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The journal Mathematical Notes is, of course, a purely mathematical journal. However, the author,
being a mathematician, cannot turn a blind eye towards issues of vital importance if a mathematical
theory leads to their solution. In this case, I am referring to the application of chemical warfare agents
and the problem of their dissolution in other gases.

It is well known that dissolving capacity usually increases with temperature. The dissolving capacity
of solvents increases for high pressures at which gas density is comparable with liquid density. In
compressed gases, substances dissolve to a considerable degree.

But, at high pressures and high temperatures, a gas becomes a fluid, which is something in between
a liquid and a gas and contains a large number of clusters. It is known that fluids are very good solvents.
The question of the physical reason for this fact was discussed in the author’s paper [1]. It turns out that,
in a fluid, in addition to the “normal” component due to clusters, there is also a superfluid component
consisting of monomers, isolated molecules, i.e., essentially of the same gas. And these monomers pass
through the normal component “without friction,” i.e., as a superfluid. This effect of the “two-liquid
model” is not related at all to the effect of superfluidity and to the Thiess–Landau two-liquid model for
liquid helium. However, in both cases, we deal with the same mathematical model, namely, a model of
two almost unmixed series (an idea due to Landau, which was mathematically justified and thoroughly
developed by Bogolyubov).

Many series (as an example, the famous Balmer series) appear in various physical problems. If
the lowest energy level of one of the series is significantly higher than that of another series, then,
mathematically, we obtain the same pattern as in the case of superfluid helium. But, physically, these
can be, for example, two strings in weak resonance with each other, the first of which is in a medium
where it is always excited and its lowest energy level is higher than that of the second string.

In the case of a fluid, the normal cluster component constitutes a sort of cell-like, constantly varying
chaotic structure, which is penetrated, without friction, by the gas component, a solvent, at high pressure
and temperature (but at which the molecules do not not break up, forming a plasma). Hence fluids
contain a compressed gas component at sufficiently high temperature; it is this component that could be
effectively used to destroy chemical warfare agents.

∗The article was submitted by the author for the English version of the journal.
**E-mail: v.p.maslov@mail.ru
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1. NORMAL SUPERCRITICAL STATE

Following Einstein, various textbooks on physics state that, for a Bose gas, a Bose condensate
appears whenever the chemical potential is zero. This effect arises in classical gas, because, as we
have shown, all the mathematical relations for an ideal gas coincide with those for a quantum Bose gas1.

As was already stated by the author in [2], for supercritical states, we obtain a new distribution, which
is called a parastatistical distribution or a Gentile distribution [3].

Until the most recent experiments, the states at P > Pc and T > Tc were regarded as supercritical.
As pointed out in [2], they contain the difference of two polylogarithms of the same rank, and, in them,
the passage to the positive chemical potential is possible.

In the case of a new ideal gas and parastatistics, we assume that the density (i.e., the number
of particles N ) is independent of the number of clusters created as a result of the increase in the
temperature Tr. The following condition is imposed on the value of K(Tr, γ):

ρ(γ)
c =

N
(γ)
c

V
= C(γ)ζ(1 + γ) = T 1+γ

r C(γ)
[
1 −

(
1

1 + K

)γ]
ζ(1 + γ). (1)

It leads to a relation for K(Tr, γ) for µ = 0 (see (2)).
In the case where K is not large, we use the dependence K(Tr), which, for µ = 0, is defined by the

formula

Tr = (1 − (K + 1)−γ)−1/(γ+1), γ = γ(Tr). (2)

under the additional condition Z|µ=0 = 1:{
1 −

(
K(Tr) + 1

)−γ(Tr)−1}−1/(γ(Tr)+2)

{
1 −

(
K(Tr) + 1

)−γ(Tr)}−1/(γ(Tr)+1)
· ζ(2 + γ(Tr))
ζ(1 + γ(Tr))

= 1. (3)

Fig. 1. Isotherms for γ = 0.312. The solid lines depict the Van-der-Waals isotherms and the dotted lines depict the
parastatistical isotherms corresponding to the different values of k.

The spinodal and K(Tr) are obtained from the parastatistic regarded as the critical isochore issuing
from the point Z = Zc ≈ 0.29 for methane; see Fig. 2. The spinodal turns out to be similar to isochore
0.30 in Fig. 2 in the sense that if the maximal value of K is N = 100 (see Fig. 1), then the critical
parastatistical spinodal will be in a sufficiently good agreement with the experimental isochore.

1This was noted in a footnote in Sec. 54 “Nonequilibrium Fermi and Bose gases” in the book [9].
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Figure 1, shows that the parastatistic is in good agreement with the supercritical values of the Van-
der-Waals model on the first, main sheet of the Z,P-diagram. After reaching their minima, the curves
corresponding the Gentile statistic differ strongly. When we pass to the second sheet of the density for
µ = 0, the pattern significantly changes in view of the “reflection principle.” Here we do not use the
special Bachinskii conditions on the Zeno line Z = 1, because they are obtained by taking into account
the intermolecular potential [4].

