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The coloring problem for classes with two
small obstructions

D.S. Malyshev*1

Abstract
The coloring problem is studied in the paper for graph classes de-
fined by two small forbidden induced subgraphs. We prove some suffi-
cient conditions for effective solvability of the problem in such classes.
As their corollary we determine the computational complexity for all
sets of two connected forbidden induced subgraphs with at most five
vertices except 13 explicitly enumerated cases.

Keywords: vertex coloring, computational complexity, polynomial-
time algorithm

1 Introduction

The coloring problem is one of classical problems on graphs. Its formulation
is as follows. A coloring is an arbitrary mapping of colors to vertices of
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some graph. A graph coloring is called proper if any neighbors are colored
in different colors. The chromatic number of a graph G (denoted by x(G)) is
the minimal number of colors in proper colorings of GG. The coloring problem
for a given graph is to find its chromatic number. The vertex k-colorability
problem is to verify whether vertices of a given graph can be colored with at
most k colors. The edge k-colorability problem is formulated by analogy.

A graph H is called an induced subgraph of G if H is obtained from G by
deletions of its vertices. The induced subgraph relation is denoted by C;. In
other words, H C; G if H is an induced subgraph of G. A class is a set of
simple unlabeled graphs. A class of graphs is called hereditary if it is closed
under deletions of vertices. It is well known that any hereditary (and only
hereditary) graph class X' can be defined by a set of its forbidden induced
subgraphs §. We write X = Free(S) in this case. If a hereditary class can
be defined by a finite set of forbidden induced subgraphs, then it is called
finitely defined.

The coloring problem for G-free graphs is polynomial-time solvable iff
GC;,PiorGC; Psd Ky (Kral et al. 2002). A study of forbidden pairs was
also initialized in the paper. When we forbid two induced subgraphs, the sit-
uation becomes more difficult than in the monogenic case. Here only partial
results are known (Kral’ et al. 2002; Brandstadt et al. 2002; Brandstadt et
al. 2006; Schindl 2005; Golovach, Paulusma and Song 2011; Dabrowski et
al. 2012; Golovach and Paulusma 2013). The next statement is a survey of
such achievements (Golovach and Paulusma 2013).

Theorem 1 Let G; and Gy be two fized graphs. The coloring problem is
NP-complete for Free({G1,Gs}) if:

o C, C; Gy for some p >3 and C, C; Gy for some g > 3

o 153G Gy and K13 C; Gy

o K35 C; Gy and either Ky C; Gy or Ky — e C; Gy (or vice versa)

o K15C; Gy and C, C; Gy for some p > 4 (or vice versa)

e (G and Gy contain a spanning subgraph of 2K, as an induced subgraph
o (3 C; Gy and Ky, C; Gy for some p > 5 (or vice versa)

o (5 C; Gy and Pigy C; Go (or vice versa)
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o C, C; Gy forp > 5 and Gy contains a spanning subgraph of 2K, as an
induced subgraph (or vice versa)

e cither C, ® Ky C; Gy for p € {3,4} or C, C; Gy for ¢ > 6 and G
contains a spanning subgraph of 2K, as an induced subgraph (or vice
versa)

It is polynomial-time solvable for Free({G1,Ga}) if:
e (1 and Gy are induced subgraphs of Py or Py ® Ky
[} Gl Ql K1,3 and G2 QZ Cg D K1 (O’I" vice UGTSCI,)

o G C,; paw and Gy # K5 is a forest with at most six vertices (or vice
versa)

o Gy C; paw and either Gy C; pKy or Gy C; Ps @ pKy for some p > 1
(or vice versa)

o Gy G, K, for p> 3 and either Go C; qKs or G2 C; Ps @ qK, for some
q > 1 (or vice versa)

e G C; gem and either Gy C; Py @ Ky or Gy C; Ps (or vice versa)

o G C; Ps and either Gy C; P, ® K, or Gy C; 2K, (or vice versa)

In the present article we prove some sufficient conditions for NP-completeness

and polynomial-time solvability of the coloring problem for {Gi, Gs}-free
graphs. They add new information about its complexity for some cases that
Theorem 1 does not cover. For instance, the problem is appeared to be
NP-complete for { K 4, bull}-free graphs, but it is polynomial-time solvable
for Free({Ky 3, P5}), Free({K 3, hammer}), Free({Ps,Cy}). The complex-
ity was earlier open for these four cases. As a corollary of the conditions we
determine the complexity for all sets {G1, G5} of connected graphs with at
most five vertices except 13 listed cases.

