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Abstract—Long nonlinear wave runup on the coasts of trape-

zoidal bays is studied analytically in the framework of

one-dimensional (1-D) nonlinear shallow-water theory with cross-

section averaging, and is also studied numerically within a two-

dimensional (2-D) nonlinear shallow water theory. In the 1-D the-

ory, it is assumed that the trapezoidal cross-section channel is

inclined linearly to the horizon, and that the wave flow is uniform in

the cross-section. As a result, 1-D nonlinear shallow-water equa-

tions are reduced to a linear, semi-axis variable-coefficient 1-D

wave equation by using the generalized Carrier–Greenspan trans-

formation [CARRIER and GREENSPAN (J Fluid Mech 1:97–109, 1958)]

recently developed for arbitrary cross-section channels [RYBKIN

et al. (Ocean Model 43–44:36–51, 2014)], and all characteristics of

the wave field can be expressed by implicit formulas. For detailed

computations of the long wave runup process, a robust and effective

finite difference scheme is applied. The numerical method is veri-

fied on a known analytical solution for wave runup on the coasts of

an inclined parabolic bay. The predictions of the 1-D model are

compared with results of direct numerical simulations of inunda-

tions caused by tsunamis in narrow bays with real bathymetries.

Key words: Wave run-up, shallow water wave equations,

Carrier–Greenspan transformation, numerical simulation.

1. Introduction

The Aleutian megathrust, where the Pacific plate

is being subducted underneath the North American

plate, has delivered numerous great earthquakes and

is considered one of the most seismically active

tsunamigenic fault zones in the U.S. (RUPPERT et al.

2007; BENZ et al. 2011). The latest sequence of great

earthquakes rupturing the Aleutian megathrust started

in 1938 with a M8.3 earthquake west of Kodiak

Island. Three consequent events; the M8.6 1957

Andreanof Island, the M9.2 1964 Alaska, and the

M8.7 1965 Rat Island earthquakes ruptured almost

the entire length of the megathrust. Tsunamis gen-

erated by these large earthquakes traveled several

hours and impacted exposed shorelines across the

Pacific Ocean (GUSIAKOV et al. 1997; NGDC 2013).

The devastating 1964 tsunami struck the seaboard of

southeast Alaska and then traveled into the narrow

channels and canals further inland. The communities

of Skagway and Haines located at the end of Lynn

Canal were struck by 3.0 and 5.8 m waves during the

1964 event (NGDC 2013). It is believed that sub-

duction of the Pacific plate still has the greatest

potential to generate tsunamis that would affect

Alaska (DUNBAR and WEAVER 2008). The impact of a

tsunami depends on how well a community is pre-

pared and on how efficient emergency managers can

evacuate near-shore areas.

In the case of tsunamis, depending on the infor-

mation bulletin issued by tsunami warning centers, it

is recommended that emergency managers and harbor

masters take action ranging from limiting waterfront

access to full near-shore evacuation (EWING 2011;

WILSON et al. 2013). A quick and robust assessment of

the incoming tsunami is paramount for identifying

what type of preventative action to take. To help

emergency managers evaluate the situation, the

warning centers process all available data and provide

a forecast of the potential inundation at selected sites

(TANG et al. 2009). At other locations, the only

information available may be near-shore tsunami

height (WILSON et al. 2013). Thus, quick and efficient
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estimates of the potential runup at locations where

warning center forecasts are not yet available are

important to select an appropriate evacuation proce-

dure (R. Wilson, California Department of

Conservation Agency and K. Miller, California Gov-

ernor’s Office of Emergency Services, personal

communication 2014). Recent studies of the 2011

Tohoku tsunami suggest that the local bathymetry (U-

shaped verses V-shaped) is a key component in pre-

dicting the local runup, with V-shaped bays having

larger runup than U-shaped bays (LIU et al. 2013;

SHIMOZONO et al. 2012; KIM et al. 2013; SHIMOZONO

et al. 2014). Over-evacuation may result in heavy

costs to businesses and potentially damage public

confidence in response activities (KIFFER 2012; WIL-

SON and MILLER 2014).