It is of interest to note that, for an ideal noninteracting gas, purely statistical effects produce a similar
pattern: the Boyle temperature TB = 2.5Tc, the critical isochore is similar to the experimental one, etc.

Of course, it would be nice to define the percentage of the gas superfluid component. But this is
impossible without the knowledge of the interaction potential [5].

Note that, for Tr > 1.5, the condition Pr = 1 for the supercritical pattern does not hold in experi-
ments. The value of supercritical pressure increases with temperature very rapidly.

For the temperature Tr > 1.5, the supercritical fluid [6] even exits from the domain Z ≤ 1. Therefore,
in our case, the supercritical pattern must considered only at temperatures close to the critical temper-
ature.

In addition, note that the passage to another distribution (from a Bose–Einstein type distribution to
the Gentile distribution, the parastatistic) requires, in general, a new definition of the constant of the
Ω-potential. Apparently, these constants must be identical to match these two Ω-potentials. However,
as shown in [2] and in [7], the remark above, as well as the principle of preference, significantly changes
the way this constant depends on γ(T ).

We now pass from the integral
´∞
0 to

´ A
0 , i.e.,ˆ ∞

0

(
1

ebx−bµ − 1
− N

eN(bx−bµ) − 1

)
xγ dx

=
ˆ A

0

(
1

ebx−bµ − 1
− N

eN(bx−bµ) − 1

)
xγ dx +

ˆ ∞

A

(
1

ebx−bµ − 1
− N

eN(bx−bµ) − 1

)
xγ dx

=
ˆ A

0

(
1

ebx−bµ − 1
− N

eN(bx−bµ) − 1

)
xγ dx + O(e−b(A−µ)Aγ) + O(e−bN(A−µ)Aγ).

Let us consider the negative values of γ.

Lemma. Consider the integral

I = B

ˆ A

0

(
1

ebx−bµ − 1
− k0

ek0(bx−bµ) − 1

)
xγ dx (4)

where −1 < γ < 0, B is a constant depending on b, and A is a constant much greater than 1.

Then

I = − B

bγ+1
c
(Ab)
bµ,γ +

Bk−γ
0

bγ+1
c
(k0Ab)
k0bµ,γ , (5)

where

c(A)
µ,γ =

ˆ A

0

(
1

ξ − µ
− 1

eξ−µ − 1

)
ξγ dξ. (6)

Proof. Note that the value of B does not affect calculations in any way (it appears as a multiplier both
in the original and final relations); therefore, in the proof, we set B = 1.

Let us make the change of variable ξ = bx in the integral (4). Then

I =
1

bγ+1

ˆ Ab

0

(
1

eξ−bµ − 1
− k0

ek0(ξ−bµ) − 1

)
ξγ dξ.
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Adding and subtracting the summands, we express the integral as the sum of the following three
integrals:

1
bγ+1

ˆ Ab

0

(
1

eξ−bµ − 1
− 1

ξ − bµ

)
ξγ dξ +

1
bγ+1

ˆ Ab

0

(
1

ξ − bµ
− 1

(ξ − bµ)(1 + k0
2 (ξ − bµ))

)
ξγ dξ

− k−γ
0

bγ+1

ˆ Ab

0

(
kγ+1
0

ek0(ξ−bµ) − 1
− kγ+1

0

k0(ξ − bµ)(1 + k0
2 (ξ − bµ))

)
ξγ dξ. (7)

Introducing the notation (6), we find that the first integral from (7) is −c
(Ab)
bµ,γ /bγ+1.

In the second integral (7), we subtract the fractions and then make the change η = k0ξ, obtaining

1
bγ+1

ˆ Ab

0

(
1

ξ − bµ
− 1

(ξ − bµ)(1 + k0
2 (ξ − bµ))

)
ξγ dξ =

1
bγ+1

ˆ Ab

0

1 + k0
2 (ξ − bµ) − 1

(ξ − bµ)(1 + k0
2 (ξ − bµ))

ξγ dξ

=
1

bγ+1

k0

2

ˆ Ab

0

1
(1 + k0

2 (ξ − bµ))
ξγ dξ =

1
bγ+1

(k0)−γ

2

ˆ Abk0

0

1

1 + η−k0bµ
2

ηγ dη =
k−γ
0 c1

bγ+1
,

where we have introduced the notation

c1 =
ˆ ∞

0

1

2(1 + η−k0bµ
2 )

ηγdη.