2 Notation

As usual, P,,C,, K,, O,, and K, , stand respectively for the simple path with
n vertices, the chordless cycle with n vertices, the complete graph with n ver-
tices, the empty graph with n vertices and the complete bipartite graph with
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p vertices in the first part and ¢ vertices in second. The graph K, — e is ob-
tained by deleting an arbitrary edge in K,,. The graph paw is obtained from
K, 3 by adding a new edge incident to its vertices of degree two. The graphs
fork, gem, hammer, bull, butter fly have the vertex set {w1,xo,xs3, x4, x5}
The edge set for fork is {(x1, x2), (x1, x3), (1, 24), (x4, x5) }, for gem is {(z1, x2),
(x1,x3), (T1,24), (T1,75), (T2, x3), (T3, T4), (x4, x5) }, for hammer is {(x1, x2),
(1, x3), (T2, x3), (T1,x4), (T4, 5)}, for bull is {(x1, x2), (x1, x3), (T2, 3), (71, T4),
(IQ, .]75)}, for butterﬂy is {(1’1, 1’2), (Il, LU3), (SL’Q, 1’3), (Il, LU4), (SL’l, 1’5), (LU4, LU5)}

The complemental graph of G (denoted by G) is a graph on the same
set of vertices and two vertices of G are adjacent if and only if they are not
adjacent in G. The sum G ® G, is the disjoint union of G; and G5. The
disjoint union of k copies of a graph G is denoted by kG. For a graph GG and
a set V C V(G) the formula G\ V denotes the subgraph of G obtained by
deleting all vertices in V.

All graph notions and properties that are not formulated in this paper

can be found in the textbooks (Bondy and Murty 2008; Distel 2010).

3 Boundary graph classes

The notion of a boundary graph class is a helpful tool for analysis of the com-
putational complexity of graph problems in the family of hereditary graph
classes. This notion was originally introduced by Alekseev for the indepen-
dent set problem (Alekseev 2004). It was applied for the dominating set
problem later (Alekseev, Korobitsyn and Lozin 2004). A study of boundary
graph classes for some graph problems was extended in the paper (Alekseev
et al. 2007), where the notion was formulated in its most general form. Let
us give the necessary definitions.

Let IT be an NP-complete graph problem. A hereditary graph class is
called II-easy if IT is polynomial-time solvable for its graphs. If the problem
IT is NP-complete for graphs in a hereditary class, then this class is called
[I-hard. A class of graphs is said to be II-limit if this class is the limit of an
infinite monotonously decreasing chain of [I-hard classes. In other words, X

is II-limit if there is an infinite sequence X7 2 A7 O ... of II-hard classes,

such that X = () A,. A minimal under inclusion II-limit class is called
k=1

[1-boundary.

The following theorem certifies the significance of the boundary class



notion (Alekseev 2004).

Theorem 2 A finitely defined class vs I1-hard iff it contains some I1-boundary
class.

The theorem shows that knowledge of all II-boundary classes leads to a
complete classification of finitely defined graph classes with respect to the
complexity of II. Two concrete classes of graphs are known to be boundary
for several graph problems. First of them is S. It is constituted by all forests
with at most three leaves in each connected component. The second one is
T, which is a set of the line graphs of graphs in §. The paper (Alekseev et
al. 2007) is a good survey about graph problems, for which either S or T is
boundary.