The 2-D nonlinear shallow water theory is com-

monly used to predict the long wave propagation and

inundation of coastal areas (SYNOLAKIS and BERNARD

2006). In the case of narrow, long channels and

fjords, the governing equations could be simplified

into 1-D equations (STOKER 1957; PELINOVSKY and

TROSHINA 1994; DIDENKULOVA and PELINOVSKY 2011b;

RYBKIN et al. 2014). The mass and linear momentum

conservation principles become

oS

ot
þ o

ox
ðuSÞ ¼ 0; ð1Þ

ou

ot
þ u

ou

ox
þ g

oH

ox
¼ g

dh

dx
: ð2Þ

Here, u ¼ uðx; tÞ is the averaged cross-section

velocity, g ¼ gðx; tÞ, and h ¼ hðxÞ are the water dis-

placement and unperturbed water depth along the

main axis of the bay, respectively. The quantity

Hðx; tÞ ¼ gðx; tÞ þ hðxÞ is called the total water

depth, g is the acceleration of gravity, and Sðx; tÞ is

the cross-section area of the bay. We assume that S is

a function of total depth H only; as such, the bay

cross-section does not change with distance. Wave

geometry is shown in Fig. 1.

CARRIER and GREENSPAN (1958) were the first to

use a hodograph transformation to find an analytical

solution to Eqs. (1–2) for the case of a sloping plane

beach in a rectangular channel. One of the major

results was a formula linking the height of the incident

wave to the runup. More recently, DIDENKULOVA and

PELINOVSKY (2011a) and RYBKIN et al. (2014) built

upon the ideas of Carrier and Greenspan and gen-

eralized the transformation for an inclined bay with an

arbitrary cross-section. The final product is a trans-

formation from the nonlinear Eqs. (1) and (2) into a

linear second order equation with non-constant coef-

ficients (DIDENKULOVA and PELINOVSKY 2011b; RYBKIN

et al. 2014). This model is described in Sect. 2.

The generalized linear equation has a strong sin-

gularity at the moving shoreline and this leads to

some difficulties when computing the numerical

solution of the transformed equation. In Sect. 3, we

develop a semi-analytic numerical method using the

generalized transform to simulate tsunami waves in

trapezoidal bays. The proposed method is computa-

tionally inexpensive and provides bay runup

estimates that can be approximated by trapezoidal

cross-sections. Section 4 deals with verification of

our numerical method in a bay for which an analytic

solution is known (a bay with a parabolic cross-sec-

tion). We then validate the developed method by

comparing its numerical solution for a trapezoidalal

cross-section bay against FUNWAVE, a 3D direct

numerical method of solving Boussinesq equations.

In Sect. 6, we discuss applicability of 1-D equations

to tsunami waves in bays with real bathymetry.

2. Generalized Carrier–Greenspan Transform

In this section, we provide a brief review of the

generalized transformation by RYBKIN et al. (2014) for a

linearly inclined bay with arbitrary cross-sections. Fol-

lowing RYBKIN et al. (2014) we assume that the bay

bathymetry is determined by function Z ¼ f ðyÞ � hðxÞ,
where f ðyÞ describes the bay bathymetry across the

primary axis and hðxÞ is restricted to hðxÞ ¼ ax for

some bay slope a. We note that the Riemann invariants

and corresponding characteristics have been found as

J� ¼ u�
R ffiffiffiffiffiffiffi

g
S

dS
dH

q
dH and c� ¼ u�

ffiffiffiffiffiffiffiffiffiffi
gS dH

dS

q
.

Furthermore, it is shown that Eqs. (1) and (2) can

be reformulated in terms of I� ¼ J� þ gat as

ox

oI�
� c�

ot

oI�
¼ 0; ð3Þ

Consequently, a new coordinate system ðr; kÞ is

defined in terms of the Riemann invariants, i.e., k ¼
ðIþ þ I�Þ=2 and r ¼ ðIþ � I�Þ=2, or
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k ¼ uþ agt; r ¼
Z H

0

ffiffiffi
g
p

DðhÞdh; ð4Þ

where

DðHÞ ¼ o

oH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln SðHÞ

p

The variable k is related to time, while r is associated

with the spatial variable. Note that at the shoreline

H ¼ 0, and, thus, the shoreline location is associated

with r ¼ 0. Therefore, r is always non-negative,

whereas x will become negative during the tsunami

runup. If the initial water velocity u0ðx; 0Þ ¼ 0 , then

t ¼ 0 corresponds to k ¼ 0 for all x.