In the third integral from (7), we make the same change η = k0ξ, obtaining

k−γ
0

bγ+1

ˆ Ab

0

(
kγ+1
0

ek0(ξ−bµ) − 1
− kγ+1

0

k0(ξ − bµ)(1 + k0
2 (ξ − bµ))

)
ξγ dξ

=
k−γ
0

bγ+1

ˆ Abk0

0

(
1

eη−k0bµ − 1
− 1

(η − k0bµ)(1 + η−k0bµ
2 )

)
ηγ dη

=
k−γ
0

bγ+1

ˆ Abk0

0

(
1

eη−k0bµ − 1
− 1

η − k0bµ
+

1

2(1 + η−k0bµ
2 )

)
ηγ dη

=
k−γ
0

bγ+1

(ˆ Abk0

0

(
1

eη−k0bµ − 1
− 1

η − k0bµ

)
ηγ dη +

ˆ Abk0

0

1
2(1 + η−k0bµ

2 )
ηγ dη

)

=
−k−γ

0 c
(Abk0)
k0bµ,γ

bγ+1
+

k−γ
0 c1

bγ+1
.

Collecting all the expressions together, we find that the sum of the three integrals (7) is

− 1
bγ+1

c
(Ab)
bµ,γ +

k−γ
0

bγ+1
c1 +

k−γ
0

bγ+1
c
(Abk0)
k0bµ,γ − k−γ

0

bγ+1
c1 = − 1

bγ+1
c
(Ab)
bµ,γ +

k−γ
0

bγ+1
c
(Abk0)
k0bµ,γ ,

i.e., as a result, the integral c1 is cancelled out.

It follows from the number-theoretic problem of type “partitio numerorum” considered in [11] as
well as from [12]–[14] that, in the thermodynamic conception, the temperature T is a large parameter,
T → ∞. This fact is not always understood by physicists. In addition, the number of particles N is a also
large parameter (this is well known) and the energy ε, being the sum ε =

∑
εiNi, is a large parameter,

too. In number theory, all quantities are dimensionless. Obviously, ε/ε0 � N .
Consider the case µ̃ = 0 and γ < 0.
We introduce the following notation for the integrand in (6):

F (ξ) =
(

1
ξ
− 1

eξ − 1

)
.
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For γ < 0 and µ̃ = 0, we have the “reflection principle”

Nc = Λγ−γc

∞∑
j=1

jγ

ebj − 1
= Λγ−γc

{ ∞∑
j=1

jγ 1
bj

−
∞∑

j=1

jγF (bj)
}

, b =
1
T

. (8)

∞∑
j=1

jγF (bj) =
∞∑

j=1

f(j) ≤
ˆ ∞

0
f(x) dx =

ˆ ∞

0
xγF (bx) dx = b−γ−1

ˆ ∞

0
xγF (x) dx. (9)

By the definition of the Riemann ζ function in terms of a series, we have
∞∑

j=1

jγ 1
bj

≡ Tζ(1 + |γ|).

Thus,

N |µ̃=0 = Λγ−γcTζ(1 − γ) + O(b−1−γ), γ < 0, b → 0, (10)

where ζ is the Riemann zeta function.
Relation (9) for the second sheet γ < 0 implies the following most important relation between the

large parameters N and T :

N

T
= ζ(1 + |γ|). (11)

In calculating the “density,” we essentially use this asymptotic equality on the second sheet. As was
already repeatedly stated, for the density, we now pass to the second sheet on the spinodal µ = 0 in the
supercritical pattern (the parastatistic, or the Gentile statistic). Here, simultaneously with the change
of the sign of the chemical potential at the Bose condensate point, the number of degrees of freedom
experiences a jump from D = 2γ + 2 to D1 = 2 − 2γ.

We apply the lemma on density, as well as the equality Nb = ζ(1 − γ), obtaining

ρ = B

ˆ A

0

(
1

ebx−bµ − 1
− N

eN(bx−bµ) − 1

)
xγ dx =

BN−γ

bγ+1

ˆ AbN

0

(
1

ξ − bµN
− 1

eξ−bµN − 1

)
ξγ dξ

=
BN−γ

bγ+1

ˆ Aζ(1−γ)

0

(
1

ξ − µζ(1 − γ)
− 1

eξ−µζ(1−γ) − 1

)
ξγ dξ, (12)

where ζ(1 − γ) = ζ(1.222) = 5.097.
Similarly, for K < N (K = (K/N)N ), we have

ρ = B

ˆ A

0

(
1

ebx−bµ − 1
− K

eK(bx−bµ) − 1

)
xγ dx =

BK−γ

bγ+1

ˆ AbK

0

(
1

ξ − bµK
− 1

eξ−bµK − 1

)
ξγ dξ

=
BK−γ

bγ+1

ˆ A K
N

ζ(1−γ)

0

(
1

ξ − µK
N ζ(1 − γ)

− 1

eξ−µK
N

ζ(1−γ) − 1

)
ξγ dξ. (13)

In the last integral, we take A = N .

Remark 1. As is seen from the lemma and the reflection principle, there is no volume on the second
sheet. As was pointed out previously, volume in thermodynamics usually counterbalances the number
of particles N , which is an “infinitely large” quantity. In what units must we measure the volume so as
to counterbalance N? In nanometers? In angstroms?

