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Abstract A knot space in a manifold M is a space of oriented immersions S1 ↪→ M
up to Diff(S1). J.-L. Brylinski has shown that a knot space of a Riemannian threefold
is formally Kähler. We prove that a space of knots in a holonomy G2 manifold is
formally Kähler.
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1 Introduction

Let M be an oriented Riemannian 3-fold and Knot(M) be its knot space, that is, a space
of non-parametrized, immersed, oriented loops, represented by a map that is injective
outside a finite set. J.-L. Brylinski has proved that Knot(M) is an infinite-dimensional
formally Kähler Fréchet manifold (see Sect. 2 for an explanation of these terms). This
formal Kähler structure is easy to construct, though the proof of its formal integra-
bility is non-trivial. Given a knot S ⊂ M , its tangent space TS Knot(M) is a space of
sections of its normal bundle NS, which is 2-dimensional, oriented and orthogonal. A
2-dimensional oriented Euclidean vector space has a natural complex structure, which
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is defined through counter-clockwise turns. Therefore, the bundle NS is a 1-dimen-
sional complex Hermitian bundle. Therefore, the space of sections of NS is a complex
Hermitian Fréchet vector space. The corresponding Hermitian form is easy to obtain
from the volume 3-form on M by integration along the knots (Definition 4.14).

G2-manifolds appear naturally as a main object of “octonionic algebraic geome-
try”, playing the same role for octonions as hyperkähler and hypercomplex manifolds
play for quaternions. The main engine for the study of quaternionic geometry is the
twistor construction, which makes a complex manifold from a manifold with a qua-
ternionic structure. It is well known that the twistor data can be used to reconstruct the
quaternionic structure. Singularities in hyperkähler and hypercomplex geometry and
many natural geometric objects can also be studied in terms of twistors [22,23].

One would expect the hypothetical octonion twistor space (if it exists) to bring simi-
lar benefits. However, none of the usual approaches to constructing complex structures
on twistor manifolds works for G2-geometry, and it seems that something must be
sacrificed. In the present paper, we sacrifice finite-dimensionality of a twistor space.

We propose a twistor-like construction resulting in a formally Kähler structure on
the knot space of a G2-manifold (Theorem 4.17). This construction is similar in flavor
to one of J.-L. Brylinski; in fact, our approach to the proof of formal integrability is sim-
ilar to the argument of L. Lempert [16], who used a CR-twistor space constructed for
G2-manifolds by C. LeBrun. A G2-analog of LeBrun’s twistor space was constructed
in [24], and now we use it to study the complex structure on the knot space. We also
interpret several objects of G2-geometry (instanton bundles, associative subvarieties)
as holomorphic objects on the knot space (Sect. 5).

The symplectic structure that appears in this construction was previously obtained
by M. Movshev [18].

2 Fréchet manifolds and formally Kähler geometry

In this section, we briefly introduce Fréchet manifolds and basic geometric structures
on such manifolds. For a detailed exposition, please see [17].

2.1 Fréchet manifolds and knot spaces

Recall that a Fréchet space is an infinite-dimensional topological vector space V
admitting a translation-invariant complete metric. It is equivalent to say that V has a
countable family of seminorms ‖·‖1, ‖·‖2, ‖·‖3 . . ., and the topology on V is induced
by a complete, translation-invariant metric

d(x, y) :=
∞∑

i=1

1

2i
min(‖x − y‖i , 1).

[3]. A differentiable map of Fréchet spaces is a map which can be approximated at
each point by a continuous linear map, up to a term that decays faster than linear, in
the sense of this metric. In a similar way one defines smooth (infinitely differentiable)
maps of Fréchet spaces.
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A Fréchet manifold is a ringed space, locally modeled on a space of differentiable
functions on a Fréchet space, with transition functions smooth.

When M is a compact finite-dimensional manifold, the space C∞M of smooth
functions on M has a sequence of norms Ck , with

‖ f ‖Ck =
k∑

i=0

sup
M

| f (i)|,

where f (i) denotes the i-th derivative. It is well known that this system of seminorms
is complete on C∞(M), giving a structure of Fréchet space on C∞(M). Similar con-
structions allow one to define the Fréchet structure on the space of smooth sections of
a vector bundle.

This is used to define a structure of a Fréchet manifold on various infinite-dimen-
sional spaces arising in geometry, in particular on a space Imm(X, M) of smooth
immersions X ↪→ M , and on a group of diffeomorphisms, which becomes a Fréchet
Lie group.

The quotient Imm(X, M)/ Diff(X) is a Fréchet orbifold, locally modeled on the
total space N X of its normal bundle. To see this, one needs to construct a slice of
the Diff(X)-action, which can be done easily using a Riemannian metric. The orbi-
fold points correspond to those maps which are wrapped several times on themselves.
Denote by Imm0(X, M) the space of immersions that are injective outside of a positive
codimension set of self-intersections. Clearly, then Imm0(X, M)/ Diff(X) is a Fréchet
manifold.

For the present paper, the most important Fréchet manifold is a space Knot(M) :=
Imm0(S1, M)/ Diff+(S1) of oriented knots (non-parametrized immersed loops, injec-
tive outside of a finite set) in M . We could work with the orbifold Imm(S1, M)/

Diff+(S1) instead, and all the results would remain valid in the orbifold con-
text. To simplify terminology, we work with manifolds and restrict ourselves to
Imm0(S1, M)/ Diff+(S1).

2.2 Formally complex Fréchet manifolds

Let F be a Fréchet manifold. One can define the sheaf of vector fields T F on F as a
shief of continuous derivations of its structure sheaf. A commutator of two derivations
is again a derivation. This gives a Lie algebra structure on the sheaf of vector fields.

