consider statement ii. Take L ⊂ {p > 2ε} as above. Recall that L is homotopic to

j10 through Legendrian immersions (However, like any other Legendrian submanifold

in {p > 2ε} ⊂ J1(S1), it cannot be Legendrian isotopic to j10, since, if it were the case, it

would intersect {p = 0}, by [6]).

Step 1: The homotopy between j10 and L can be transformed into a positive path of

Legendrian immersions between j10 and a vertical translate L′ of L, by combining it

with an upwards translation with respect to the u-coordinate.

Step 2: Then, using the flow ϕt (defined in Section 2.1) for t ∈ [0, 2kπ ] with k large enough,

one can reach another translate L′′ of L, onwhich the u-coordinate can be arbitrarily low.

Step 3: Consider now a path of Legendrian immersions from L to j10. It can be modified

into a positive path between L′′ and j10, like in Step 1.

This proves statement ii of Theorem 3.

2.3 Positive loops for local Legendrians

The proof of statement o uses again the same idea. Given any compact Legendrian sub-

manifold L ⊂ J1(Rn), there exists L′, which is Legendrian isotopic to L and which is
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10 V. Colin et al.

contained into the half-space p1 > ε > 0, for some system (p1, . . . ,pn,q1, . . . ,qn) of

canonical coordinates on T∗(Rn). To find such a L′, one can proceed? as follows. Consider

-t : (p1, . . . ,pn,q1, . . . ,qn,u) '→ (tp1, . . . , tpn, tq1, . . . , tqn, t2u).

This defines a contact flow in J1(Rn). Applying -t on L for t small enough results

in a Legendrian submanifold Legendrian isotopic to L on which the p-coordinates are

arbitrarily small. Then, one can tilt a little bit this Legendrian submanifold to achieve

p1 > 0. Tilting can be achieved by a contact flow of the form

(p1, . . . ,pn,q1, . . . ,qn,u) '→ (p1 + t,p2 . . . ,pn,q1, . . . ,qn,u+ tq1).

This ensures the existence of L′. It is possible to find a positive path between L

and a sufficiently high-vertical translate L′′ of L′, like in Step 1. Because p1 > ε, one can

now slide down L′′ by a positive path as low as wewant with respect to the u-coordinate,

as in Step 2. Hence we can assume that L is connected by a positive path of embeddings

to some L′′′, which is a vertical translate of L′, on which the u-coordinate is very negative.

So we can close this path back to L in a positive way.

If we drop the positivity requirement, this path of fronts/Legendrians contracts

trivially to the constant one. (Recall a positive loop never contracts to a constant one

through positive loops by Remark 2.)

2.4 Positive paths

We now prove statement iii. Notice first that it is enough to consider the particular case

N = R2. Indeed, given two points x and y on a surface N and an embedded path from x

to y, we can consider an open neighbourhood U of this path diffeomorphic to R2.

2.4.1 The hodograph transform

We now recall the classical “hodograph” contactomorphism [1] which identifies

(ST∗R2, ζ1) and (J1(S1), ζ ), and more generally (ST∗Rn, ζ1) and (J1(Sn−1), ζ ). The same trick

will be used later to prove Theorems 2 and 5 (Sections 4.4 and 5.3).

Fix a scalar product 〈., .〉 on Rn and identify the sphere Sn−1 with the standard

unit sphere in Rn. Identify a covector at a point q ∈ Sn−1 with a vector in the hyperplane

tangent to the sphere at q (perpendicular to q). Then to a point (p,q,u) ∈ J1(Sn−1) =
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Positive Isotopies 11

T∗Sn−1 × R we associate the cooriented contact element at the point uq+ p ∈ Rn, which

is parallel to TqSn−1, and cooriented by q.

The reverse map is given by the following formulas :

(ST∗Rn, ζ1) → (J1(Sn−1), ζ )

(x,q) '→ (q,p = 〈x, ·〉|TqSn−1 ,u = 〈x,q〉)

Remark 7. One can check that the fiber of π : ST∗Rn → Rn over some point x ∈ Rn is

the image by this contactomorphism of j1lx , where lx : Sn−1 → R is the function defined

by q '→ 〈x,q〉. !