As a matter of fact, in experiments, density is determined as ρ = N/V . However, on the second
sheet, just as in negative pressures, holes-pores appear and density, as a quantity counterbalancing the
number N , is no longer suitable: the density of pumice is not proportional to the number of particles.

As was already stated in the physical literature, the second sheet for γ ≤ 0 spreads onto the quadrant
−P,−Z.

Generally speaking, there is also no volume in the potential Ω:

dΩ = −S dT − µ dN

MATHEMATICAL NOTES Vol. 94 No. 4 2013



A MATHEMATICAL THEORY OF THE SUPERCRITICAL STATE 537

(see [9, Sec. 24, formula (24.14)]).
Therefore, on the second sheet, the “infinitely large” parameter N is counterbalanced by the “infinitely

large” parameter T (the temperature). The last fact is strange and can be explained, in particular, by the
fact that the temperature T = 0 is unattainable.

As was already stated in great detail [15], it is more informative to consider ln T when ln 0 = −∞.
The use of this quantity (−∞) as a reference point always yields an infinitely large quantity. In other
words, if we measure temperature in Kelvins, then Tc has, a rule, values of order 103, but if the units
1/1020 Kelvin are used, then the temperature is 1023.

Only the approach mapped out above allows us to extend pressure and the compressibility factor into
the negative domain.

In addition, note that the main relation of thermodynamics∑
ij

Nij = N,
∑

iGiNi = ε, (14)

where

Ni =
qi∑

k=1

Nik, qi =
[

Γ(i + D/2)
Γ(D/2)Γ(i + 1)

]
,

also does not contain volume.

Since these equations are number-theoretic Diophantine equations, it follows that mathematicians
have known for a long time how to deal with infinitely large quantities as N → ∞. The main formula
has been proved, but there is no “derivation” of the formula required by the physicists. The author of this
formula Ramanujan stated that it was revealed to him by the goddess Radha in his sleep.

We showed in [7] that the dimension of the Bose distribution with respect to momenta coincides with
the number of degrees of freedom D defined for an ideal Boltzmann–Maxwell Bose gas for which

cv =
D

2
, cp = 1 + cv, γ̃ =

cp

cv
=

D + 2
D

.

Naturally, the degrees of freedom are related to momenta. Although no attention had been paid to
this correspondence before the author’s papers dealing with this subject were published, it looks quite
natural.

But p2/(2m) is equal to the kinetic energy ε. Therefore, if we take the integral over the energy ε,
then the dimension (the measure) over which the integral is taken, is decreased twofold. In the final
analysis, such an integral is not only not less natural than an integral over momenta, but, eventually, in
the book [9], the authors come to an integral over ε-energy (see the section “Bose and Fermi gases” and
the beginning of Sec. 2).

In the main relation ∑
Niεi = ε,

∑
Ni = N, (15)

and εi is the value of the energy.
Thus, it is more logical to talk about dimension not with respect to momenta, but with respect to

energy. Then the dimension with respect to energy will be two times less than the dimension with respect
to momenta, and it is

Dener =
Dimp

2
= γ + 1.

From a mathematical or, more precisely, from a logical-mathematical point of view, this is more natural.
In our case, the discrete variable is energy, not momenta, and the dimension 1 corresponds to the

natural series. Recall Kronecker’s words: “God created integers, and everything else is Man’s creation.”
This remark is especially significant to bear in mind when passing to negative pressures (see [10]).

First, in the Bose–Einstein distribution, these considerations allow us to replace the kinetic energy
p2/2m by the general Hamiltonian, which includes, for example, potential energy. A more significant
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generalization given in [1] consists in the consideration of a pairwise interaction potential, and a self-
consistent potential is substituted into the original formula.

In the book [9], in the final formulas, the measure under the integral over energy in the formula for
the number of particles is multiplied by the energy raised to the first power (see [9, formulas (55.5),
(55.7)]). In the original formula for the series from which we pass to the integral, this corresponds to
multiplication by i, the eigenvalue number. This corresponds to the spectrum of an oscillator up to
a multiplier. In this sense, we can say that we now pass to the oscillatory (photon) representation.
Accordingly, Gi corresponds to the multiplicity (degeneracy) of the spectrum.

Since, so far, we have considered gas without interaction, it follows that the multiplicities of the
eigenvalue i (in the mean) are iγ+1. In the case of an external potential, we must again pass to the
“oscillatory representation” and take into account the new multiplicities corresponding to the action of
the external field. This will be considered in detail in the next section.

Remark 2 (On some coincidences). We have already seen in Fig. 1 that the real maximal number
of particles K(1) is equal to 300. Thus, N = K(1) is not equal to infinity, but is equal to 300.
Accordingly, we must renormalize all the curves and temperatures, taking into account the fact that
the maximal number of particles occupying the energy level with number i, is equal to 300. In view of the
identity N = ζ(1 + |γ|)T , this changes the values of K(T ). The value γ = 0.222 corresponds to Fig. 2.