The formally integrable almost complex structures are defined as usual, in the fol-
lowing way.

Definition 2.1 Let F be a Fréchet manifold, and I : T F −→ T F a smooth C∞
F-linear endomorphism of the tangent bundle satisfying I 2 = −1. Then I is called
an almost complex structure on F .

Remark 2.2 Clearly, I defines a decomposition T F ⊗ C = T 1,0 F ⊕ T 0,1 F , where
T 1,0 F is the

√−1 -eigenspace of I , and T 0,1 F the −√−1 -eigenspace. Indeed,
x = 1

2 (x + √−1 I x) + 1
2 (x − √−1 I x).
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Definition 2.3 An almost complex structure on a Fréchet manifold (F, I ) is called
formally integrable, if [T 1,0 F, T 1,0 F] ⊂ T 1,0 F , where [·, ·] denotes the commutator
of vector fields. In this case, (F, I ) is called a formally complex manifold.

Remark 2.4 Just as it happens in the finite-dimensional case, the projection of
[T 1,0 F, T 1,0 F] to T 0,1 F is always C∞F-linear. This gives an operation

�2T 1,0 F
N−→ T 0,1 F,

called the Nijenhuis tensor. The Nijenhuis tensor of an almost complex Fréchet
manifold (F, I ) vanishes if and only if it is formally integrable.

Definition 2.5 A function f on an almost complex Fréchet manifold is called holo-
morphic if 〈d f, X〉 = 0 for any vector field X ∈ T 0,1 F . A smooth map to a complex
topological vector space is called holomorphic if its composition with continuous
complex linear functionals is always holomorphic.

Definition 2.6 An almost complex structure on a Fréchet manifold F is called
strongly integrable if there exists an atlas of local coordinate charts which are given by
holomorphic maps to complex Fréchet spaces. In this case, F is called holomorphic.

Remark 2.7 Every holomorphic Fréchet manifold is formally integrable, which is
obvious, because one can locally generate T 1,0 F by coordinate vector fields that com-
mute. The converse implication is known to be false. For finite-dimensional manifolds,
formal integrability implies integrability of a complex structure, by a deep analytic
result called the Newlander–Nirenberg theorem [19]. An infinite-dimensional version
of Newlander–Nirenberg theorem is false (see [16]).

Definition 2.8 Let (F, I ) be a formally integrable almost complex Fréchet manifold,
g a Hermitian structure on F , and ω be the corresponding (1, 1)-form. We say that
(F, I, g) is formally Kähler if ω is closed.

2.3 Formally Kähler structures on knot spaces

Let M be a smooth manifold and Knot(M) be its knot space. As we have mentioned
already, Knot(M) is a Fréchet manifold. Locally at l ∈ Knot(M), this manifold is
modeled on the space of smooth sections of a normal bundle Nl.

Geometric structures on the space of knots on an oriented 3-manifold M3 were a
subject of much research (see e.g. [5,15,16], and the book [6]). In [5], a formally
Kähler structure on Knot(M3) was constructed. In [16], it was shown that this
formally complex structure is never strongly integrable.

In his book [6], J.-L. Brylinski gives many uses for the formal Kähler structure
on the space of knots. Another possible application of the formally Kähler structure
on the space of knots (not explored much, so far) is to the spaces of discriminants of
knots and their cohomology. V. A. Vassiliev defined the eponymous knot invariants by
considering the stratification on the space of knots by successive discriminant spaces.
Later, M. Kontsevich redefined some of these cohomology spaces and proved that
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they carry the mixed Hodge structure. It is easy to see that the discriminant spaces are
in fact complex subvarieties, in the sense of formally complex structure on the knots.
One would expect that the mixed Hodge structure on Vassiliev invariants comes from
this complex stratification, just as it would happen in the finite-dimensional case.

The aim of this paper is to generalize these results to G2-manifolds, which are
7-dimensional Riemannian manifolds with special holonomy group that lies in G2.

The formally complex structure on the space of knots of a 3-dimensional manifold
M can be defined in terms of the vector product on T M . Indeed, let S be a knot in
M , and γ ′ a unit tangent vector field to S. A vector product with γ ′ defines a complex
structure on the normal bundle NS, which is used to define the formal complex struc-
ture on Knot(M). In [13] and [14], geometry of manifolds with vector products was
explored at some length, and many results about the knot spaces and instantons were
obtained from a similar vector product construction.

3 G2-manifolds

3.1 G2-geometry: basic notions

G2-manifolds originally appeared in Berger’s classification of Riemannian holonomy
[1,2]. The first examples of G2-manifolds were obtained by R. Bryant and S. Salamon
[4]. The compact examples of G2-manifolds were constructed by D. Joyce [11,12]. In
this introduction, we follow the approach to G2-geometry, which is due to N. Hitchin
(see [10]).

Definition 3.1 Let ρ ∈ �2
R

7 be a 3-form on R
7. We say that ρ is non-degenerate if

the dimension of its stabilizer is maximal:

dim StGL(7)ρ = dim GL(7) − dim �3(R7) = 49 − 35 = 14.

In this case, St(ρ) is one of two real forms of a 14-dimensional Lie group G2(C). We
say that ρ is non-split if it satisfies St(ρ|x ) ∼= G2, where G2 denotes the compact
real form of G2(C). A G2-structure on a 7-manifold is a 3-form ρ ∈ �3(M), which
is non-degenerate and non-split at each point x ∈ M . We shall always consider a
G2-manifold as a Riemannian manifold, with the Riemannian structure induced by
the G2-structure as follows.