Some classes are known to be limit and boundary for the coloring problem.
The set of all forests (denoted by F) and the set of line graphs of forests with
degrees at most three are limit classes for it (Lozin and Kaminski 2007). The
last class we will denote by 7”. The set co(T) = {G : G € T} is a boundary
class for the problem (Malyshev 2012(a)). The set of boundary graph classes
for the coloring problem is continuous (Korpeilainen et al. 2011). Some
continuous sets of boundary classes for the vertex k-colorability and the edge
k-colorability problems are known for any fixed & > 3 (Malyshev 2012(a);
Malyshev 2012(b)).

4 NP-completeness of the coloring problem
for { K 4, bull}-free graphs

The listed above results on limit and boundary classes for the coloring prob-
lem together with Theorem 1 allow to prove NP-completeness of the problem
for some finitely defined classes. Namely, if ) is a finite set of graphs and no
one graph in ) belongs to a class in {F,T’,co(T)}, then the problem is NP-
complete for F'ree()). But this idea can not be applied to F'ree({ K1 4, bull}),
because K14 € F,bull € T',bull € co(T). Nevertheless, the coloring prob-
lem is NP-complete for it. To show this we use the operation with a graph
called the diamond implantation.

Let G be a graph and x be its nonpendant vertex. Applying the diamond
implantation to x implies:



e an arbitrary splitting of the neighborhood of x into two nonempty parts
Aand B

e deletion of x and addition of new vertices y1, y2, y3, Y4

e addition of all edges of the kind (y1, a),a € A and of the kind (y4, b),b €
B

e addition of the edges (y1,%2), (v1,¥3), (¥2,y3), (Y2, Ya), (Y3, Ys)

Clearly that for any graph and any its nonleaf vertex applying the di-
amond implantation preserves vertex 3-colorability. This property and the
paper (Kochol, Lozin and Randerath 2003) give the key idea of the proof of
Lemma 1.

Lemma 1 The vertex 3-colorability problem (hence, the coloring problem) is
NP-complete for the class Free({Ky4,bull}).

Proof. The vertex 3-colorability problem is known to be NP-complete
for triangle-free graphs with degrees at most four (Maffray and Preissmann
1996). Let us consider connected such a graph with at least two vertices.
We will sequentially apply the described above operation to its vertices with
edgeless neighborhoods. In other words, if H is a current graph, then it is
applied to an arbitrary vertex of H that does not belong to any triangle. The
sets A and B are arbitrarily formed with the condition ||A| — |B|| < 1. The
whole process is finite, because the number of its steps is no more than the
quantity of vertices in the initial graph. It is easy to see that the resulted
graph belongs to Free({ K 4,bull}). Thus, the vertex 3-colorability problem
for triangle-free graphs with degrees at most four is polynomially reduced to
the same problem for graphs in Free({ K 4, bull}). Hence, it is NP-complete
for Free({Ki4,bull}). m

5 Some structural results on graphs in some
classes defined by small obstructions

For a hereditary class X and a number £ the formula [X]; is a set of graphs,
for which one can delete at most k vertices that a result belongs to X.



Lemma 2 If some connected graph G € Free({Kis, Ps}) contains an in-
duced cycle C' of length at least four, then G € [Free({Os})]s.

Proof. Length of C' is equal to either four or five. We will show first that
C dominates all vertices of GG. Let there is a vertex of G that does not belong
to C' and adjacent to no one vertex of the cycle. Then due to the connectivity
of G there are vertices z,y € V(G) \ V(C), such that (z,y) € E(G), z is not
adjacent to any vertex of C' and y is adjacent to at least one vertex of C.
Since G € Free({K;3}), then y is adjacent to exactly two vertices of C'. The
vertices x,y and some three consecutive vertices of the cycle (one of which is
adjacent to y) induce the subgraph Ps. Thus, C' really dominates all vertices
of G.

We will show that the graph G\ V(C') does not contain three pairwise
nonadjacent vertices. This fact implies the validity of Lemma 2. Assume
that G\ V(C) has a set V of three pairwise nonadjacent vertices. Since G is
K, s-free, then the intersection of the neighborhood of each vertex in V' with
V(C) is a set of at least two (three for C' = C5) consecutive vertices of C.