Fig. 2. Isotherms (the solid lines) and isochores (the dotted lines) for methane in the supercritical states. The bold line
provides the angle of the tangent to the critical isotherm at the point Z = 1 with the Z axis.

For K = 100, the critical isotherm obtained from our formulas coincides well near the minimum with
Fig. 2, while the point of intersection of the “critical” isotherm (N = K = 100) with the line Z = 1 is
P = 6, i.e., it again turns out to be somewhat greater than that shown in Fig. 2.

Recall that we are referring to noninteracting particles, and all these “random” coincidences are due
to the remarkable property of Bose condensate, a property discovered by Einstein.

2. THE SUPERFLUID SUPERCRITICAL STATE

Let the spectral measure of the self-adjoint operator dEλ be absolutely continuous with respect to the
measure dλ. We call the measure dλ an oscillatory measure, because the line λ ≥ 0 corresponds to the
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natural series i = 0, 1, . . . , n, . . . , and the natural series corresponds to the spectrum of an oscillator [16].
In this oscillatory representation, we follow the philosophic-logical ideology of Kronecker and Poincaré.

Self-consistent field (mean field) operators are defined by using the pairwise interaction operator
between the particles and, after the introduction of the so-called dressed potential

W = u(x) +
ˆ

V (x − ξ)ρ(ξ) dξ, x ∈ R3, ξ ∈ R3, V (x) ∈ C∞, u(x) ∈ C∞, (16)

they become “almost” self-adjoint operators of Schrödinger type, where ρ(∗) = Ψ∗(x)Ψ(x) is the
density of the distribution. The author has called these operator unitarily nonlinear [17].

As was already stated in [1], the series of such an operator are determined, as is customary, by using
the variational equations. We consider classical gas and, therefore, the small parameter �, the Planck
constant, must tend to zero. However, as has already been pointed out, it is multiplied by a parameter
that can be arbitrarily large and, therefore, in this rather rare case, it remains in the classical limit. It is
this term that gives the superfluid series.

The analog of the thermodynamic potential of a system of noninteracting particles for the discrete
variant is of the form

Ω =
−T γ+2

Λ(1+γ)

∑
i

ln
N∑

n=0

gi

(
exp−

(
κ +

hπωi

Tr

))n

, (17)

where Tr is the temperature, µ is the chemical potential, κ = µ/T , Λ is a dimensionless constant, gi is
the statistical weight of the ith state: gi = iD/2, and D is the fractional dimension of the Bose–Einstein
type distribution and ω is the frequency of the oscillator.

If we consider two variables of the natural series i and j, then the terms of the sum∑
ij

Nij = N

can be regrouped as follows: for two summands, i + j = l, for three summands, i + j + k = l, etc.
Then

∑
ij Nij can be expressed as

∑
GlNl, where Gl is the statistical weight corresponding to the

natural series Nl. In eigenvalue problems, this is called the multiplicity of the spectrum. In our example,
the spectrum proportional to the natural series is the spectrum of the operator corresponding to an
oscillator, and the statistical weights will correspond to the multiplicities (degeneracy) of the spectrum.

The difference of a statistical weight from multiplicity is that the statistical weight can be noninteger.
For example, if the multiplicity oscillates depending on l, then the statistical weight is the mean over
these oscillations. This can be regarded as the fractional dimension of the space D.

Let us write the thermodynamic potential Ω2 of Bose gas of fractional dimension D = 2(1 + γ) as

Ω(µ, T ) =
T 2+γ

Λ1+γΓ(2 + γ)

ˆ ∞

0

t1+γ dt

(et/a) − 1
=

−T 2+γ

Λ1+γ
Li2+γ(a), (18)

where T is the temperature, a = exp(µ/T ) is the activity, µ is the chemical potential, Γ is the gamma
function, and Λ is a constant to be define later.

The function Lis(a) introduced in (18) is called a polylogarithm and defined by

Lis(x) =
1

Γ(s)

ˆ ∞

0

ts−1

(et/x) − 1
, Lis(1) = ζ(s), (19)

where ζ(s) is the Riemann zeta function.
The total number of trials N is

N = −∂Ω
∂µ

=
T 1+γ

Λ(1+γ)
Li1+γ(a).