Remark 3.2 A form ρ defines a �7 M-valued metric on M :

g(x, y) = (ρ�x) ∧ (ρ�y) ∧ ρ (3.1)

(we denote by ρ�x the contraction of ρ with a vector field x). The Riemannian volume
form associated with this metric gives a section of �7 M ⊗ (�7 M)7/2. Squaring and
taking the 9-th degree root, we obtain a trivialization of the volume. Then (3.1) defines
a metric g on M , by construction G2-invariant.

Definition 3.3 An G2-structure is called an integrable G2-structure, if ρ is pre-
served by the corresponding Levi-Civita connection. An integrable G2-manifold is a
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manifold equipped with an integrable G2-structure. Holonomy group of such a man-
ifold clearly lies in G2; for this reason, the integrable G2-manifolds are often called
holonomy G2-manifolds.

Remark 3.4 In the literature, “the G2-manifold” often means a “holonomy G2-man-
ifold” and “G2-structure” “an integrable G2-structure.” A G2-structure that is not
necessarily integrable is called “an almost G2-structure,” taking analogy from almost
complex structures. Further on in this paper, we shall follow this usage, unless specified
otherwise.

Remark 3.5 As shown in [9], integrability of a G2-structure induced by a 3-form
ρ is equivalent to dρ = d(∗ρ) = 0. For this reason, the 4-form ∗ρ is called the
fundamental 4-form of a G2-manifold, and ρ the fundamental 3-form.

Remark 3.6 Let V = R
7 be a 7-dimensional real space equipped with a non-degener-

ate 3-form ρ with StGL(7)(ρ) = G2. As in Remark 3.2, one can easily see that V has
a natural G2-invariant metric. For each vector x ∈ V , |x | = 1, its stabilizer StG2(x) in
G2 is isomorphic to SU (3). Indeed, the orthogonal complement x⊥ is equipped with a
symplectic form ρ�x , which gives a complex structure g−1 ◦(ρ�x) as usual. This gives
an embedding StG2(x) ↪→ U (3). Since the space of such x is S6, and the action of G2
in S6 is transitive, one has dim StG2(x) = dim G2 − dim S6 = 8 = dim U (3) − 1. To
see that StG2(x) = SU (3) ⊂ U (3) and not some other codimension 1 subgroup, one

should notice that StG2(x) preserves two 3-forms ρ

∣∣∣
x⊥ and ρ∗�x

∣∣∣
x⊥ , where ρ∗ = ∗ρ

is the fundamental 4-form of V . A simple linear-algebraic calculation implies that

ρ

∣∣∣
x⊥ + √−1 ρ∗�x

∣∣∣
x⊥ is a holomorphic volume form on x⊥, which is clearly pre-

served by StG2(x). Therefore, the natural embedding StG2(x) ↪→ U (3) lands StG2(x)

to SU (3). Using the dimension count dim StG2(x) = dim SU (3) (see above), we show
that the embedding StG2(x) ↪→ SU (3) is also surjective.

3.2 Octonion structure and a vector product

Let V = R
7 be a 7-dimensional space equipped with a non-degenerate, non-split

constant 3-form ρ inducing a G2-action on V . Then V is equipped with the vector
product, defined as follows: x � y = ρ(x, y, ·)�. Here ρ(x, y, ·) is a 1-form obtained
by contraction, and ρ(x, y, ·)� is its dual vector field.

Remark 3.7 The complex structure on an orthogonal complement v⊥ is given by a
vector product: x −→ v � x , if |v| = 1.

It is not hard to see that (V, �) becomes isomorphic to the imaginary part of the
octonion algebra, with � corresponding to half of the commutant. In fact, this is one
of the many ways used to define an octonion algebra. The whole octonion algebra is
obtained as O := V ⊕ R, with the product given by

(x, t)(y, t ′) = (t y + t ′x + x � y, g(x, y) + t t ′)

Here, x, y and t y + t ′x + x � y are vectors in V , and t, t ′, g(x, y) + t t ′ ∈ R.
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Given two non-collinear vectors in V , they generate a quaternion subalgebra in
octonions. When these two vectors satisfy |v| = |v′| = 1, v⊥v′, the standard basis
I, J, K in imaginary quaternions can be given by a triple v, v′, v � v′ ∈ V .

A 3-dimensional subspace A ⊂ V is called associative if it is closed under the
vector product. The set of associative subspaces is in bijective correspondence with
the set of quaternionic subalgebras in octonions.

3.3 A CRtwistor space of a G2-manifold

Definition 3.8 Let M be a smooth manifold, B ⊂ TM be a sub-bundle in its tangent
bundle, and I ∈ End B be an automorphism, satisfying I 2 = − IdB . Consider the (1,0)
and (0,1)-bundles B1,0, B0,1 ⊂ B ⊗ C, which are the eigenspaces of I corresponding
to the eigenvalues

√−1 and −√−1 . The sub-bundle B1,0 ⊂ T M ⊗ C is called
a CR-structure on M if it is involutive, that is, it satisfies [B1,0, B1,0] ⊂ B1,0.

Let M be an almost G2-manifold. From Remark 3.6 it follows that with every vector
x ∈ TM, |x | = 1, one can associate a complex Hermitian structure on its orthogo-
nal complement x⊥. The easiest way to define this structure is to notice that x⊥ is

equipped with a symplectic structure ρ�x and a metric g
∣∣∣

x⊥ , which can be considered

as real and imaginary parts of a complex-valued Hermitian product. Then the complex
structure is obtained as usual, as I := (ρ�x) ◦ g−1.