In order to exploit the convenient properties of the

r� k system, RYBKIN et al. (2014) defined a function

F ¼ FðrÞ and the potential U ¼ Uðr; kÞ such that

FðrÞ ¼ cþ � c� ¼
2
ffiffiffi
g
p

DðHðrÞÞ ; u ¼ Ur

F
: ð5Þ

Equation (3), thus, transforms to

Ukk � Urr �WðrÞUr ¼ 0; WðrÞ ¼ 2� Fr

F
:

ð6Þ

After introducing two auxiliary functions u ¼ Uk and

w ¼ Ur, it is easy to see that

Figure 1
Top left a (x, z) cross-sectional view of the U-shaped bay, top right a (y, z) cross-sectional view of the U-shaped bay, and bottom a 3D view of

the bay
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uk � wr �Ww ¼ 0: ð7Þ

Differentiating Eq. (7) in respect to r and noting that

ur ¼ wk, one obtains

wkk ¼ wrr þ Wwð Þr: ð8Þ

Finally, it was shown that the water disturbance g and

velocity u can be derived through the following

nonlinear transformation:

u ¼ w
F
; g ¼ 1

2g
u� u2
� �

;

x ¼ 1

2ga
u� 2gH � u2
� �

; t ¼ k� u

ag
:

ð9Þ

For the wave breaking condition of the physical

wave, we are interested in the vanishing points of the

Jacobian:

J ¼ oðt; xÞ
oðr; kÞ ¼

r
12g2a2

1� ou

ok

� �2

� ou

or

� �2
" #

:

ð10Þ

For a discussion of this Jacobian and the validity of

the breaking condition, see RYBKIN et al. (2014).

In order to solve (8), it is necessary to specify the

initial and boundary conditions. Typically, the initial

water disturbance g0 and velocity u0 are available in

physical variables ðx; tÞ and need to be transformed

into the initial conditions in ðr; kÞ coordinates.

Exploiting (9), we obtain

wðr; 0Þ ¼ u0ðxÞFðrÞ; uðr; 0Þ ¼ 2gg0ðxÞ þ u2
0ðxÞ;
ð11Þ

where x ¼ xðrÞ can be found by solving (9). Finding

the initial conditions for an arbitrary u0ðxÞ in sloping

bays with an arbitrary cross section is still a open

research question. There has, however, been some

research in the case of a plane sloping beach. In

particular, KANOGLU and SYNOLAKIS (2006) were able

to find an analytic solution to the runup problem for

an arbitrary u0. As we will be approximating the

solution via finite difference methods, the technique

employed by KANOGLU and SYNOLAKIS (2006) can

only be used when g0ðxÞ is sufficiently small. For an

arbitrary g0ðxÞ; we thus limit the scope of this paper

by assuming that u0 ¼ 0; and, hence, after recalling

that ur ¼ wk; we derive

wðr; 0Þ ¼ 0; wðr; 0Þk ¼ 2g
o

or

�
g0ðxÞ

�
: ð12Þ

The mapping between x and r is determined by

HðrÞ ¼ H ¼ g0ðxÞ � ax. To define the boundary

condition at r ¼ 0, we note that Fð0Þ ¼ 0, and since

the water velocity u ¼ w=F needs to be bounded, we

impose

wð0; kÞ ¼ 0: ð13Þ

At the other boundary, r ¼ r1 , such that r1 � 1 and

W � 0. Consequently Eq. (8) can be approximated

by the linear wave equation wkk ¼ wrr. Therefore, a

non-reflective boundary condition for (8) at r ¼ r1

can be approximated via

wkðr1; kÞ ¼ �wrðr1; kÞ: ð14Þ

In fact, these formulas are valid for bays with arbi-

trary cross-sections. In the next section, these

boundary conditions will be applied to an inclined

bay with a trapezoidal cross-section.