2We preserve the thermodynamic notation for the Ω-potential used in [9, Sec. 24]. The Ω-potential is the action S

on the 2-dimensional Lagrangian manifold in 4-dimensional (T, S; N, µ) phase space. On the other hand, we have
dΩ = −S dT − µ dN .
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Since, in view of the relation ∑
ij

Nij =
∑

j

GjNj = N, (20)

we have Nij ≤ N , it follows that this condition is not an additional constraint. Summing the finite
geometric progression, we obtain

Ωi(k) =
−T

Λ(1+γ)
ln

N∑
n=0

gi

(
exp

(
−κ − hπωi

Tr

))n

=
T

Λ(1+γ)
ln gi

1 − exp(−κ − hπωi
Tr

)(N + 1)

1 − exp(−κ − hπωi
Tr

)
, (21)

where gi = iγ+1 and κ = µ/T .
The potential Ω is equal to the sum of Ωi over i:

Ω =
∑

Ωi, dΩ = −S dT − N dµ, (22)

where S is the entropy.
For the total number of trials, we have the formula N = −∂Ω/∂µ. As a result, for γ ≤ 0 we obtain3

N =
1

Λγ−γc

∑
i

(
iγ

exp (κ + hπωi
Tr

) − 1
− (N + 1)iγ

exp [(N + 1)(κ + hπωi
Tr

)] − 1

)
, (23)

where Λ is the constant, κ = −µ̃/T , and µ̃ is the chemical potential of the Bose-condensate state, i.e.,
for −1 < γ ≤ 0.

Theorem. Suppose that α = γ + 1, k = N + 1, and b = 1/Tr. The following relation holds:∑
j

( jγ

ebj+κ − 1
− kjγ

ebkj+kκ

)
=

1
α

ˆ ∞

0

( 1
ebx+κ − 1

− k

ebkx+kκ − 1

)
dxα + R,

where R = O(b−α).

Proof. By the Euler-Maclaurin formula, we have

|R| ≤ 1
α

ˆ ∞

0
|f ′(x)| dxα, where f(x) =

1
ebx+κ − 1

− k

ek(bx+κ) − 1
.

Let us calculate the derivative, obtaining

f ′(x) =
bk2ek(bx+κ)

(ek(bx+κ) − 1)2
− bebx+κ

(ebx+κ − 1)2
,

(24)

|R| ≤ 1
αbα

ˆ ∞

0

∣∣∣ k2ek(y+κ)

(ek(y+κ) − 1)2
− ey+κ

(ey+κ − 1)2

∣∣∣ dyα.

We also have
ez

(ez − 1)2
=

1
z2

+ ψ(z),

where ψ(z) is a smooth function and |ψ(z)| ≤ C(1 + |z|)−2. Setting z = y and z = ky, we obtain the
following estimate:

|R| ≤ 1
αbα

ˆ ∞

0

∣∣ψ(
k(y + κ)

)
− ψ(y + κ)

∣∣ dyα

≤ k−α

bα

ˆ ∞

kκ

|ψ(y)| dyα +
1
bα

ˆ ∞

κ

|ψ(y)| dy ≤ Cb−α (25)

with some constant C.
The theorem is proved.

3In rigorous terms, the fact that the power of gi decreases strictly by 1 follows from the fact that the “energy” levels εi in
our case are i and that, after taking the derivative with respect to µ, the power of T decreases by 1.
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Corollary 1. Taking into account the fact that the term containing N + 1 in (21) tends to zero as
N → ∞, we obtain the following relation:

M =
Λγc−γ

αΓ(γ + 2)

ˆ
ξ dξα

ebξ − 1
=

Λγc−γ

b1+α

ˆ ∞

0

ηdηα

eη − 1
, (26)

where α = γ + 1, b = 1/Tr, and M = ε/ε0. Therefore,

b =
1

M1/(1+α)

(
Λγc−γ

αΓ(γ + 2)

ˆ ∞

0

ξ dξα

eξ − 1

)1/(1+α)

.

We also have (see[18])∑
j

( jγ

ebj+κ − 1
− kjγ

ebkj+kκ

)
=

1
α

ˆ ∞

0

{
1

ebξ − 1
− k

ekbξ − 1

}
dξα + O(b−α)

=
1

αbα

ˆ ∞

0

(
1

eξ − 1
− 1

ξ

)
dξα +

1
αbα

ˆ ∞

0

(
1
ξ
− 1

ξ(1 + (k/2)ξ)

)
dξα

− k1−α

αbα

ˆ ∞

0

{
kα

ekξ − 1
− kα

kξ(1 + (k/2)ξ)

}
dξα + O(b−α)

=
c(γ)
bα

(k1−α − 1) + O(b−α).

Setting k = N |µ̃/T=0 � 1, we finally obtain

Nc = N |µ̃/T=0
∼= (Λγc−γc(γ))1/(1+γ)Tr, (27)

where

c(γ) =
ˆ ∞

0

(1
ξ
− 1

eξ − 1

)
ξγ dξ.

As was already stated in [1], all the arguments for the general Hamiltonian hold, in particular, for

p2

2m
+ u(x), x ∈ R3.

We can also consider the Hamiltonian operator in the semiclassical approximation.
We can also generalize the problem to the case of a self-consistent Hamiltonian, i.e., when

u = u

(
x,

ˆ
V (x − ξ)ρ(ξ) dξ

)
, (28)

where V (x − ξ) is the Lennard-Jones pairwise interaction potential (see [8]) and ρ(ξ) is the density in
the Vlasov equation.