Corollary 3.9 Let (M, ρ) be an almost G2 manifold, m ∈ M a point, and x ∈ Tm M
a non-zero vector. Then the symplectic form ρ�x is a Hermitian form of a natural
complex structure on x⊥ ⊂ Tm M.

Definition 3.10 Consider the unit sphere bundle S6 M over M , with the fiber S6, and
let Thor S6 M ⊂ T S6 M be the horizontal sub-bundle corresponding to the Levi-Civita
connection. This sub-bundle has a natural section θ ; at each point (x, m) ∈ S6 M ,

m ∈ M , x ∈ Tm M , |x | = 1, we take θ

∣∣∣
(x,m)

= x , using the standard identification

Thor S6 M
∣∣∣
(x,m)

= Tm M . Denote by B ⊂ Thor S6 M the orthogonal complement to θ

in Thor S6 M . Since at each point (x, m) ∈ S6 M , the restriction B
∣∣∣
(x,m)

is identified

with x⊥ ⊂ Tm M , this bundle is equipped with a natural complex structure, that is, an
operator I ∈ End B, I 2 = −IdB .

Theorem 3.11 [24] Let M be an almost G2-manifold, S6 M ⊂ T M its unit sphere
bundle, and B ⊂ TS6 M a sub-bundle of its tangent bundle constucted above and
equipped with the complex structure I . Then B0,1 ⊂ B ⊗ C ⊂ T S6 M ⊗ C is involu-
tive if and only if M is a holonomy G2-manifold.

Definition 3.12 Let M be a holonomy G2-manifold, and

Tw(M) := (S6 M, B, I )

the CR-manifold constructed in Theorem 3.11. Then Tw(M) is called a CR-twistor
space of M .
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The key argument in the proof of Theorem 3.11 is achieved by constructing a certain
3-form 
 ∈ �3(S6 M, C). This form is of type (3, 0) on B with respect to the complex
structure constructed in Definition 3.10, and satisfies d


∣∣
B = 0. The restriction 


∣∣
B

is determined uniquely from the SU (3)-structure on B: we construct 
 in such a way
that 


∣∣
B is equal to the holomorphic volume form associated with the SU (3)-struc-

ture. Since we are going to use this form and the expression for d
 obtained in [24],
we describe it explicitly below.

Consider the fundamental 3-form and 4-form ρ and ρ∗ := ∗(ρ) on a holonomy
G2-manifold M , and let θ ∈ Thor S6 M be the tautological vector field constructed in
Definition 3.10. Denote by π : S6 M −→ M the standard projection. Then


 := π∗ρ + √−1 (π∗ρ∗�θ), (3.2)

where π∗ρ∗�θ denotes the contraction of π∗ρ∗ and θ ∈ Thor S6 M ⊂ T S6 M .
The 4-form d
 := √−1 d(π∗ρ∗�θ) was computed in [24] explicitly, as follows.
Consider a natural embedding

S6 M
ϕ

↪→ Tot(�3 M) (3.3)

into the total space of �3 M , mapping (v, m) to (π∗ρ∗�v, m). Let 
 be a 4-form on
Tot(�3 M) written in local coordinates p1, . . . , p7 as


 =
∑

i1<i2<i3

dqi1,i2,i3 ∧ d pi1 ∧ d pi2 ∧ d pi3 (3.4)

where qi1,i2,i3 is a function on Tot(�3 M), linear on fibers and expressed as

qi1,i2,i3 := d

d pi1

∧ d

d pi3

∧ d

d pi3

(here we identify the 3-vector fields on M with linear functions on Tot(�3 M)). The
form 
 is a 4-dimensional analog of the usual Hamiltonian 2-form on Tot(�1 M) and
satisfies similar standard properties. It is called “the Hamiltonian 4-form” in [24].

In [24], the following result was proven.

Proposition 3.13 Let M be a holonomy G2-manifold, and 
 be the 3-form on S6 M

constructed above. Then −√−1 d
 = d(π∗ρ∗�θ) is equal to ϕ∗
, where S6 M
ϕ

↪→
Tot(�3 M) is the embedding defined in (3.3).

4 A Kähler structure on a knot space of a G2-manifold

4.1 Knot spaces on CR-manifolds

Let S and M be smooth manifolds, Imm(S, M) the set of immersions from S to M ,
and Knot(S, M) := Imm(S, M)/ Diff(S) the corresponding knot orbifold. Clearly,
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Knot(S, M) is a Fréchet orbifold, modeled on the space of sections of a normal bun-
dle NS in a neighborhood of a point S ∈ Knot(S, M).

Definition 4.1 Suppose that (M, B, I ) is a CR-manifold. A knot S ∈ Knot(S, M) is
called transversal, if for all s ∈ S, the intersection of Ts S ∩ B

∣∣
s = 0, that is, B is

transversal to T S everywhere. Denote the space of transversal knots by KnotB(S, M).

Remark 4.2 Let (M, B, I ) be a CR-manifold, and KnotB(S, M) be the space of trans-
versal knots. Suppose that dim S = codim B. For each knot S ∈ KnotB(S, M), one
has NS ∼= B

∣∣
S , hence KnotB(S, M) has a natural almost complex structure.

Theorem 4.3 Let (M, B, I ) be a CR-manifold, S be a smooth manifold for which
dim S = codim B, and Knot0

B(S, M) the space of transversal knots which are embed-
ded to M (that is, have no self-intersection), equipped with a complex structure as
above. Then Knot0

B(S, M) is a formally complex Fréchet manifold.