3. Numerical Algorithm

An analytical solution of Eq. (8) is currently only

known for the following cases of bay bathymetry.

SYNOLAKIS (1987) developed an analytical solution for

soliton dynamics in a sloping bay with an infinite

plane cross-section, i.e., f ðyÞ ¼ const, and DIDE-

NKULOVA and PELINOVSKY (2011a) derived a formula

to compute the runup in a sloping bay with parabolic

cross-sections, i.e., f ðyÞ ¼ y2. Recently, an analytical

solution for water dynamics in a sloping bay with a

cross-section defined by f ðyÞ ¼ jyja for a[ 0 was

found by GARAYSHIN (2013). For all other cases of

f ðyÞ, one should rely on solving Eq. (8) numerically.

We now present an efficient and robust numerical

technique based on the finite difference method

(FLETCHER 1991) to simulate wave runup at the head

of a sloping beach. As an example, we consider a

wave propagating in a trapezoidal channel with the

geometry shown in Fig. 2. The quantity y0 is half of

the base length, and b is the slope of the lateral walls.

For this particular combination of parameters, we

determine that the parameter D in (4) is expressed by
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D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ by0

H2 þ 2by0H

s

:

Note that when H ! 0, according to (4) we obtain

r!
ffiffiffiffi
H
p

, and hence limr!0 F ¼ 0. Therefore, from

its definition, we have limr!0 W ¼ 1, and, thus, one

of the difficulties in solving (8), or

wkk ¼ wrr þ Wwð Þr

by a finite difference scheme lies in choosing an

appropriate formulation for the numerical scheme

near r ¼ 0. Here, we decide to re-formulate the

above equation as

wkk ¼ wrr þWwr þWrw: ð15Þ

This formulation facilitates enforcement of the

boundary condition wð0; kÞ ¼ 0 at the origin and

allows for the discretization of all spatial derivatives

by second order central differences (FLETCHER 1991).

Because the Courant–Friedrichs–Lewy (CFL)

stability condition (COURANT et al. 1928) imposes

severe requirements on the time step at the origin, if

Eq. (15) is solved by an explicit finite difference

scheme, we choose to apply an implicit method to (15)

(FLETCHER 1991). To compute the temporal derivative,

we employ the second order central difference for-

mula. The boundary condition (14) is discretized by

first order one sided differences in time and space and

the boundary (13) is computed directly.

A numerical scheme for a second order partial

differential equation (PDE) requires knowledge of the

initial condition at two consecutive time steps. The

initial condition wðr; 0Þ ¼ 0 is readily available. To

obtain an approximation to w at the second time step,

i.e., at k ¼ Dk, we employ the Taylor series

expansion

wðr;DkÞ ¼ wðr; 0Þ þ Dkwkðr; 0Þ þ wkkðr; 0ÞDk2=2þ OðDk3Þ
¼ wðr; 0Þ þ 2gDkgrðr; 0Þ þ 0þ OðDk3Þ
¼ wðr; 0Þ þ 2gDkgrðr; 0Þ þ OðDk3Þ:

ð16Þ

Note that wðr;DkÞ can be approximated with third

order accuracy and our numerical scheme has at least

a second order of accuracy in space and time.

Once the solution w is found at the set of points

fkDr; lDkgn;m
k¼0;l¼0, where Dr and Dk are the spatial

and temporal discretization intervals for non-physical

variables, we compute u at the same points by

employing (7) as follows:

uk ¼ wr þWw:

Here, the temporal derivative uk is discretized by a

forward first order finite difference, while wr is

computed by a central second order difference to

preserve overall accuracy of the numerical calcula-

tions. Finally, once the values of uðkDr; lDkÞ and

wðkDr; lDkÞ are computed, we apply the inverse

transform equations (9) and consecutively compute g
as well as u at some set of points fx; tgkl. We

emphasize that the set fx; tgkl ¼ 1
2ga uðkDr; lDkÞ does

not have a uniform stepping in both the x and t

Figure 2
Top a schematic view of a wave propagating in a trapezoidal beach

with lateral wall slope b ¼ 1=2, a bottom width of 2y0 ¼ 100 m,

and a beach inclination of a ¼ 0:01. Bottom a transverse cross-

section of the bay
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directions, since the mapping from ðr; kÞ to ðx; tÞ is

nonlinear. Thus, in order to compute profiles of the

water height g at constant time, we employ the Del-

aunay triangulation algorithm in MATLAB (2011)

and linearly interpolate ðg; uÞ between the nodes

fx; tgkl.