2.4.2 End of the proof of Theorem 3 iii

One can assume that x = 0 ∈ R2. The case when x = y follows directly from

Theorem 3 ii via the contactomorphism described above. The fiber π−1(x) corresponds

to j10.

Suppose now that x /= y. We need to find a positive path of Legendrian

immersions in (J1(S1), ζ ) between j10 and j1ly .

To achieve this, it is enough to construct a positive path of Legendrian immer-

sions between j10 and a translate of j10 that would lie entirely below j1ly , with respect

to the u-coordinate. This can be done as in Section 2.2, just by decreasing even more the

u-coordinate, like in Step 2. This finishes the proof of Theorem 3. "

3 Generating families and Morse theory

3.1 Generating families

We briefly recall the construction of a generating family for a Legendrian submanifold

in the one-jet bundle J1(N) of a smooth manifold N (the details can be found in [2]). Let

ρ : E → N be a smooth fibration over N with fiberW . Let F : E → R be a smooth function.

For a point q in N we consider the set Bq ⊂ ρ−1(q) whose points are the critical points

of the restriction of F to the fiber ρ−1(q). Denote BF the set BF = ⋃
q∈N Bq ⊂ E . Assume

that the rank of the matrix (Fwq,Fww) (w, q are local coordinates on the fiber and base

respectively) formed by second derivatives is maximal (i.e., equal to the dimension of N )

at each point of BF . This condition holds for a generic F and does not depend on the

choice of the local coordinates w,q.
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12 V. Colin et al.

The set BF ⊂ E is then a smooth submanifold of the same dimension as N , and

the restriction of the map

(q,w)
/F'−→ (q,dN(F(q,w)),F(q,w)),

where dN denotes the differential along N , to BF defines a Legendrian immersion of BF
into (J1(N), ζ ). If this is an embedding (this is generically the case), then F is called a

generating family of the Legendrian submanifold LF = /F (BF ).

A point x ∈ J1(N) is by definition a triple consisting of a point q(x) in themanifold

N , a covector p(x) ∈ T∗
q(x)N and a real number u(x). A point x ∈ L will be called a critical

point of the Legendrian submanifold L ⊂ (J1(N), ζ ) if p(x) = 0. The value of the u-

coordinate at a critical point of a Legendrian manifold L will be called a critical value

of L. The set of all critical values will be denoted by Crit(L).

Observe that, for amanifold L = LF given by a generating family F , the setCrit(LF )

coincides with the set of critical values of the generating family F .

We call a critical point x ∈ L non-degenerate if L intersects the manifold given

by the equation p = 0 transversally at x. If an embedded Legendrian submanifold LF is

given by a generating family F , then the non-degenerate critical points of F are in one

to one correspondence with the non-degenerate critical points of LF .

3.2 Generating families quadratic at infinity and their generalization

We describe now the class of generating families we will be working with. Pick a closed

manifold E which is a fibration over some closed manifold N , and some K ∈ N. We

will apply the preceding construction to the fibration ρ : E = E × RK '→ N . A function

F : E×RK → R is called quadratic at infinity if it is a sum of a non-degenerate quadratic

form Q on RK and a function on E × RK with bounded differential (i.e., the norm of the

differential is uniformly bounded for some Riemannian metric which is a product of a

Riemannianmetric onE and the Euclideanmetric onRK ). This definition does not depend

on the choice of the metrics. If a function which is quadratic at infinity is a generating

family (with respect to the fibration ρ : E × RK → N ), then we call it a generating family

quadratic at infinity.

In the case when E = N (the fiber is a point), we recover the classical notion of

a generating family quadratic at infinity [10, 20]. The proofs of Theorems 1,2,4,5, and 6,

formulated in the introduction, are based on this classical case only. The case of a general

bundle E is however very natural, and a great variety of Legendrian submanifolds can be

produced in this way (see [13]). The fibration E is used here only to prove a generalization
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Positive Isotopies 13

of Theorem 1, Theorem 7 below, which provides many isotopy classes of Legendrian

embeddings in J1(N) not containing any positive loop.