Let us consider the case C' = (5. No one vertex of V' can be adjacent to
all vertices of C, since otherwise some vertex of C' is adjacent to all vertices
of V' (and G contains K, 3 as an induced subgraph). One can assume that
no one vertex in V is adjacent to exactly four vertices of the cycle C, since
in this case the graph G contains the induced cycle C; and the case C' =
Cy will be considered later. Therefore, we can consider only the situation,
where each vertex of V is adjacent to three consecutive vertices of C' and
the corresponding sets of three consecutive vertices are distinct (otherwise
G contains K3 as an induced subgraph). Then, some two vertices of V'
and some three vertices of C' induce P5. So, if C' = (5, then we have a
contradiction.

Now we consider the case C' = C,. It is easy to verify that avoiding
induced K; 3 in G leads to only the following situations:

e one vertex of V' is adjacent to all vertices of C' and the other two vertices
of V are adjacent to disjoint pairs of its consecutive vertices

e one vertex of V is adjacent to two consecutive vertices of C' and each
of the other two vertices is adjacent to three consecutive vertices of C,
they have two common neighbors in C' and the first vertex has only
one common neighbor in C' with each of them



e cach of two vertices of V' is adjacent to two consecutive vertices of C,
the third one is adjacent to three consecutive vertices of C' and any two
vertices of V' have only one common neighbor in C'

The graph G contains Ps as an induced subgraph in all three cases. We
come to a contradiction. Thus, the initial assumption was false. m

Lemma 3 If some connected graph G € Free({K; 3, hammer}) contains an
induced cycle C,, (n > 7), then G is isomorphic to C,,.

Proof. Assume opposite, i.e. there is a vertex =z € V(G) \ V(C,,). One
can easily show that the vertex x is adjacent to at least one vertex of C,,. It
is easy to verify that the set of z’s neighbors in C), is constituted either by
two, three or four consecutive vertices or by two pairs of consecutive vertices
(otherwise G ¢ Free({Ki3})). In both situations the graph G contains
hammer as an induced subgraph. Hence, the assumption was false. m

Lemma 4 If some connected graph G € Free({K, 3, hammer}) contains Cg
as an induced subgraph, then G\ V(Cs) is the disjoint union of at most three
cliques.

Proof. Let us consider the set V' = V(G) \ V(Cs). It is easy to verify
that the intersection of the neighborhood of each vertex in V' with Cg induces
in G the subgraph 2K,. Let us consider now two arbitrary vertices in V. If
they are adjacent, then they have in Cy the same sets of neighbors and if they
are not adjacent, then the mentioned sets are distinct. This implies that V'
does not contain four pairwise nonadjacent vertices. Thus, G \ V(Cy) is the
disjoint union of at most three cliques. m

Lemma 5 For any connected graph G € Free({K; 3, hammer}) at least one
of the following properties is true:

e (G is a simple cycle
o (G contains the induced subgraph Cg

e (G has a pendant vertex

o G belongs to the class Free({Ps})



o G belongs to the class [Free({Os})]s

Proof. Assume that G &€ Free({Ps}). Let us consider an induced path
P, of G having the maximal length. Clearly, n > 5. Let us consider an
arbitrary end of this path. One can assume that it is adjacent to some
vertex x € V(G) \ V(P,), otherwise G contains a pendant vertex. By the
maximality of P, the vertex x is adjacent to at least two vertices of the path.
One can consider that x is adjacent to at least one interior vertex of P,,
otherwise G is a simple cycle (by Lemma 3) or it contains C as an induced
subgraph.

Let n > 5. To avoid induced K 3 the vertex x must be adjacent to three
or four consecutive vertices of P, or to two end its vertices or to three vertices
of P, that induce the subgraph K, & K; in G or to four vertices inducing
2K,. The graph G contains hammer as an induced subgraph in all these
situations.