Proof Consider an embedded knot S ∈ Knot0
B(S, M). The space T 1,0

S Knot0
B(S, M)

of (1, 0)-tangent vectors is by definition equal to the space of sections of B1,0
∣∣

S . Let
X, Y ∈ B1,0

∣∣
S be some sections of the bundle B1,0

∣∣
S . We extend X, Y to sections

X1, Y1 of B1,0 in some neighborhood of S (this is possible, because S has no self-inter-
sections). The vector fields X1, Y1 ∈ T M are used in a usual way to define vector fields
X̃ , Ỹ ∈ T 1,0 Knot0

B(S, M) satisfying X̃
∣∣

S = X , Ỹ
∣∣

S = Y . Denote by Z1 = [X1, Y1]
the commutator of X1, Y1. Since (M, B, I ) is a CR-manifold, Z1 ∈ B1,0. Denote
by Z̃ ∈ T 1,0 Knot0

B(S, M) the corresponding vector field on Knot0
B(S, M), defined

in a neighborhood of S. Clearly, [X̃ , Ỹ ] = Z̃ , and its (0, 1)-component vanishes.
Therefore, the Nijenhuis tensor

N : T 1,0
S Knot0

B(S, M) × T 1,0
S Knot0

B(S, M) −→ T 0,1
S Knot0

B(S, M)

vanishes on arbitrarily chosen vectors X, Y . We proved that N = 0, hence
Knot0

B(S, M) is integrable. ��
The same argument also proves the following theorem.

Theorem 4.4 Let (M, B, I ) be a CR-manifold, and F ⊂ T M be a sub-bundle of
TM containing B. Consider the space Knot0

F (S, M), defined as above, and let B ⊂
T Knot0

F (S, M) be a sub-bundle consisting of all ξ ∈ TS Knot0
F (S, M) which belong

to �(B
∣∣

S ) ⊂ �(F
∣∣

S ) = TS Knot0
F (S, M) (here � denotes the space of global sec-

tions of a vector bundle). Consider a complex structure operator on B induced by
I : B

∣∣
S −→ B

∣∣
S . Then (B, I ) is an integrable CR-structure on Knot0

F (S, M).

4.2 Two failed proofs of formal integrability and a definition of L-knots

It looks natural to obtain the integrability of the almost complex structure on Knot(M)

for a G2-manifold M directly from Theorem 4.4. The first naive approach is to
use the standard projection Knot0

F (S6 M)
π−→ Knot(M), where Knot0

F (S6 M) =
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Knot0
F (S1, S6 M) is the space of knots transversal to the bundle F = Tver S6 M ⊕ B. It

is easy to see that the projection of a knot in S6 M transversal to Tver S6 M is a knot in M .
By Theorems 4.4 and 3.11, Knot0

F (S6 M) is equipped with an integrable CR-structure

B1,0 induced from B1,0 ⊂ T S6 M ⊗ C. The projection Knot0
F (S6 M)

π−→ Knot(M)

induces a map

dπ : B −→ T Knot(M) (4.1)

which is an isomorphism at each point of S6 M (it follows directly from an isomor-
phism TS Knot(M) = �(B

∣∣
S ), where �(B

∣∣
S ) is the space of sections of the restriction

B
∣∣

S ). Were dπ also compatible with the complex structures, integrability of the com-
plex structure on Knot(M) would follow immediately from the integrability of B1,0.
Unfortunately, this is not so. In fact, it is easy to see that the projection (4.1) is com-
patible with the complex structures only at the one point in each fiber of π (Remark
4.7). This one point corresponds to a special class of knots in S6 M called Legendrian
in [16]. To avoid confusion with the usual Legendrian knots on the contact manifold
S6 M , we call the Lempert’s Legendrian knots the L-knots.

Definition 4.5 Let M be a Riemannian 7-manifold, S ∈ KnotTver S6 M (S6 M) a trans-
versal knot on S6 M , and S1 ∈ Knot(M) its projection to M . Consider a unit speed
parametrization γ1 : S1 −→ S1, and let γ : S1 −→ S be the corresponding param-
etrization in S. Each point t ∈ S1 gives a unit vector γ̇1(t) ∈ Tγ1(t)M . Assume that
γ (t) = (γ̇1(t), γ1(t)). Then S is called an L-knot.

We return now to the case when M is a G2-manifold.

Remark 4.6 Clearly, there is precisely one L-knot in every fiber of the projection
Knot0

Tver S6 M
(S6 M)

π−→ Knot(M). This gives a smooth section � : Knot(M) −→
LKnot(M), where LKnot(M) ⊂ Knot0

F (S6 M) denotes the space of L-knots.

Remark 4.7 For each L-knot S, the map

dπ : B∣∣
S −→ Tπ(S) Knot(M) (4.2)

is complex linear. Indeed, for each (v, m) ∈ S, the complex structure in B
∣∣

S is given
by a vector product with a vector v, and the complex structure in the normal bundle
Nπ(S) is given by a vector product with a unit tangent vector to π(S). These vectors
are equal precisely when S is an L-knot.

From this argument, it is clear that (4.2) is complex linear only if S is an L-knot.
This leads us to the second failed argument for the proof of integrability of Knot(M).

It is natural to expect the embedding

� : Knot(M) −→ LKnot(M) ⊂ KnotF (S6 M)

together with Theorem 3.11 to bring us integrability of the complex structure on
Knot(M). Unfortunately, this argument does not work, because the bundle B ⊂
T KnotF (S6 M) is not tangent to the submanifold LKnot(M) ⊂ KnotF (S6 M).
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This is why a direct application of Theorem 3.11 to the integrability of complex
structure on Knot(M) does not work. Instead, we use a different approach, which
employs Theorem 3.11 only as a framework.