The semiclassical asymptotics as h → 0 of such a quantum problem no longer coincides with the
original classical self-consistent Vlasov-type equation; using the complex germ method, we find that
the asymptotics in question contains a semiclassical correction, which was first discovered in a paper of
Bogolyubov on weakly nonideal Bose gas and which is impossible to neglect as h → 0.

Now let us dwell on the notion called "collective oscillations" in classical physics and "quasiparticles"
in quantum physics. This is given by the Vlasov equation for the self-consistent (or mean) field in
classical physics, while, in quantum physics, by the Hartree equation (or the Hartree–Fock equation).

1) Variational equations depend on the solutions (of the original equation) near which the variations
are considered. For example, in [19]–[22], we consider variations near the microcanonical distribution
in the ergodic construction and, in [23]–[26], those near the nanocanonical distribution concentrated on
an invariant manifold of smaller dimension, i.e., not on the manifold of constant energy, but, for example,
on the Lagrangian manifold of dimension coinciding with that of the configuration space.
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2) Note the following important point: the solutions of the variational equation for the Vlasov equation
do not coincide with the classical limit for variational equations for mean-field equations in quantum
theory.

Consider the quantum mean-field equation of the form

ih
∂

∂t
ϕt(x) =

(
− h2

2m
∆ + Wt(x)

)
ϕt(x), Wt(x) = u(x) +

ˆ
V (x, y)|ϕt(y)|2 dy, (29)

under the initial condition ϕ|t=0 = ϕ0, where ϕ0 satisfies

ϕ0 ∈ W∞
2 (R3),

ˆ
dx |ϕ0(x)|2 = 1.

To obtain the asymptotics of complex germ type [27], we must consider the system consisting of
the Hartree equation (29) and the equation conjugate to it. Further, we must consider the variational
system for it and, finally, replace the variations δϕ and δϕ∗ by independent functions F and G. For the
functions F and G, we obtain the following system of equations:

i
∂F t(x)

∂t
=
ˆ

dy

(
δ2H

δϕ∗(x)δϕ(y)
F t(y) +

δ2H

δϕ∗(x)δ∗ϕ(y)
Gt(y)

)
, (30)

−i
∂Gt(x)

∂t
=
ˆ

dy

(
δ2H

δϕ(x)δϕ(y)
F t(y) +

δ2H

δϕ(x)δ∗ϕ(y)
Gt(y)

)
.

Note that, roughly speaking, classical equations can be derived from the corresponding quantum
equations by substitutions of the form

ϕ = χe
i
h

S (WKB method), ϕ∗ = χ∗e
i
h

S∗
,

where

S = S∗, χ = χ(x, t) ∈ C∞, S = S(x, t) ∈ C∞.

For a variational equation, it is natural to vary not only the limit equation for χ and χ∗, but also
the functions S and S∗. This gives a new important term in the solution of the equation for collective
oscillations.

Let us illustrate this fact by using the simple example studied in the famous paper of Bogolyubov
dealing with “weakly nonideal Bose gas” [8].

Suppose that u = 0 in Eq. (29) in a 3-dimensional box with edge length L (i.e., on the torus with
generatrices L,L,L); here the periodicity condition is imposed on the wave functions. Then the function

ϕ(x) = L−3/2ei/h(px−Ωt), (31)

where p = 2πn/L and n is an integer-valued vector, satisfies Eq. (29) for

Ω =
p2

2m
+ L−3

ˆ
dxV (x). (32)

Consider the functions F (λ)(x) and G(λ)(x), where λ = 2πn/L, n �= 0 and n is an integer-valued vector,
of the following form:

F (λ)t(x) = L−3/2ρλe
i
h
|(p+λ)x+(β−Ω)t|,

G(λ)t(x) = L−3/2σλe
i
h
|(−p+λ)x+(β+Ω)t|,

(33)

where

−βλρλ =
(

(p + λ)2

2m
− p2

2m
+ Ṽλ

)
ρλ + Vλσλ,

βλρλ =
(

(p − λ)2

2m
− p2

2m
+ Ṽλ

)
σλ + Vλρλ, (34)
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|σλ|2 − |ρλ|2 = 1, Ṽλ = L−3

ˆ
dxV (x)e

i
h

λx.

Using system (34), we obtain

βλ = −pλ +

√(
λ2

2m
+ Ṽλ

)2

− Ṽ 2
λ . (35)

In this example,

u = e
i
h

s(x,t), u∗ = e−
s(x,t)

h , where s(x, t, ) = px + βt,

and the variation of the action for the vector
(
δu, δu∗) is λx ± Ωt.

In the more rigorous passage to the limit, we have

Ṽλ → V0 = L−3

ˆ
dxV (x).

Thus, in the classical limit, we obtain the famous Bogolyubov relation (35). In the case under
study, u(x) = 0 and, just as in the linear Schrödinger equation, the exact solution coincides with the
semiclassical one. The paper [26] studies the case u(x) �= 0, and it turns out that a relation similar to (35)
is the classical limit as h → 0 for the variational equations in this general case. The curve describing the
dependence of βλ on λ is called the Landau curve; it defines the superfluid state. The value of λcr at which
superfluidity disappears is called the Landau criterion.