The choice of using Delaunay triangulation to

transform the solution from ðkDr; lDkÞ to fx; tgkl is

much faster than the Newton-Raphson method

employed by KANOGLU (2004) and KANOGLU and

SYNOLAKIS (2006). Finally, we note that there is a

small cost to accuracy in the choice to use Delaunay

triangulation over the Newton-Raphson method. In

order to get a fast forecast, we believe that Delaunay

triangulation is sufficiently accurate.

To find uðkDr; lDkÞ and wðkDr; lDkÞ, we must

find FðrÞ and WðrÞ for the bay in question at uni-

formly spaced points fkDrg. First, we note that the

function F can be explicitly obtained in terms of H,

i.e., by formula (5). Since F ! 0 when H ! 0, the

function F is prone to numerical error in the near

shore. To overcome this potential issue, we develop a

numerical method to accurately find Hk ¼ HðrkÞ,
where rk ¼ kDr.

We will now give an example of our method to

find Fk ¼ FðrkÞ for a sloping bay with trapezoidal

Figure 3
Top left numerically computed wave dynamics in non-physical coordinates ðr; kÞ. The shoreline is fixed at r ¼ 0. Top right numerically

computed wave dynamics in physical coordinates ðx; tÞ. Bottom left shoreline dynamics of the physical wave by restricting the x axis to [-1.5,

20]. The shoreline varies around x ¼ 0. Bottom right discrepancy between the analytical and numerical solution in the physical coordinates.

The maximum errors occur at the runup (0.35 %) and rundown (0.65 %)
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cross-sections, a base length 2y0, and wall slope b. By

the definition of r in Eq. (4), for the trapezoidal bay

we obtain

rk ¼
ffiffiffiffiffi
2g

p Z Hk

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ by0

h2 þ 2by0h

s

dh:

Thus, for a given rk, we need to find Hk such that

GðHk; rkÞ ¼ rk �
ffiffiffiffiffi
2g

p Z Hk

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ by0

h2 þ 2by0h

s

dh ¼ 0:

Solutions to GðHk; rkÞ ¼ 0 can be found by using the

Newton-Raphson method. Once Hk ¼ HðrkÞ is

known, we calculate Fk ¼ FðHkÞ according to (5).

Exploiting the chain rule, we similarly obtain values

of Fr at frkg and thus compute Wk ¼ WðrkÞ. It is

notable that we only use the Newton-Raphson

method to calculate Fk and Wk and not the time series

at a specific location or spatial variation at a specific

time as Synolakis and others have done (SYNOLAKIS

1987).

Finally, our algorithm for calculating wave

dynamics is as follows

1. Given rk, compute Hk in order to find Fk, ðFrÞk
and finally Wk.

2. Setup the initial condition wðrk; 0Þ according to

(12).

3. Compute wðrk; k1Þ at the second time step k1 ¼
Dk according to (16).

4. Find wðrk; klÞ for consecutive time steps l� 2

according to the presented finite difference

method (8).

5. Compute uðrk; klÞ for k; l� 1 according to expres-

sion (7).

6. Use uðrk; klÞ, wðrk; klÞ, Fk, and Hk to find

uðxk; tlÞ, and gðxk; tlÞ via (9).

7. Interpolate gðxk; tlÞ, uðxk; tlÞ to uniformly spaced

points ðx; tÞ and find the values of runup Ru and

rundown Rd.