4.3 The tangent space to the space of L-knots

To prove the integrability of the knot space, we use an explicit description of the
tangent space T LKnot(M). The following claim is trivial.

Claim 4.8 Consider the natural action of the group Diff(M) on the space S6 M, inter-
preted as a double cover of the projectivization PT M. Then LKnot(M) ⊂ Knot(S6 M)

is a Diff(M)-invariant subset of the corresponding knot space.

Proof The definition of LKnot(M) is functorial with respect to diffeomorphisms,
hence LKnot(M) is clearly Diff(M)-invariant. ��

Since the natural projection π : LKnot(M) −→ Knot(M) is a diffeomorphism
of Fréchet manifolds, to describe the tangent space T LKnot(M) ⊂ T Knot(S6 M),
we need to describe the image of vector fields X ∈ T Knot(M) in T LKnot(M) ⊂
T Knot(S6 M)

∣∣∣LKnot(M)
.

Proposition 4.9 We consider knot spaces on a Riemannian manifold M of dimension
7.1 Let S1 ∈ Knot(M), and let S ∈ LKnot(M) be the corresponding L-knot. Consider
the decomposition

TS Knot(S6 M) = �
(

Tver(S6 M)
∣∣

S

)
⊕ �

(
B

∣∣
S

)
(4.3)

obtained from the Levi-Civita-induced orthogonal decomposition T S6 M = Tver
(S6 M)⊕ B⊕R·θ (Definition 3.10). Let γ1 be a unit speed parametrization of S1. Con-
sider a vector X ∈ TS LKnot(M) ⊂ TS Knot(S6 M), and let X1 ∈ TS1 Knot(M) =
�(B

∣∣
S ) be the corresponding tangent vector to S1. Then the decomposition of X into

components of (4.3) is written as

X = −∇γ̇1 X1 + X1, (4.4)

where ∇γ̇1 X1 is a �(Tver(S6 M)
∣∣

S )-component of X, and X1 the �(B
∣∣

S )-component.

Proof Clearly, it would suffice to prove (4.4) for a dense open subset Knot0(M) ⊂
Knot(M) of embedded knots. For such a knot, we may extend X1 to a vector field
X̃1 ∈ T M . Let X̃ be the correspoding vector field tangent to LKnot(M) (Claim 4.8).
Clearly, X̃

∣∣
S = X . The action of X̃ on LKnot(M) is a restriction of a vector field

X̃ S6 M ∈ T Knot(S6 M) acting on S6 M by functoriality (here we again identify S6 M
with a double cover of PT M). To finish the proof of Proposition 4.9 it would remain
to compute the vector field X̃ S6 M .

1 In fact, the proof of Proposition 4.9 would hold for any dimension >2.
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At a point (γ̇1, m) ∈ S ⊂ S6 M , the vector field X̃ S6 M is equal to (−∇γ̇1 X1, X1),
which gives

X̃ S6 M

∣∣
S = (−∇γ̇1 X1, X1). (4.5)

Indeed, for any section V ∈ T M ,

LieX̃ V = [X̃ , V ] = ∇X̃ V − ∇V X̃ ,

and choosing V in such a way that ∇X̃ V = 0, and V = v, we obtain that

et X̃ (v, m) = (v − t∇v X̃ + o(t2), et X̃ m).

Then (4.5) clearly follows. From (4.5), (4.4) is apparent. ��
For the proof of integrability of the complex structure on Knot(M), the following

proposition is used.

Proposition 4.10 Let M be a holonomy G2-manifold, and 
 ∈ �4(S6 M) the 4-form
obtained as in (3.4). Consider the corresponding 4-form 
̃ on Knot(S6 M) mapping
vector fields X1, . . . , X4 ∈ TS Knot(S6 M) to the integral

∫
γ


(X1, . . . , X4)dt , where

γ (t) is a unit speed parametrization of S. Then 
̃

∣∣∣LKnot(M)
= 0.

Proof Let Xver
i , Xhor

i be the vertical and horizontal components of X1 ∈ TS

Knot(S6 M), under the natural decomposition

TS Knot(S6 M) = �
(

Tver(S6 M)
∣∣

S

)
⊕ �

(
B

∣∣
S

)
.

In [24], it was shown that 


∣∣∣
Thor S6 M

vanishes. Also, from the local formula (3.4) it is

apparent that 
(v1, v2, ·, ·) = 0, where v1, v2 ∈ Tver(S6 M). Therefore,


(X1, . . . , X4) = Alt ρ∗(Xver
1 , Xhor

2 , Xhor
3 , Xhor

4 ),

where Alt denotes the skew-symmetrization over the indexes 1, 2, 3, 4. However, by
Proposition 4.9, Xver

i = −∇γ̇ Xhor
i , hence


̃(X1, . . . , X4) =
∫

γ

Alt ρ∗(∇γ̇ Xhor
1 , Xhor

2 , Xhor
3 , Xhor

4 ). (4.6)

Since M is a holonomy G2-manifold, ∇γ̇ ρ∗ = 0, and (4.6) gives


̃(X1, . . . , X4) =
∫

γ

d

dt

(
ρ∗(Xhor

1

∣∣∣
γ (t) , . . . , Xhor

4

∣∣∣
γ (t)

)
dt,

which is equal 0 by Stokes’ theorem. ��



A formally Kähler structure on the knot space 551

4.4 Non-degenerate (3, 0)-forms

Definition 4.11 Let M be a smooth or Fréchet manifold, equipped with an almost
complex structure, and 
 ∈ �3,0(M) a (3, 0)-form. We say that 
 is non-degenerate
if for any X ∈ T 1,0(M) there exist Y, Z ∈ T 1,0(M) such that 
(X, Y, Z) �= 0.