3.3 Morse theory for generating families quadratic at infinity

We gather here some results from Morse theory which will be needed later. Let E → N

be a fibration with E a closed manifold. Consider a function F quadratic at infinity as

above. Denote by Fa the set {F ≤ a}. For sufficiently large positive numbers C1 < C2, the

set F−C2 is a deformation retract of F−C1 . Hence for C large enough, the homology groups

H∗(Fa,F−C ,K) depend only on a. We will denote them by H∗(F ,a). It is known (see [10])

that for sufficiently large a, H∗(F ,a) is isomorphic to H∗(E,K).

For any function F which is quadratic at infinity, and any integer

k ∈ {1, . . . , dimH∗(E,K)}, we define a Viterbo number ck(F) by

ck(F) = inf{c|dim i∗(H∗(F , c)) ≥ k},

where i∗ is the map induced by the natural inclusion Fc → Fa, when a is a

sufficiently large number. Our definition is similar to Viterbo’s construction [20] in the

symplectic setting,whichwas adapted in the contact setting byBhupal [4]. The following

proposition is a straightforward generalization of this, using the language of generating

families quadratic at infinity.

Proposition 1.

i. Each number ck(F), k ∈ {1, . . . , dimH∗(E,K)} is a critical value of F , and if F

is an excellent Morse function (i.e., all its critical points are non-degenerate

and all critical values are different) then the numbers ck(F) are different.

ii. Consider a family Ft, t ∈ [0, 1], of functions which are all quadratic at infin-

ity. For any k ∈ {1, . . . , dimH∗(E,K)} the number ck(Ft) depends continuously

on t. If the family Ft, t ∈ [0, 1], is generic (i.e., intersects the discriminant con-

sisting of non excellent Morse functions transversally at its smooth points)

then t '→ ck(Ft) is a continuous piecewise smooth function with a finite

number of singular points. !

Remark 8. At thismoment, it is unknownwhether ck(LF )depends only on L if L = LF . !
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14 V. Colin et al.

4 Proof of Theorems 1 and 2

We will in fact prove Theorem 7 below, which is more general than Theorem 1. Fix a

closed manifold N and a smooth fibration E → N such that E is closed. A Legendrian

submanifold L ⊂ (J1(N), ζ ) will be called a E-quasifunction if it is Legendrian isotopic

to a manifold given by some generating family quadratic at infinity along the lines of

Section 3.2. We say that a connected component L of the space of Legendrian subman-

ifolds in (J1(N), ζ ) is E-quasifunctional if L contains an E-quasifunction. For example,

the component L containing the one-jet extensions of the smooth functions on M is E-

quasifunctional, with E coinciding with N (the fiber is just a point). More complicated

manifolds E will give rise to an interesting zoology of Legendrian submanifolds towhich

the following theorem applies :

Theorem 7. An E-quasifunctional component contains no positive loop. !

4.1

The proof of Theorem 7 will be given in Section 4.3. It will use the following

generalization of Chekanov’s theorem (see [18]), and Proposition 2.

Theorem 8. Consider a Legendrian isotopy Lt, t ∈ [0, 1], such that L0 is an E-

quasifunction. Then there exists a numberK and a smooth family of functions quadratic

at infinity Ft : E × RK → R, such that for any t ∈ [0, 1], Ft is a generating family

of Lt. !

Note that it follows from Theorem 8 that any Legendrian submanifold in some

E-quasifunctional component is in fact an E-quasifunction.

Proposition 2. Consider a positive path Lt, t ∈ [0, 1], given by a family Ft, t ∈ [0, 1],
of quadratic at infinity generating families. The Viterbo numbers of the family Ft
are monotone increasing functions with respect to t: ci(F0) < ci(F1) for any i ∈
{1, ..., dimH∗(E)}. !

4.2 Proof of Proposition 2

Assume that the inequality is proved for a generic family. This, together with the conti-

nuity of the Viterbo numbers, gives us a weak inequality ci(F0) ≤ ci(F1), for any family.

