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Abstract. Nested Petri nets are Petri nets with net tokens. The live-
ness and boundedness problems are undecidable for two-level Nested
Petri nets (NP-nets) [1]. Boundedness is EXPSPACE and liveness is EX-
PSPACE or worse for plain Petri nets [5]. For the restricted class of
free-choice Petri nets some problems become more amenable to analysis.
There is the polynomial time algorithm to check if a free-choice Petri
net is live and bounded [3]. In this paper we show how these results can
be applied to NP-nets with free-choice components. We prove, that for
NP-nets boundedness can be checked in a compositional way and define
restrictions, under which liveness is also compositional. The motivating
example of such restricted NP-nets is provided.

1 Introduction

Nested Petri nets (NP-nets) [1] is an extension of high-level Petri nets according
to the “nets-within-nets” approach. A NP-net is a high-level Petri net with
net-tokens being Petri nets themselves. NP-nets is a convenient formalism for
modeling systems of dynamic interacting agents: an agent is represented by a
net token, and all agents are distributed in a system net. Levels in NP-nets are
coordinated via synchronized transitions (simultaneous firing of transitions in
adjacent levels of the model). Being less than Turing power NP-nets are stronger
more expressive than Petri nets. Thus the liveness and boundedness problems
are undecidable for two-level NP-nets [1].

Though boundedness and liveness is decidable for plain Petri nets, these
problems are not tractable in general. Boundedness is EXPSPACE and liveness is
EXPSPACE or worse for Petri nets [5]. So, analysis of Petri nets subclasses,
for which these problems can be decided effectively, is of great importance.
Free-choice Petri nets is such a popular subclass. Well-formedness (liveness and
boundedness) can be checked for free-choice Petri nets in polynomial time [3].

In this paper we study how these results can be applied to NP-nets with
free-choice components. These restrictions are not something artificial: we can
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meet systems with free-choice components in different application areas. A small
example of such a system is provided.

For a NP-net with free-choice components we can effectively check well-
formedness of its separate components. Then we define conditions for NP-nets,
under which boundedness and liveness of an “entire” NP-net can be deduced
from the corresponding properties of its components (compositionality).

2 Preliminary definitions

A Petri net (PN) is a bipartite graph N = (P, T, F') with a finite set of nodes
PUT, where PNT = (), and an incidence relation F C (P x T) U (T x P). An
incidence relation F' induces the incidence function F': (P x T)U (T x P)) = N
such that f(z,y) = 1 iff (x,y) € F, and F(x,y) = 0 otherwise. Nodes from P
are called places, they correspond to local states of a system. Nodes from T
are called transitions and correspond to actions or events. A marking in a PN
is a function m : P — N, mapping each place to some natural number. P-
elements are represented by circles, T-elements — by boxes, and a flow relation —
by directed arcs. Places may carry tokens represented by filled circles. A current
marking m is designated by putting m(p) tokens into each place p € P.

For a transition ¢ € T an arc (z,t) is called an input arc, and an arc (t,z) —
an output arc; the preset ®*x and the postset x® are subsets of P UT such that
v = {y|(y,x) € F} and 2°* = {y|(z,y) € F}. A transition t € T is enabled in
a marking m iff Vp € *t : m(p) > 1. An enabled transition ¢ may fire yielding a
new marking m’ =go¢ m — *t +t°, i.e. m’(p) = m(p) — F(p,t) + F(t,p) for each
p € P (denoted m Lom! ). The set of all markings reachable from a marking m
(via a sequence of firings) is denoted by R(m).

Definition 1. A net N = (P, T, F) is called free-choice, iff Vp € P : ¥Vt € T :
(p,t) € F implies *t x p* C F.

Further we use the term “free-choice” instead of “extended free-choice” fol-
lowing the convention from [3]. Informally, for a free-choice Petri net it holds
that, for any position p if any of its outgoing transitions is active, then each of
its other outgoing transitions is also active, so the system can “freely choose”
between them.

In two-level nested Petri nets (NP-nets) [1,2] tokens may be PNs themselves.
A NP-net consists of a system net and element nets. Marked element nets are
called net tokens.

A system net in a NP-net is a high level PN with expressions on arcs. In arc
expressions we use variables and constants, which we call atoms. An expression
is a sum (multiset) of atoms. Such expressions form the simple additive language
Expr.

Definition 2. A (two-level) NP-net is a tuple NP = (Lab, SN,E). Here Lab is
a set of labels for synchronization of transitions, E — a finite set of element nets.
Some transitions in element nets may be labeled with labels from Lab.



A system net SN = (N, L,U, W, mg) is a high-level Petri net, where N =
(Psn,Tsn,Fsn) is a net with Psy — a set of typed places (a type is either
an atomic type, or an element net from E); L = Expr — an arc expression
language (sums of constants and variables); U = (A,Z) — a model of L with
a domain A = Apet U Aatom, where Anet — a set of marked element nets (net
tokens), Aatom — a set of plain colored tokens, T : Con — A — an interpretation
function; W : Fsny — L — an arc expression function; A : Tsy — Lab — a
transition labeling function.