The utility of non-degenerate (3,0)-forms is due to the following simple theorem.

Theorem 4.12 Let M be a smooth or a Fréchet manifold equipped with an almost
complex structure, and 
 ∈ �3,0(M) a non-degenerate (3, 0)-form. Assume that
d
 = 0. Then M is formally integrable.

Proof Let X, Y ∈ T 1,0(M) and Z , T ∈ T 0,1(M). Since 
 is a (3,0)-form, it vanishes
on (0, 1)-vectors. Then Cartan’s formula together with d
 = 0 implies that

0 = d
(X, Y, Z , T ) = 
(X, Y, [Z , T ]). (4.7)

From the non-degeneracy of 
, we obtain that unless [Z , T ] ∈ T 0,1(M), for some
X, Y ∈ T 1,0 M one would have 
(X, Y, [Z , T ]) �= 0. Therefore, (4.7) implies
[Z , T ] ∈ T 0,1(M), for all Z , T ∈ T 0,1(M), which means that M is integrable. ��

For the proof of integrability of the almost complex structure on the knot space, we
also need the following trivial lemma.

Lemma 4.13 Let M be a G2-manifold, and 
 := π∗ρ+√−1(π∗ρ∗�θ) ∈ �3(S6 M)

be the 3-form constructed in 3.2. Denote by 
̃ the corresponding form on LKnot(M),
mapping X1, X2, X3 ∈ TS LKnot(S6 M) ⊂ TS Knot(S6 M) to

∫
γ (t) 
(X1, X2, X3)dt ,

where γ (t) is a unit speed parametrization of S. Then 
 a non-degenerate (3, 0)-form
on LKnot(M) ∼= Knot(M).

Proof The space TS Knot(M) is identified with the space of sections �(B
∣∣

S ), where
B is an SU (3)-bundle defined in Definition 3.10. From its construction, it is clear that




∣∣∣
Tver S6 M

vanishes, and on B the form 
 is equal to the standard complex volume form.

Therefore, 
 is of type (3, 0), and for each X ∈ B1,0
∣∣

S , there exist Y, Z ∈ B1,0
∣∣

S

such that 
(X, Y, Z) is everywhere real, non-negative, and positive at any point where
X �= 0. Then, 
̃(X, Y, Z) is real and positive, unless X = 0. ��

4.5 The proof of integrability of the knot space

Let M be a holonomy G2-manifold, and S ⊂ M a knot, that is, a class of an immer-

sion S1 γ
↪→ M up to oriented reparametrizations, and injective outside of a finite set.

We can assume that S is parametrized, with |γ ′| = const (such a parametrization is
obviously unique).

The tangent space TS Knot(M) is identified with the space of sections of the normal
bundle NS. At each point s ∈ S, Ns S = (Ts S)⊥ is the orthogonal complement to an
oriented line Ts S ⊂ Ts M . Then Remark 3.6 gives a complex structure on Ns S. This
defines an almost complex structure on Knot(M). To define a Hermitian form, the
following construction is used.
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Definition 4.14 Let Knotm(M) ⊂ Knot(M)×M be the space of marked knots, that is,

pairs (S1 γ
↪→ M, s ∈ S1), where γ is injective somewhere, and |γ ′| = 1. Clearly, the

forgetful map Knotm(M)
π−→ Knot(M) is an S1-fibration. The fiberwise integration

map

�i (Knotm(M))
π∗−→ �i−1(Knot(M))

is defined as usual,

π∗(α)
∣∣

S :=
∫

π−1(S)

(
α� d

dt

)
dt

where t is a parameter on S. It is easy to check that π∗ commutes with the de Rham
differential. Define σ : Knotm(M) −→ M as follows,

σ
(

S1 γ
↪→ Knot(M), s ∈ S1

)
:= γ (s).

This gives an interesting map

π∗σ ∗ : �i (M) −→ �i−1(Knot(M))

commuting with the de Rham differential.

For a G2-manifold (M, ρ), the 2-form π∗σ ∗(ρ) was computed by M. Movshev in
[18], who proved that it is symplectic.

Claim 4.15 Let (M, ρ) be an almost G2-manifold, S ∈ Knot(M) a knot, and α, β ∈
N S two sections of a normal bundle, considered as tangent vectors a, b ∈ TS Knot(M).
Consider the integral S(a, b) := ∫

S ρ(a, b, ·)∣∣S . Then π∗σ ∗(ρ)(a, b) = S(a, b).

Proof This claim is essentially a restatement of a definition (see [18] for more detail).
��

Comparing Claim 4.15 and Corollary 3.9, we obtain the following result.

Proposition 4.16 Let (M, ρ) be an almost G2-manifold ω := π∗σ ∗(ρ) the Movshev’s
2-form on Knot(M), and I the almost complex structure on Knot(M) constructed
above. Then (Knot(M), I, ω) is an almost complex Hermitian Fréchet manifold. ��

The main result of this paper is the following theorem.

Theorem 4.17 Let M be a holonomy G2-manifold, and (Knot(M), I, ω) an almost
complex Hermitian Fréchet manifold constructed above. Then (Knot(M), I, ω) is for-
mally Kähler.

Remark 4.18 The manifold (Knot(M), ω) is symplectic [18]. This is clear from the
construction of ω = π∗σ ∗(ρ), because π∗σ ∗ commutes with the de Rham differential.