But positivity is a C∞−open condition, so we can perturb the initial family Ft into some
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Positive Isotopies 15

family F̃t coinciding with Ft when t is sufficiently close to 0 and 1, such that F̃t still gen-

erates a positive path of Legendrian submanifolds and such that the family F̃t,t∈[1/3,2/3] is

generic. We have

ci(F0) = ci(F̃0) ≤ ci(F̃1/3) < ci(F̃2/3) ≤ ci(F̃1) = ci(F1),

and hence the inequality is strong for all families.

We now prove the inequality for generic families. Excellent Morse functions

form an open dense set in the space of all quadratic at infinity functions on E × RK . The

complement of the set of excellent Morse functions forms a discriminant, which is a

singular hypersurface. A generic one-parameter family of quadratic at infinity functions

Ft on E × RK has only a finite number of transverse intersections with the discriminant

in its smooth points, and for every t except possibly finitely many, the Hessian dwwFt is

non-degenerate at every critical point of the function Ft.

We will use the notion of Cerf diagram of a family of functions gt, t ∈ [0, 1],
on a smooth manifold. The Cerf diagram is a subset in [0, 1] × R consisting of all the

pairs of type (t, z), where z is a critical value of gt. In the case of a generic family of

functions on a closed manifold, the Cerf diagram is a curve with non-vertical tangents

everywhere, with a finite number of transverse self-intersections and cuspidal points

as singularities, since it is the front of a Legendrian curve in J1([0, 1]), obtained from g

viewed as a generating family.

The graph of the Viterbo number ci(Ft) is a subset of the Cerf diagram of the

family Ft. To prove the monotonicity of the Viterbo numbers, it is sufficient to show that

the Cerf diagram of Ft has a positive slope at every point except for a finite set. The rest

of the proof of Proposition 2 is devoted to that.

We say that a point x on a Legendrian submanifold L ⊂ J1(N) is non-vertical if

the differential of the natural projection L → N is non-degenerate at x. Let Lt be a smooth

family of Legendrian submanifolds and x(t0) = (q(t0),p(t0),u(t0)) be a non-vertical point.

By the implicit function theorem, there exists a unique family x(t) = (q(t),p(t),u(t)),

defined for t sufficiently close to t0, such that x(t) ∈ Lt and q(t) = q(t0). We call the

number d
dt

∣∣
t=t0

u(t) the vertical velocity of the point x(t0).

Lemma1. For a positive path of Legendrian submanifolds, the vertical velocity of every

non-vertical point is positive. !

Consider a path Lt in the space of Legendrian submanifolds given by a generating

family Ft defined on the total space of a fibration ρ : E = E × RK '→ N . Consider a point
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16 V. Colin et al.

x ∈ Lt0 corresponding to a vertical (with respect to ρ) critical point (e,v) ∈ E × RK of Ft0 ,

and local coordinates (q,w) adapted to the fibration ρ in a neighbourhood of (e,v). Then

x is equal to (q0,p0,u0) such that q0 = ρ(e,v) and

dwFt0(q0,w0) = 0,p = dqFt0(q0,w0),u = Ft0(q0,w0).

In that case x is non-vertical if and only if the Hessian dwwFt0(q0,w0) is non-

degenerate. For such a point x, the following lemma holds:

Lemma 2. The vertical velocity at x is equal to d
dt

∣∣
t=t0

Ft(q0,w0). !

Let Gt be a family of smooth functions and assume that the point z(t0) is a Morse

critical point for Gt0 . By the implicit function theorem, for each t sufficiently close to t0,

the function Gt has a unique critical point z(t) close to z0, and z(t) is a smooth path.

Lemma 3. The vertical velocity of the critical value d
dt

∣∣
t=t0

Gt(z(t)) does not depend of

the path z(t) and is equal to d
dt

∣∣
t=t0

Gt(z0).

Indeed, d
dt

∣∣
t=t0

Gt(z(t)) = d
dt

∣∣
t=t0

Gt(z(t0)) + ∂Gt
∂z (z(t0)) · dz

dt (t0).