4. Verification in a Parabolic Bay

In this section, we verify the accuracy of the

numerical scheme by comparing the numerical

solution to its analytical counterpart in the case of a

parabolic bay given by cross sections f ¼ y2. DIDE-

NKULOVA and PELINOVSKY (2011a) have shown that for

the initial N-wave profile given by

gðr; 0Þ ¼ 2Aðr� r0Þ
2gp2

e�ðr�r0Þ2=p2

;

where A is the wave height, p is the wave length, and

r0 represents the distance of the wave from the shore,

the D’Alembert solution to (8) is

Uðr� 0; kÞ ¼ A

r
e�ðrþk�r0Þ2=p2 � e�ðr�k�r0Þ2=p2
h

þ e�ðrþkþr0Þ2=p2 � e�ðr�kþr0Þ2=p2
i
:

Thus, in order to test the accuracy of our algorithm,

we select an initial profile with A ¼ 0:5, p ¼ 1:5 and

r0 ¼ 15. Figure 1 shows the initial wave profiles in a

parabolic bay with a bay slope of a ¼ 0:01. The

propagation of the solitary wave towards the shore

and its reflection from it is depicted in Fig. 3. The

properties stated earlier about wave behavior in a

non-physical system can clearly be seen. In the

transformed non-physical system, the characteristics

of the wave are linear, see Fig. 3, while the charac-

teristics are curved for the system in the original

physical coordinates. Also, notice that the solution is

defined for all r� 0; i.e., the shoreline is at r ¼ 0,

whereas the shoreline moves with the wave height in

physical coordinates ðx; tÞ and the largest deviations

of the shoreline from its initial position occurs at

runup and rundown. Finally, the bottom right plot in

Fig. 3 shows the absolute value of the difference

between the numerical and analytic solutions in ðx; tÞ
coordinates. The largest error occurs at maximum

run-up and minimum run-down.

For a parabolic sloping bay it is analytically

derived that the values of run-up and rundown are

Ru ¼ 8Ae�3=2=3p2, and Rd ¼ �4A=3p2, respectively.

For the above-mentioned values of A; p; r0, we have

that the maximum wave run-up is Ru � 0:1322 and

the minimum wave run-down is Rd � �0:2963. We

will denote the computed run-up/run-down by ~Ru and
~Rd, respectively. Tables 1 and 2 list the relative error

in the computed run-up and run-down for several

different combinations of Dk and Dr, respectively. In

both tables, it is notable that the error decreases
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rapidly as we decrease both the Dr and the Dk values

together. The effect of decreasing Dk on the error is

greater than the effect of Dr. This is primarily because

our model is overall first order in computing u in

respect to Dk but quadratic in terms of Dr; thus, when

decreasing Dr (with Dk ¼ const:), we converge to the

solution much quicker than when we decrease Dk
(with Dr ¼ const:). Another property of our method

that cannot be ignored is the fact that the maximum

runup and minimum rundown times are not known but

their spatial location is always at the moving shoreline

(r ¼ 0). Thus, by decreasing Dk we are increasing the

number of time samples where we compute the

potential maximum runup/minimum rundown.

5. Validation in a Trapezoidal Bay

In this section, we test the proposed algorithm in

the case of propagation and runup of waves in narrow

bays with a trapezoidal profile. As noted earlier, the

analytical solution to Eq. (8) for the case of wave

propagation in bays with trapezoidal cross-sections is

not yet available. Therefore, in order to validate our

numerical algorithm, we compare it against the well-

establish numerical model—FUNWAVE—which is

considered to to be verified and validated by TEHRA-

NIRAD et al. (2012a, b) according to an exhaustive suite

of tests proposed by SYNOLAKIS et al. (2008). We note

that FUNWAVE employs a total variation diminish-

ing finite volume scheme (TORO 2009) along with

adaptive Runge-Kutta time stepping (GOTTLIEB et al.

2001) to model the propagation of the water waves.

The interested reader can consult SHI et al. 2012 for

further details about the FUNWAVE model. It is

important to mention that FUNWAVE gives the user

the option to take into account the wave dispersion

(SHI et al. 2012), which is absent in Eqs. (1)–(2). Thus,

for the validation of our method, we restrict FUN-

WAVE to non-dispersive behavior in our validation.