Proof of Theorem 4.17 To prove integrability of the almost complex structure on
Knot(M), we identify Knot(M) with the space of L-knots LKnot(M) ⊂ Knot(S6 M)
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as in Remark 4.6. As follows from Lemma 4.13, the space LKnot(M) is equipped with
a non-degenerate (3, 0)-form 
̃. From Proposition 3.13 it follows that d
̃ = √−1 
̃,

and from Proposition 4.10 that 
̃

∣∣∣LKnot(M)
= 0, hence the form 
̃ is closed on

LKnot(M). Now, integrability of the almost complex structure on Knot(M) follows
from Theorem 4.12. ��

5 The complex structure on the knot space and G2-geometry

5.1 Associative subvarieties of a G2-manifold and complex subvarieties in its knot
space

The complex geometry of a knot space can be used to study the geometry of a G2-
manifold. Many notions of a G2-geometry can be directly translated to the language
of complex geometry, as follows.

Definition 5.1 Let X ⊂ M be a 3-dimensional subvariety of a G2-manifold. We say
that X is associative if Tx X ⊂ Tx M is an associative subspace for each smooth point
x ∈ X (see Sect. 3.2 for a definition of an associative subspace).

Proposition 5.2 Let M be a holonomy G2-manifold, and A ⊂ Knot(M) a 1-dimen-
sional complex subvariety. Denote by Ã ⊂ M the union of all knots in A. Then Ã is
an associative subvariety of M.

Proof Let γ ∈ A be a knot, and x, y ∈ Tγ A two tangent vectors, considered as
sections of a normal bundle Nγ , with I (x) = y. A complex structure on Tγ A is

given by a vector product with the unit vector field γ ′
|γ ′| (Remark 3.7). Therefore, the

3-dimensional space 〈x, y, γ ′〉 is closed under the vector product. ��
Proposition 5.3 Let M be a holonomy G2-manifold, and X ⊂ M a subvariety, 1 <

dim X < 7. Then Knot(X) ⊂ Knot(M) is a formally complex subvariety if and only
if X is an associative subvariety.

Proof The same argument as in Proposition 5.2 proves that Tx X ⊂ Tx M is closed
with respect to the vector product, for any smooth point x ∈ X . However, any proper
subalgebra of octonions is isomorphic to R, C or H, as an easy algebraic argument
implies. Since 1 < dim X < 7, this is a quaternion subalgebra, and the subspace Tx X
3-dimensional and associative. ��

5.2 Holomorphic bundles on a knot space

G2 instanton bundles were introduced in [8] and much studied since then. This notion
is a special case of a more general notion of an instanton on a calibrated manifold,
which is already well developed. Many estimates known for 4-dimensional manifolds
(such as Uhlenbeck’s compactness theorem) can be generalized to the calibrated case
[20,21].
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Recently, G2-instantons became a focus of much activity because of attempts to
construct a higher-dimensional topological quantum field theory, associated with G2
and 3-dimensional Calabi–Yau manifolds [7].

Definition 5.4 Let M be a G2-manifold, and �2 M = �2
7(M)⊕�2

14(M) the irreduc-
ible decomposition of the bundle of 2-forms �2(M) associated with the G2-action.
A vector bundle (B,∇) with connection is called a G2-instanton if its curvature lies
in �2

14(M) ⊗ End(B).

Remark 5.5 Since the curvature of a holonomy G2-manifold lies in �2 M ⊗ g2, and
g2 ⊂ so(T M) is identified with �2

14 under the identification so(T M) = �2(M), the
curvature of T M lies in �2

14 M ⊗ End(T M). Therefore, the tangent bundle and all its
tensor powers are G2-instantons.

Remark 5.6 Let M be a finite-dimensional complex manifold, and E a Hermitian
bundle on M . Recall that a holomorphic structure on E induces a unique Hermitian
connection ∇ on E which its curvature � satisfying � ∈ �1,1(M) ⊗ End E and
∇0,1 = ∂ , where ∂ is the holomorphic structure operator (this connection is called the
Chern connection). This motivates the following definition.

Definition 5.7 Let (F, I ) be a formally complex Fréchet manifold, and (E,∇) a Her-
mitian bundle with connection. We say that (E,∇) is formally holomorphic if the
curvature � of ∇ satisfies � ∈ �1,1(F) ⊗ End E .

Remark 5.8 Let E be a vector bundle with connection on a Riemannian manifold M ,
and Knot(M) be the knot space of M . For a given S ∈ Knot(M), consider the space
E(S) of sections of E

∣∣
S . Consider an infinite-dimensional bundle Ẽ on Knot(M)

with fiber E(S) at S ∈ Knot(M). This bundle can be obtained as π•σ ∗E , where
σ : Knotm(M) −→ M , π : Knotm(M) −→ Knot(M) are the maps defined in
Sect. 4.5, and π• is a pushforward, considered in the sense of sheaf theory. Also, every
connection on E induces a connection ∇̃ := π•σ ∗∇ on Ẽ .

Theorem 5.9 Let M be a G2-manifold, Knot(M) its knot space equipped with a natu-
ral formally Kähler structure, (E,∇) a Hermitian vector bundle with connection, and
(Ẽ, ∇̃) the corresponding bundle on Knot(M). Then (Ẽ, ∇̃) is formally holomorphic
if and only if ∇ is a G2-instanton.

Proof Clearly, the curvature �̃ of Ẽ is obtained by lifting the curvature � of E to
Knot(M) in a natural way. From [24, Proposition 3.2], it follows that a form belongs
to �2

14(M) if and only if its restriction to each 6-dimensional subspace x⊥ ⊂ Tm M is
of type (1, 1). This is equivalent to �̃ being of type (1,1) on Knot(M).
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