At almost every point on the Cerf diagram, the slope of the Cerf diagram at this point

is the velocity of a critical value of the function Ft. By Lemma 3 and Lemma 2, it is the

vertical velocity at some non-vertical point. By Lemma 1, it is positive. This finishes the

proof of Proposition 2. !

4.3 Proof of Theorem 7

Suppose now that there is a positive loop Lt, t ∈ [0, 1], in some E-quasifunctional compo-

nent L. The condition of positivity is open.We slightly perturb the loop Lt, t ∈ [0, 1], such
that Crit(L0) is a finite set of cardinalityA. Note thatA > 0, since L0 is a E-quasifunction.

Consider the A-th multiple of the loop Lt, t ∈ [0, 1]. By Theorem 8, Lt has a generating

family Ft, for all t ∈ [0,A]. By Proposition 2, we have that

c1(F0) < c1(F1) < · · · < c1(FA).

All theseA+1 numbers belong to the setCrit(L0). This is impossible due to the cardinality

of this set. This finishes the proof of Theorem 7 and hence of Theorem 1. !
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Positive Isotopies 17

4.4 Proof of Theorem 2

Recall that we assume that the universal cover of N is Rn. A positive path between two

fibers of ST∗N → N could be lifted to a positive path between two fibers of ST∗Rn → Rn,

hence it is enough to consider the case when N = Rn. We will use the contactomorphism

between (ST∗(Rn), ζ1) and (J1(Sn−1), ζ ) defined in Section 2.4.1.

Without loss of generality, we assume that there exists a positive path which

starts at the fiber π−1(0) and ends at π−1(x), for some non-zero x ∈ Rn. The fiber

π−1(x) corresponds to a Legendrian submanifold j1lx ⊂ J1(Sn−1), where lx is the function

defined by q '→ 〈q,x〉. It is a Morse function for x /= 0, and has only two critical points

and two critical values ±||x||. So at the end of the path, the Viterbo numbers must be

+||x|| and −||x||. On the other hand, the starting point corresponds to the zero section

j1l0, where the Viterbo numbers must be equal to zero. Hence the existence a positive

path between those two fibers would contradict the monotonicity (Proposition 2) of the

Viterbo numbers. !

5 Morse theory for positive Legendrian submanifolds

In this section, we prove Theorem 4 and deduce Theorem 5 from it. We need first to

generalize some of the previous constructions and results to the case of manifolds with

boundary.

LetN be a closedmanifold. Fix a function f : N → R such that 0 is a regular value

of f . Denote by M the set f −1([0,+∞[). Denote by b( f ) = dimK H∗(M) the dimension

of H∗(M) (all the homologies here and below are counted with coefficients in a fixed

field K).

5.1 Viterbo numbers for manifolds with boundary

The definition of the Viterbo numbers for a function quadratic at infinity on a man-

ifold with boundary is the same as in the case of a closed manifold. We repeat it

briefly. Given a function F which is quadratic at infinity, we define the Viterbo numbers

c1,M (F), ..., cb( f ),M (F) as follows.

A generalized critical value of F is a real number which is a critical value for F or

for the restriction F |∂M×RK . Denote by Fa the set {(q,w)|F(q,w) ≤ a}. The homotopy type of

the set Fa is changed only if a passes through a generalized critical value. One can show

that, for sufficiently large C1,C2 > 0, the homology of the pair (FC1 ,F−C2) is independent

of C1,C2, and naturally isomorphic, by the Thom isomorphism, to H∗−indQ(M). So, for any
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18 V. Colin et al.

a ∈ R and sufficiently large C2 the inclusion H∗(Fa,F−C2) → H∗−indQ(M) is well defined

and independent of C2. Denote the image of this inclusion by H∗(F ,a).

Definition 2. The Viterbo numbers are

ck,M (F) = inf{c|dimH∗(F , c) ≥ k},k ∈ {1, . . . ,b( f )}. !

Any Viterbo number ck,M (F) is a generalized critical value of the function F .

Obviously, c1,M (F) ≤ ... ≤ cb( f ),M (F). For any continuous family Ft of quadratic at infinity

functions, ck,M (Ft) depends continuously on t.