According to NP-nets definition constants or several instances of the same
variable are not allowed in input arc expressions. In a transition firing each
variable in the transition input and output arc expressions is assigned to some
colored or net token.

For further details see [1,2]. Note, however, that here we consider a typed
variant of NP-nets, when a type is instantiated to each place, and due to syn-
tactical limitations this place may contain only tokens of this type.

Let NP be a NP-net. Then a system net of NP and its element nets are
called components of NP.

3 DMotivating example

In this section we give an example of a NP-net NP, modeling a conceptual part
of P2P protocol. Here the system net SN (fig.2) models the interaction protocol
itself and the element nets (fig.1) model behaviour of seeds E; providing datum,
peers Fs seeking for datum and pipes F3 — channels for a secure data transfer.

Seeds and peers are modeled roughly as we are interested in their interactions.
A seed F4 can be in one of “ready to upload” p;, “uploading” ps and “reini-
tialization” ps states. Seed events are “upload started” t;, “upload complete”
to and “reinitialization complete” t3. A peer FEs can be in “ready to download”
pg, or in “downloading” ps states. Peer events are “download started” ¢, and
“download complete” ts.

A pipe is a connection which can be used to change/improve such aspects
of data transfer as security, reliability etc. A pipe F3 has a seed (pg,p7) and a
peer (p12,p13) interfaces and a 2-cells buffer (ps,pg,p10,p11). Initially the pipe is
waiting for the seed (p7). The seed can start (tg) to transfer data (pg) to the
buffer and the peer starts waiting for the datum portion. When a transmission
is finished (¢7), the seed returns to the wait state (p7) and the first cell of buffer
is filled (ps). Then a data portion propagates (tg) to the second cell of the
buffer, thus the first cell becomes empty (pg) and the second cell becomes filled
(p10). When the peer has downloaded (tg) the data portion from the second cell
(p10) the second buffer cell becomes empty (p11) and the peer waits for another
portion of data (pi3). When the seed has sent all datum, the pipe waits for a
data portion to be propagated through the buffer to the peer (pi3) and then
moves (t12) to reinitialization state (p14). When reinitialization is finished (¢1¢)
the pipe completes (t19) a transfer cycle and becomes ready for another cycle
(p15). Now the next transfer cycle can start (t11).



(E3 (pipe):

Fig. 1. The element nets of NP.

The system consists of initial and final pools for seeds, peers and pipes. In
the initial pool an agent is ready for interaction, while in the final pool an
agent reinitializes its inner structures for the next interaction activity. There is
no final pool for peers, since we do not model peer initialization routines. The
initial pools for seeds (p1g), peers (p17) and available pipes (p1g) are filled with
some agents in the initial state of the system. If there are a seed and a peer
which are ready to transfer data and there is an available session, then they can
start (t14) interaction (p19,p20,p21) controlled by the pipe net (E3). After the
seed and the peer have finished (t16) their data exchange, the peer returns to
the initial pool (p17), the seed and the session get to their final pools (pa2, pa3).
After reinitializing a pipe returns (¢;7) to the initial pool of pipes (p1g) and a
peer returns (t15) to its initial pool (pig)-



(SN(protocol):
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Fig. 2. The system net of NP.

This is certainly only the core of the protocol, since such aspects as system
termination, or exceptions (transmission failures) are not specified.

4 Boundedness of NP-nets

A plain Petri net is bounded iff there exists an upper bound for number of tokens
in all reachable place markings. It is also well known, that the boundedness of
a given PN is equivalent to finiteness of the PN reachability set. It is easy to
extend both variants of this definition to NP-nets.

Definition 3. A marked NP-net NP with an initial marking mq is k-bounded
(k € N), iff for any reachable marking m € R(mg) the number of tokens in any
place in any component of NP is not greater than k, i.e. (Vp € Psy : |m(p)| <
k)/\(Va em(p) : Y0 € Pen(a) : Ma(p) < k;) A marked NP-net NP is bounded,
iff NP is k-bounded for some k.

It is easy to note, that a marked NP-net N P is bounded iff its reachability set
Ry p(my) is finite.

In what follows, when we speak of separate components we do not take into
account transition synchronization labels. So, we can consider element nets as
ordinary Petri nets and a system net as a high-level Petri net with a finite
number of colors (each color corresponds to either an atomic type, or an element
net type).

Theorem 1. Let NP be a marked NP-net. If the system net, all net tokens in
the initial marking, as well as all net constants in arc expressions in NP are
bounded, then NP is bounded.



The proof of this theorem follows immediately from the definitions, since vertical
synchronizations in a system and element nets can only reduce reachability set
of NP. Then the maximum of all bounds for all net components can be chosen
as a bound for NP.

Note, that the converse of the Theorem 1 is not valid.

Definition 4. Let (P,T,F) be a Petri net. A mapping I : P — Q is an S-
invariant iff for every t € T we have 3° o, I(p) =3 e 1(p).