Let n = 5 now. One can assume that the graph G \ V(Ps) has three
pairwise nonadjacent vertices (otherwise G € [Free({Os})]5). It is easy to
check that any of these three vertices must be adjacent to either three central
vertices of Ps or to all its vertices, except central or to the first, the third and
the fourth vertices of P5 (counting from some of the P5’s ends) or to the first
and the last its vertices. The graph G contains Cy as an induced subgraph in
the last case. Hence, we can consider that no one among the three vertices
is adjacent to only the ends of Ps. If one of the three vertices is adjacent to
the first, the third and the fourth vertices of P5 and other of these vertices is
adjacent to the second, the third and the fifth ones, then G contains induced
Cs. Therefore, one can assume that there are no such two vertices. Either
the second or the fourth vertex of Ps is adjacent to the three vertices and,
hence, G is not K s-free. Thus, the initial assumption was false. m

6 On formulae connecting the chromatic num-
bers of a graph and of its induced sub-
graphs

The following statement is obvious.

Lemma 6 If G is a connected graph with at most three vertices and a pen-
dant vertez v, then x(G \ {v}) = x(G).
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Lemma 7 Let G be a connected graph in Free({Ps,C4}) that contains in-
duced C5. Let V7, be the set its vertices that adjacent to all vertices of Cs, Vs
be the set of vertices in G that have three neighbors in Cs, Gy and Gy be the
subgraphs of G, induced by V(G)\ (V1UVLUV (C5)) and ViUVLUV (Cs) corre-
spondingly. Then, Go is Os-free and the relation x(G) = max(x(G1), x(G2))
holds.

Proof. Any vertex outside C5 that adjacent to at least one vertex of the
cycle must be adjacent to either all vertices of the cycle or to three consecutive
its vertices. It is easy to verify taking into account that G is {Ps, Cy}-free.
Therefore, any such a vertex belongs to either V; or V5. Each vertex in V;
has no a neighbor outside V(C5) U V; UV, (since G € Free({Ps})). As G is
Cy-free, then any vertex in V] is adjacent to every vertex in V3 U Vo U V/(Cs)
except itself. It is easy to verify that G4 is Os-free.

The inequality x(G) > max(x(G1), x(G2)) is obvious. We will show that
G can be colored with max(x(G1), x(Gz)) colors. Let ¢; and ¢y be optimal
colorings of GGy and Gy correspondingly. If x(G;) > x(Gz), then ¢; has
X(G1) — Vi = x(G2) — |Vi| > 0 colors that do not appear in V. Hence, ¢;
can be extended to a proper coloring of G with x(G;) colors by coloring G\ V;
with x(Gz2) — |Vi| colors of the mentioned type. By the same reasons ¢y is
extendable to a proper coloring of G with x(G2) colors when x(G2) > x(G1).
[

7 Some results on polynomial-time solvabil-
ity of the coloring problem

Lemma 8 Let X' be an easy case for the coloring problem and for some
number p the inclusion X C Free({O,}) holds. Then, for any fived q this
problem is polynomial-time solvable in the class [X],.

Proof. Let G be a graph in [X],. Deleting some set V' (]V| < ¢) of its
vertices leads to a graph in X'. We will consider all partial proper colorings
of G with at most |V| color classes, in which every vertex of V is colored.
Obviously, any such a coloring has at most (p — 1)g colored vertices. Hence,
the quantity of the colorings is bounded by a polynomial on |V (G)|. For any
considered partial coloring deleting all colored vertices leads to a graph in
X and its chromatic number is computed in polynomial time. For every our
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partial coloring we will find the sum of the number of used colors and the
chromatic number of the subgraph induced by the set of uncolored vertices.
Minimal among these sums is equal to x(G). Thus, x(G) is computed in
polynomial time. m

A graph is called chordal if it does not contain induced cycles with four
and more vertices. The coloring problem is known to be polynomial-time
solvable for chordal graphs (Golumbic 1980).

Lemma 9 The classes Free({K13, Ps}), Free({ K13, hammer}), Free({Ps, C4})
are easy for the coloring problem.