5.2 Proof of Theorem 4

Consider a family of quadratic at infinity functions Ft : N × RK → R, parametrized by

t ∈ [0, 1], such that Ft is a generating family for the Legendrian submanifold Lt and such

that the path Lt, t ∈ [0, 1], is positive. We will consider the restriction of the function Ft
toM × RK and denote it by Ft also. The following proposition generalizes Proposition 2.

Proposition 3. TheViterbo numbers of the family Ft aremonotone increasing: ci,M (F0) <

ci,M (F1) for any i ∈ {1, ...,b( f )}. !

The difference with Proposition 2 is that the Cerf diagram of a generic family has

one more possible singularity. This singularity corresponds to the case when a Morse

critical point meets the boundary of the manifold. In this case, the Cerf diagram is

locally diffeomorphic to a parabola with a tangent half-line (i.e., a neighbourhood of a

branching point in a train-track). It remains to show that for a path z(t) of critical points

in ∂M , their critical values Ft(z(t)) has positive derivative. The formula d
dt

∣∣
t=t0

Ft(z(t)) =
d
dt

∣∣
t=t0

Ft(z(t0)) + ∂Ft
∂z (z(t0)) · dz

dt (t0) from the proof of Lemma 3 still holds. To conclude, we

remark that dz
dt (t0) is tangent to ∂M where ∂Ft

∂z (z(t0))|T(∂M) vanishes. !
We now prove Theorem 4. Consider the 1-parameter family of functions Hλ

defined on M × RK for λ ≥ 0 by

Hλ(q,w) = F1(q,w) − λf (q).

Themanifold L1 intersects j1λ0f at some point aboveM\∂M if and only if the functionHλ0

has 0 as an ordinary critical value (not a critical value of the restriction to the boundary).

Consider the numbers ck,M (Hλ). By Proposition 3, ck,M (H0) > 0. For a sufficiently

large value of λ, each of them is negative. To show that, consider a sufficiently small
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Positive Isotopies 19

ε > 0 belonging to the component of the regular values of f which contains 0. Denote

by M1 ⊂ M the set {f ≥ ε}. The manifold M1 is diffeomorphic to the manifold M , and

the inclusion map is a homotopy equivalence. Denote by Gλ the restriction of Hλ to the

M1 × RK . Consider the following commutative diagram:

H∗(Ga
λ ,G

−C2
λ )

i1−−−−→ H∗(G
C1
λ ,G−C2

λ )
Th1−−−−→ H∗−ind(Q)(M1)

j1

% j2

%

H∗(Ha
λ ,H

−C2
λ )

i2−−−−→ H∗(H
C1
λ ,H−C2

λ )
Th2−−−−→ H∗−ind(Q)(M)

where C1,C2 are sufficiently large numbers, Th1,Th2 denote Thom isomorphisms and

i1, i2, j1, j2 are the maps induced by the natural inclusions. It follows from the commuta-

tivity of the diagram and from the fact that j2 is an isomorphism that ck,M1(Gλ) ≥ ck,M (Hλ)

for every k.

For sufficiently large λ and for every q ∈ M1, the critical values of the function Gλ

restricted to q×RK are negative. Hence all generalized critical values of Gλ are negative.

It follows that all the numbers ck,M1(Gλ) are negative, and the same holds for ck,M (Hλ).

We fix λ0 such that ck,M (Hλ0) < 0 for every k ∈ {1, . . . ,b( f )}.
Consider now ck,M (Hλ) as a function of λ ∈ [0, λ0]. We are going to show that

its zeroes correspond to the intersections above M \ ∂M . For a manifold L1 in general

position, all the generalized critical values of F1 are non-zero. In particular all the crit-

ical values of the function F1|∂M×RK are non-zero. The function F1|∂M×RK coincides with

Hλ|∂M×RK since f = 0 on ∂M . Hence, if zero is a critical value for Hλ, then it is an ordinary

critical value at some inner point. This finishes the proof of Theorem 4. !