An S-invariant is called positive iff I(p) > 0 for every place p € P. The following
theorem was proved in [3].

Theorem 2. If a marked PN has a positive S-invariant, then it is bounded.

Theorem 2 can be directly used for checking boundedness of net tokens in a
NP-net. As for a system net, it is a high-level PN, and in general case we cannot
speak of integer valued invariants for high-level PNs.

However, system nets form a special, rather restricted subclass of high-level
Petri nets. Net tokens are identical in terms of separate system net behavior,
since each place contains net tokens of only one type. Then a transition firing
depends only on count of net tokens in its input places. When a system net
is considered as a separate high-level PN, arc expressions can be replaced by
integers: a number n corresponds to an expression with n variables and con-
stants (taking into account their multiplicity). Thus a system net is behaviorally
equivalent to some plain PN with weighted arcs. Moreover, we can compute its
S-invariants with algorithms for plain PNs.

Thus from Theorems 1 and 2 we obtain

Theorem 3. Let NP be a marked NP-net. If the system net, all net tokens in
the initial marking, and all net constants in the system net arc expressions in
NP have positive invariants, then NP is bounded.

5 Liveness of NP-nets

Liveness can be defined in several ways [6]. We will use “L4-live” property, which
we redefine for NP-nets as follows.

Definition 5. Let t be a transition in a component of a marked NP-net NP
with an initial marking mg. A transition t is called live iff for every reachable
marking m there exists a sequence of firings starting from m, which includes t,

ie.VmeR(mg):IoeT*:mSm 5.

Checking liveness for NP-nets is a complicate problem. Transition firings in
different NP-net components may be related by synchronization mechanism. Also
net tokens may be consumed by system net transitions. So, for some applications
we may consider liveness only for system net transitions.

Definition 6. Let NP be a marked two-level NP-net. NP is called OL-live iff
every transition in its system net is live.



OL-liveness is important when we are more interested in analyzing a system
dynamics, rather than behavior of certain agents. The following theorem states
some sufficient conditions for compositionality of 0L-liveness.

Theorem 4. Let NP be a marked two-level NP-net. Let also NP satisfy the
following conditions:

1. the system net in NP is live (considered as a separate Petri net);

2. all net tokens in the initial marking and all net constants in every arc ex-
pression are live (considered as separate Petri nets)

3. NP has only one label of vertical synchronization \;

4. if t is a system net transition in N P labeled with \, then for any p € *t the
type of p is an element net, containing a transition labeled with X.

Then NP is 0L-live.

The proof of this theorem is based on the following. A synchronization transition
in a system net can fire only simultaneously with synchronization transitions in
net tokens involved in this firing. Liveness of net tokens then guarantee, that
each net token can reach a state, when a transition needed for synchronization
is enabled.

Note, that conditions 3 and 4 here are syntactical restrictions, that can be
easily checked.

Definition 7. Let NP be a marked NP-net. NP is said to be 1L-live iff every
transition in its system net and every transition in each net token from the initial
marking in NP are live.

Definition 8. Let NP be a NP-net. NP is called conservative iff for each tran-
sition t in the system net in NP the set of all variables in input arc expressions
for t is a subset of all variables in its output arc expressions.

It is easy to see, that if a conservative NP-net contains a net token of type «
in its initial marking, then it contains at least one net token of type « in every
reachable marking.

Theorem 5. Let NP be a marked NP-net. Let also NP satisfy conditions 1-4
in the Theorem 4, as well as the following two conditions:

1. NP 1is conservative
2. each strongly connected component of the system net contains at least one
transition labeled with \.

Then NP is 1L-live.

The proof of this theorem is inherently similar to the proof of the Theorem 4.
Additionally note, that liveness of a net token may be violated, when this token
is trapped in a system subnet without synchronization transitions. In such a case
a system net is still live, but synchronization transitions in the net token may
become dead. The last condition excludes this case.



Theorems 4 and 5 give us an approach for checking liveness of NP-nets with
free-choice components compositionally.

Free-choice nets is an important subclass of Petri nets. They allow modeling
a conflict and a synchronization, but not “confusion” (which is an interference
of both).

It is well known that “checkability” frontier separates free-choice nets [3]. For
free-choice nets there are effective (polynomial) algorithms for several important
behavioral properties such as well-formedness (boundedness + liveness) [4, 3].
Actually, for bounded free-choice nets liveness can be checked in polynomial
time.

Let us return to our example in section 3. Here the element nets and the
system net in the P2P protocol model are free-choice nets. It can be checked
(in polynomial time), that they are structurally live and bounded (well-formed).
And that they are live and bounded in the given marking.

Under compositionality of liveness and boundedness for NP-nets the OL-
liveness and boundedness of the entire NP-net can be proved. Moreover, since
the conditions of the theorem 5 are satisfied the modeled protocol is 1L-live.

6 Conclusion

In this paper we have characterized conditions under which nested Petri nets
boundedness and liveness can be deduced from the same properties for net com-
ponents. Compositional approach allows to reduce crucially Petri net state space,
and makes checking these properties a tractable problem.
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