We assume an initial wave that approximates a

disturbance caused by a small submarine land slump

at the head of the fjord. Typically, if some ground

material fails at the head of the bay, the material then

slides down along the fjord wall and consequently

generates an N-shaped wave with a leading depres-

sion. A conceptual picture of a landslide-generated

wave is shown in Fig. 4. The initial and final posi-

tions of the slide are marked by letters A and B,

respectively.

To test our proposed model, we assume an initial

N-shaped wave with an amplitude of 10 cm has

formed at the mouth of the narrow, rather steep gla-

cial fjords typical of those found in Alaska (CITE),

south-central Chili (FRITZ et al. 2011b), and also in

the Pago Pago bay in American Samoa (FRITZ et al.

2011a; DIDENKULOVA 2013); i.e., a trapezoidal bay

with wall slope b ¼ 1=2 and bottom slope a ¼ 0:05.

The shoreline at the head of the bay is assumed to be

100 m, i.e., y0 ¼ 50. The distance from the center of

the N-wave to the shore is assumed to be 1,000 m.

The geometry of the idealized channel and wave

profile are shown in Fig. 2.

In FUNWAVE, we simulate the propagation and

runup of the same N-shaped wave with the trape-

zoidal bay in Fig. 2. When the dispersive effects are

turned off, FUNWAVE solves the classical 2-D

shallow water equations, while the proposed semi-

analytical model computes the cross-section averaged

Table 1

Relative error kRu � ~Ruk=Ru in the run-up for different values of

Dk and Dr values

Model run-up

error with

(Dk;Dr)

Dr ¼ 1 Dr ¼ 0:1 Dr ¼ 0:01 Dr ¼ 0:005

Dk ¼ 1 0.897372 0.896429 0.896429 0.896429

Dk ¼ 0:1 0.722520 0.690126 0.686332 0.686299

Dk ¼ 0:01 0.295066 0.178941 0.156491 0.156278

Dk ¼ 0:001 0.213095 0.085676 0.021997 0.021711

Dk ¼ 0:0001 0.204251 0.006944 0.004869 0.004573

Table 2

Relative error kRd � ~Rdk=Rd in the rundown for different values of

Dk and Dr values

Model run-down

error with

(Dk;Dr)

Dr ¼ 1 Dr ¼ 0:1 Dr ¼ 0:01 Dr ¼ 0:005

Dk ¼ 1 0.959926 0.959926 0.959901 0.959900

Dk ¼ 0:1 0.823982 0.718481 0.716881 0.716866

Dk ¼ 0:01 0.685179 0.180632 0.171168 0.171078

Dk ¼ 0:001 0.663355 0.032658 0.019835 0.019714

Dk ¼ 0:0001 0.661000 0.015407 0.002167 0.002042
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characteristics of the flow. We decide to compare the

results of the semi-analytical model with the results

of FUNWAVE along the dashed line at the middle of

the bay (see Fig. 2).

Figure 5 compares the water level, g, computed

by the semi-analytical model and FUNWAVE [at

(y = 0)]. Notice the discrepancy between the two

models results for certain time periods. The top plot

shows the waves as they approach the beach. The

second plot from the top shows the minimum run-

down that the waves achieve. At these points, there is

minimal difference between the two model results.

As shown in the third plot, 10 s after the waves reach

the minimum run-down the simulated waves do not

match up at the shore. In the fourth plot, the waves

have reached their maximum run-up. Note that at this

point, the two models predict nearly the same wave

behavior. As the wave continues to propagate the

discrepancy returns as shown in the fifth plot. Finally,

at the bottom plot, after the wave reflection from the

shore, the discrepancy is still present but not as large

as it was at the shoreline. Despite the discrepancy, the

models agree on the time and give approximately the

same max runup magnitude (0.9236 vs. 0.9500 cm in

FUNWAVE)/min rundown (-0.4753 vs. -0.4069

cm in FUNWAVE).