The spectrum defined for λ < λcr has the corresponding positive spectrum of the variational equation.
This means that it is metastable (see [28]).

3. THE NANOCANONICAL DISTRIBUTION AND VARIATIONAL EQUATIONS

Consider the classical equation for a self-consistent field (the Vlasov equation) for the distribution
function ρ(x, p, t):

∂ρ

∂t
+ p

∂ρ

∂x
− ∂u

∂x

∂ρ

∂p
− α

∂ρ

∂p

∂

∂x

ˆ
V (x − ξ)ρ(ξ, η, t) dξ dη = 0, (36)

where u(x) ∈ C2 and V (x) ∈ C2 are the external potential and the interaction potential, respectively.
Here

p
∂ρ

∂x
=

(
p,

∂ρ

∂x

)
≡

3∑
i=1

pi
∂ρ

∂xi
,

∂u

∂x

∂ρ

∂p
=

(
∂u

∂x
,
∂ρ

∂p

)
, etc.

For brevity, we do not usually indicate the inner product of vectors explicitly unless such an indication is
essential.

The variational equations are of the form

∂σ

∂t
+ p

∂σ

∂x
− ∂u

∂x

∂σ

∂p
− α

∂ρ

∂p

∂

∂x

ˆ
V (x − ξ)σ(ξ, η, t) dξ dη

− α
∂σ

∂p

∂

∂x

ˆ
V (x − ξ)ρ(ξ, η, t) dξ dη = 0. (37)
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Suppose that Λ3 = {x = X(α), p = P (α)} is the Lagrangian manifold invariant with respect to the
Hamiltonian system ⎧⎨⎩ẋ = p,

ṗ = −∂u

∂x
− ∂

∂x

ˆ
V (x − X(α)) dµα,

(38)

(see [29], [30]) such that the corresponding Hamiltonian H is invariant on Λ3,

P 2(α)
2

+ u(X(α)) +
ˆ

V (X(α) − X(α′)) dµα′ = ε = const, (39)

where α ∈ Λ3 and dµα is an invariant measure on Λ3 [23], [24], [31].

It is well known that the δ-function on a manifold of constant energy is called a microcanonical
distribution.

Suppose that δΛ is the δ-function on a manifold Λ. We call this distribution a nanocanonical
distribution. As proved in [23], the function δΛ satisfies the stationary Vlasov equation (36) in the local
chart on Λ. δΛ is of the form

δΛ =
δ(p −∇S)

J
,

where

S(x) =
ˆ α(x)

α0

p dx

is the action on Λ3, and J is the Jacobian |dX/dµα|.

In this case, the solution of Eq. (37) can be obtained in the form

σ = f(x)
δ(p −∇S)

J
+ a(x)

∂

∂p

δ(p −∇S)
J

. (40)

The equations for f and a are as follows:

∂f

∂t
+ (∇S,∇f) − (∇,a) + (a,∇) ln J = 0, (41)

∂a
∂t

+ (∇S,∇)a + (a,∇)∇S + ∇
ˆ

V (x − X(α))f(X(α)) dµα = 0. (42)

Here we introduce the quantum correction for the equation obtained in [25],

∂f

∂t
+ (∇S,∇f) − (∇,a) + (a,∇) ln J − ih

2
J∇

(
1
J
∇f

)
= 0,

∂a
∂t

+ (∇S,∇)a + (a,∇)∇S +
ih

2
∇

{
J
(
∇,

a
J

)}
+ ∇

ˆ
V (x − X(α))f(X(α)) dµα = 0.

(43)

In the leading term of the semiclassical asymptotics

f = f0e
i/hS1 , a = a0ei/hS1 , (44)

we obtain classical variational equations. Thus, the semiclassical limit of variational equations for
Hartree equations contains a superfluous term as compared to the variational equations for Vlasov
equations. This superfluous term brings about the superfluidity phenomenon.
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Consider the case in which u(x) = 0. Then the invariant Lagrangian manifold coincides with the
plane p = p0, while the δ-function on this manifold is of the form δΛ = δ(p − p0). It is easy to see that
the solution of Eqs. (41)

f(x, t) = f0e
i(ωt+kx)

h , a(x, t) = a0e
i(ωt+kx)

h (45)

yields the famous Bogolyubov dispersion relation for Bose gas, which, in particular, describes the
superfluid state of liquid helium. Thus, we have obtained the superfluid series [1], just as Bogolyubov,
but only in an external field. In the classical limit, we have the term that, under the sign of the root in
Bogolyubov’s paper, is of the form h2k4 and, although h → 0, the value of k can be arbitrarily large.

As pointed out at the beginning the paper, the physical meaning of this superfluid series is totally
different from that in the case of helium-4.
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