Proof. We will show that for every considered class the coloring problem
is polynomially reduced to the same problem for chordal graphs. This fact
implies the lemma. The problem is polynomial-time solvable in Free({Os}),
since it is equivalent to the matching problem. The reduction for {K; 3, Ps}-
free graphs follows from this observation, Lemma 2 and Lemma 8.

Let G be a graph in Free({ K3, hammer}) containing the induced sub-
graph Cs. By Lemma 4, deleting vertices of this cycle leads to a chordal Oy-
free graph. Hence, by Lemma 8, x(G) is computed in polynomial time. Thus,
by Lemma 5 and Lemma 6 the coloring problem for the class is polynomially
reduced to the same problem for graphs in Free({ K13, Ps}) U[Free({Os})]s.
Hence, it is reduced to chordal graphs.

Let G be a connected graph in Free({Ps, C4}) that is not chordal. Hence,
G contains induced C5. The graphs GG; and G4 defined in the formulation of
Lemma 7 are constructed in polynomial time. Moreover, G5 is Os-free and
|[V(G)| — |[V(G1)| > 5. Therefore, by Lemma 7 the considered problem for
{Ps, Cy}-free graphs is also polynomially reduced to the same problem for
chordal graphs. m

8 The main result and its corollaries

The following theorem is the main result of the paper.

Theorem 3 Let H, and Hy be some graphs. If there is a class Y € {F,T",co(T)}
with either Hy, Hy € Y or K14 C; Hy and bull C; Hy (or vice versa), then the
coloring problem is NP-complete for Free({Hy, Hs}). It is polynomial-time
solvable in the class if at least one of the following properties holds:
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e Hi Gy PyorHy G Py

e Hy C; Ps or Hy C; K5 (or vice versa)

e Hy C; Ps or Hy C; gem (or vice versa)

o Hy C; Py or Hy C; Cy (or vice versa)

o Hy C; Ps or Hy C; Ky 3 (or vice versa)

o H) C; Ki4 or Hy C; paw (or vice versa)
o Hy C; fork or Hy C; paw (or vice versa)

o Hy C;, K3 or Hy C; hammer (or vice versa)

Proof. Let us recall that the classes F, T, co(T) are limit for the color-
ing problem. This fact, Theorem 1 and Lemma 1 imply the first part of the
statement. The set of Ps-free graphs is well known to be an easy case for the
coloring problem (Courcelle and Olariu 2000). The classes Free({Ps, gem})
and Free({Ps, K5}) are easy for the problem (Brandstadt et al. 2002; Golo-
vach and Paulusma 2013). The same is true for Free({ fork, paw}) (Golovach
and Paulusma 2013) and Free({ K 4, paw}) (Kral’ et al. 2001). These facts
and Lemma 9 imply the second part of the theorem. m

Both parts of Theorem 3 add new information about the complexity of the
coloring problem for some classes. For example, its complexity status for the
classes Free({Ki s, bull}), Free({Ki3, Ps}), Free({ K13, hammer}), Free({Ps, Cy})
was open.

Theorem 3 gives the following criterion in the case of connected H; and
H, with at most four vertices.

Corollary 1 If H; and Hy are connected graphs with at most four vertices,
then the coloring problem is polynomial-time solvable for { Hy, Hy}-free graphs
iff either Hy C; Py or Hy C; Py or {Hy, Ho} = {Ki3,paw} or {Hy, Hy} =
{K173, Cg}

Theorem 3 can not be applied to some pairs of connected graphs with at
most five vertices. If {Hy, Ho} is such a set, then either H; or Hs belongs
to {Ki3, fork, Ky 4, Ps}. This observation helps to enumerate all connected
cases with at most five vertices that the theorem does not cover.
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Corollary 2 Theorem 3 does not give the complexity status of the coloring
problem for the following sets of forbidden induced connected subgraphs (a
number in the brackets shows the quantity of such kind sets) :

o {K,3,G}, where G € {bull,butter fly} (2)
o {fork, bull} (1)

o {P5. G}, where G & {K5,gem} is an arbitrary connected five-vertex
graph in co(T) (10)

Determining the complexity of the problem for any of the listed above 13
cases is a challenging research problem.