Remark 9. The function ci,M (Hλ) can be constant on some sub-intervals in ]0, λ0[, even
for a generic function F1. Indeed, the critical values of the restriction of Hλ to ∂M ×
RK do not depend on λ. It is possible that ci,M (Hλ) is equal to such a critical value for

some λ’s. !

The following proposition concerns the case of a general (non-necessarily

generic) positive Legendrian submanifold. We suppose again that f is a function having

0 as regular value and that L is a positive Legendrian submanifold.

Proposition 4. For any connected component of the set M = {f ≥ 0} there exists a

positive λ such that L intersects j1λf above this component. !
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20 V. Colin et al.

Consider a connected component M0 of the manifold M . It is possible to replace

f by some function f̃ such that 0 is a regular value for f̃ , f̃ coincides with f on M0 and

f̃ is negative on N \M0. We consider c1,M0(F1 − λf̃ ) as a function of λ. It is a continuous

function, positive in some neighbourhood of zero, and negative for the large values of λ.

Fix some α and β such that c1,M0(F1 − αf̃ ) > 0 and c1,M0(F1 − β f̃ ) < 0. Assume that

for any λ ∈ [α,β], L does not intersect j1λf̃ aboveM0. Then this is also true for any small

enough generic perturbation L′of L. Denote by F ′ a generating family for L′. Each zero

λ0 of c1,M0(F
′ − λ0f̃ ) corresponds to an intersection of L′ with j1λ0f̃ above M0. Such a λ0

exists by Theorem 4. This is a contradiction. !

5.3 Proof of Theorem 5

We can suppose that the origin of Rn belongs to the line considered in the statement of

Theorem 5. Consider now again the contactomorphism which identifies (J1(Sn−1), ζ ) and

(ST∗(Rn), ζ1) (see Section 2.4.1).

For such a choice of the origin, the union of all the fibers above the points on the

line forms a manifold of type '( f ), where f is the restriction of a linear function to the

sphere Sn−1 (see Remark 7 in paragraph 2.4.1).

The manifold M = {f ≥ 0} has one connected component (it is a hemisphere). By

Proposition 4, there is at least one intersection of the considered positive Legendrian

sphere with '+( f ). Another point of intersection comes from '+(−f ). These two points

are different because '+(−f ) does not intersect '+( f ). !

6 Positive isotopies in homogeneous neighbourhoods

The strategy for proving Theorem 6 is to link the general case to the case of 'k ⊂
(J1(S1), ζ ).

Let d = +(L1 ∩S). We first consider the infinite cyclic cover S of S associated with

[L] ∈ π1(S). The surface S is an infinite cylinder. We call U the corresponding cover of U

endowed with the pullback ξ of ξ . By construction, U is ξ-homogeneous. We also call Ls
a continuous compact lift of Ls in U .

By compactness of the family (Ls)s∈[0,1], we can find a large compact cylinder C ⊂ S

such that for all s ∈ [0, 1], Ls ⊂ int(C × R). We also assume that ∂C # *U .

The following lemma shows that in addition we can assume that the boundary

of C is Legendrian.
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Lemma 4. If we denote by π : S × R → S the projection forgetting the R-factor, we can

find a lift C0 of a C0-small deformation of C in S which contains L0, whose geometric

intersection with L1 is d and whose boundary is Legendrian. !

To prove this, we only have to find a Legendrian lift γ of a small deformation

of ∂C, and make a suitable slide of C near its boundary along the R-factor to connect γ

to a small retraction of C × {0}. The plane field ξ defines a connection for the fibration

π : S × R → S outside any small neighbourhood N(*S) of *S. We thus can pick any

ξ-horizontal lift of ∂C − N(*S).

We still have to connect the endpoints of these Legendrian arcs in N(*S) × R.

These endpoints lie at different R-coordinates, however this is possible to adjust since

ξ is almost vertical in N(*S) × R (and vertical along *S × R). To make it more precise,

we first slightly modify C so that ∂C is tangent to ξS near *S. Let δ be the metric closure

of a component of ∂C \ *S contained in the metric closure R of a component of S \ *S.