References

[1] Alekseev V (2004) On easy and hard hereditary classes of graphs with
respect to the independent set problem. Discrete Applied Mathematics
132:17-26.

2] Alekseev V, Boliac R, Korobitsyn D and Lozin V (2007) NP-hard graph
problems and boundary classes of graphs. Theoretical Computer Science
389:219-236.

[3] Alekseev V, Korobitsyn D and Lozin V (2004) Boundary classes of graphs
for the dominating set problem. Discrete Mathematics 285:1-6.

[4] Brandstadt A, Dragan F, Le H and Mosca R (2002) New graph classes
of bounded clique-width. Lecture Notes in Computer Science 2573:57-67.

[5] Brandstadt A, Engelfriet J, Le H and Lozin V (2006) Clique-width for
4-vertex forbidden subgraphs. Theory Comput. Syst. 39:561-590.

(6] Bondy A and Murty U (2008) Graph theory. Springer-Verlag, Graduate
texts in mathematics.

[7] Courcelle B and Olariu S (2000) Upper bounds to the clique width of
graphs. Discrete Applied Mathematics 101(1-3):77-144.

[8] Dabrowski K, Lozin V, Raman R and Ries B (2012) Colouring vertices of
triangle-free graphs without forests. Discrete Mathematics 312:1372—1385.

13



[9] Diestel R (2010) Graph theory. Springer-Verlag, Graduate texts in math-
ematics.

[10] Golovach P, Paulusma D and Song J (2011) Coloring graphs without
short cycles and long induced paths. Lecture Notes in Computer Science
6914:193-204.

[11] Golovach P and Paulusma D (2013) List coloring in the absence of two
subgraphs. CIAC 288-299.

[12] Golumbic M. Algorithmic graph theory and perfect graphs (1980) Aca-
demic Press, New York.

[13] Kochol M, Lozin V and Randerath B (2003) The 3-colorability problem
on graphs with maximum degree four. STAM J. Computing 32:1128-1139.

[14] Korpeilainen N, Lozin V, Malyshev D and Tiskin A (2011) Boundary
properties of graphs for algorithmic graph problems. Theoretical Computer
Science 412:3544-3554.

[15] Kral’ D, Kratochvil J, Tuza Z and Woeginger G (2001) Complexity of
coloring graphs without forbidden induced subgraphs. Lecture Notes in
Computer Science 2204:254-262.

[16] Lozin V and Kaminski M (2007) Coloring edges and vertices of graphs
without short or long cycles. Contributions to Discrete Mathematics 2(1).

[17] Schindl D (2005) Some new hereditary classes where graph coloring re-
mains NP-hard. Discrete Math. 295:197-202.

[18] Maffray F and Preissmann M (1996) On the NP-completeness of the k-
colorability problem for triangle-free graphs. Discrete Mathematics 162(1—
3): 313-317.

[19] Malyshev D (2009) Continual sets of boundary classes of graphs for col-
orability problems. Discrete Analysis and Operations Research 16(5):41-51
(in Russian).

[20] Malyshev D (2012) On intersection and symmetric difference of families
of boundary classes in the problems of colouring and on the chromatic
number. Discrete Mathematics 24(2):75-78 (in Russian). English transla-
tion in Discrete Mathematics and Applications (2011) 22(5-6):645-649.

14



[21] Malyshev D (2012) A study of boundary graph classes for colorabil-
ity problems. Discrete Analysis and Operations Research 19(6):37-48 (in

Russian). English translation in Journal of Applied and Industrial Math-
ematics (2013) 7(2):221-228.

15



	1 Introduction
	2 Notation
	3 Boundary graph classes
	4 NP-completeness of the coloring problem for {K1,4,bull}-free graphs
	5 Some structural results on graphs in some classes defined by small obstructions
	6 On formulae connecting the chromatic numbers of a graph and of its induced subgraphs
	7 Some results on polynomial-time solvability of the coloring problem
	8 The main result and its corollaries