On int(R) × R, the contact structure ξ is given by an equation of the form dz + β where

z denotes the R-coordinate and β is a 1-form on int(R), such that dβ is an area form

that goes to +∞ as we approach ∂R. Now, let δ′ be another arc properly embedded in

R and which coincides with δ near its endpoints. If we take two lifts of δ and δ′ by

π starting at the same point (these two lifts are compact curves, since they coincide

with the characteristic foliation near their endpoints, and thus lift to horizontal curves

near *S where β goes to infinity), the difference of altitude between the lifts of the two

terminal points is given by the area enclosed between δ and δ′, measured with dβ. As

dβ is going to infinity near ∂δ = ∂δ′, taking δ′ to be a small deformation of δ sufficiently

close to ∂δ, we can give this difference any value we want. This proves Lemma 4. !

Let U0 = C0 × R.

Lemma 5. There exists an embedding of (U0, ξ ,L0) in (J1(S1), ζ ,'k) such that the image

of L1 intersects d times 'k. !

The surface C0 is ξ-convex and its dividing set has exactly 2k components going

from one boundary curve to the other. All the other components of *C0 are boundary par-

allel. Moreover, the curve L0 intersects by assumption exactly once every non boundary

parallel component and avoids the others. Then one can easily embed C0 in a larger

annulus C1 and extend the system of arcs *C0(ξ) outside of C0 by gluing small arcs, in

order to obtain a system * of 2k non boundary parallel arcs on C1. Simultaneously, we

extend the contact structure ξ from U0, considered as a homogeneous neighbourhood
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of C0, to a neighbourhood U1 * C1 × R of C1. To achieve this one only has to extend the

characteristic foliation, in a way compatible with *, and such that the boundary of C1

is also Legendrian. Note that the R-factor is not changed above C0.

To summarize, U1 is a homogeneous neighbourhood of C1 for the extension ξ 1,

and C1 has Legendrian boundary with dividing curve *C1(ξ 1) = *. By genericity, we

can assume that the characteristic foliation of C1 is Morse-Smale. Then, using Giroux’s

realization lemma [14], one can perform a C0-small modification of C1 relative to L0∪∂C1,

leading to a surface C2, through annuli transverse to the R-direction, and whose support

is contained in an arbitrary small neighbourhood of saddle separatrices of ξ 1C1, so that

the characteristic foliation of C2 for ξ 1 is conjugated to ζ'k. If this support is small

enough and if we are in the generic case (which can always been achieved) where L1

doesn’t meet the separatrices of singularities of ξ 1C1, we get that +(L1 ∩ C2) = +(L1 ∩
C1) = d. As we are dealing with homogeneous neighbourhoods, we see that (U1, ξ 1,L0) is

conjugated with (J1(S1), ζ ,'k). This proves Lemma 5. !
The combination of Lemma 5 and Corollary 1 ends the proof of Theorem 6 by

showing that d ≥ 2k. !
When S is a sphere the conclusion of Theorem 6 also holds since we are in the

situation where k = 0. However in this case, we have a more precise disjunction result.

Theorem 9. Let (U , ξ) be a ξ-homogeneous neighbourhood of a sphere S. If ξ is tight

(i.e., *U is connected), then any Legendrian curve L ⊂ S can be made disjoint from S by

a positive isotopy. !

Consider R3 with coordinates (x,y, z) endowed with the contact structure ζ =
ker(dz + xdy). The radial vector field

R = 2z
∂

∂z
+ x

∂

∂x
+ y

∂

∂y

is contact. Due to Giroux’s realization lemma, the germ of ξ near S is isomorphic to the

germ given by ζ near a sphere S0 transverse to R. Let L0 be the image of L in S0 by this

map. By genericity, we can assume that L0 avoids the vertical axis {x = 0,y = 0}. Now, if

we push L0 enough by the flow of ∂
∂z , we have a positive isotopy of L0 whose endpoint L1

avoids S0. This isotopy takes place in a ζ -homogeneous collar containing S0 and obtained

by flowing back and forth S0 by the flow of R. This collar embeds in U by an embedding

sending S0 to S and the R-direction to the R-direction. !
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