Finally, we compare prediction of the runup and

rundown characteristics. Tables 3 and 4 demonstrate

convergence of the computed runup and rundown

amplitudes in the simulations with the semi-analytic

model. In this table, one can see the apparent linear

convergence in respect to Dk and quadratic

convergence in respect to Dr. The values of runup and

rundown amplitudes obtained with the FUNWAVE

model are provided in the table captions. Considering

the significant differences between the two models, we

determine that the predictions of the runup/rundown

for the two models are close to each other, having

2.8 percent relative error in their runup values and

15.2 percent relative error in their rundown values.

6. Long Wave in a Natural Bathymetry

In this section, we analyze the capability of the

developed model to simulate runup of geophysical

tsunamis in natural bays and fjords. As an example of

a real world fjord, we select Shotgun Cove—a fjord

in Prince William Sound—located near the city of

Whittier in south-central Alaska. To test our semi-

analytical approach, the realistic fjord bathymetry is

approximated by a canal with a trapezoidal cross-

section. We then compare our results to those

obtained with two different FUNWAVE setups in the

realistic bathymetry—one without dispersive terms

and one with dispersive terms. For the sake of con-

venience, we call the semi-analytical experiment

‘‘idealized,’’ whereas the experiments where we

consider FUNWAVE will be called ‘‘realistic.’’

The bathymetry at the head of Shotgun Cove is

shown in Fig. 6. The digital elevation model for

Shotgun Cove was assembled by the National Geo-

physics Data Center (CALDWELL et al. 2009) and was

re-gridded to the spatial resolution of 1.5 m. Note

A cross-sectional view of a bay with a submarine landslide.

A

B

Figure 4
Schematic description of a submarine landslide. The landslide quickly moves material from its original location (A) to its resiting location (B).

This movement typically generates an N-wave
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that Shotgun Cove consists of a gently sloping narrow

channel connected via a steeply sloped part of the bay

to a much deeper flat channel. Figure 6 displays the

bathymetry profiles of the channel and locations of

these profiles are marked by the green dotted lines.

The zero distance corresponds to the shore at the

south-west end of the channel. The bathymetry along

the dotted lines exhibit a similar linear trend up to the

depth of 10 m; the bathymetry then steeply declines

as the channel connects to a much deeper part of

Shotgun Cove. Therefore, in the idealized numerical

experiment we hypothesize that the channel can be

approximated by a 1 km-long trapezoidal channel

with an inclination a ¼ 0:01. The computational
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Comparison of the water level computed by the semi-analytic and FUNWAVE models
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domain for the so-called realistic numerical experi-

ment is shown in Fig. 6 by the dashed black line.

In the realistic experiments, the long wave enters

the computation domain through the upper boundary,

shown in Fig. 6. The wave height gradually increases

from 0 to 0.1 m in about 100 s. A profile of the

incident wave at the mouth of the channel, along the

line segment AB marked in Fig. 6, after t ¼ 100 s is

shown in Fig. 7. The wave propagates along the

channel and then floods the head of the fjord. It takes

about 1 CPU hour to simulate the propagation and

runup using FUNWAVE. One of the outputs of the

FUNWAVE model is the computed maximum wave

height. The left plot in Fig. 8 shows the maximum

attained wave height in the computation domain. We

emphasize that the runup height at the head of the

channel is about 0:5 m, about five times larger than

the incident wave height at the mouth of the channel.

In the idealized experiment, we numerically

match the simulated wave profile and set it at

approximately the same distance from the shore as in

the realistic experiment at t ¼ 100 s. Since the wave

propagates towards the shore, we supplement the

initial small vertical disturbance g0 with non-zero

velocity u0 � �g0

ffiffiffiffiffiffiffiffi
g=h

p
given by KANOGLU and

SYNOLAKIS (2006). The non-zero velocity is then uti-

lized along with the first equation in (11) to find an

approximation for wðr; 0Þ by the following formula:

w0ðr; 0Þ � �g0ðxÞ
ffiffiffiffiffi
g

ax

r

FðrÞ:

No other parameters in the semi-analytical method

were changed to incorporate the non-zero velocity

approximation. We then run a series of convergence

tests to ensure that the numerical solution computed by

the semi-analytical method has converged. This con-

vergence was achieved by Dr ¼ 0:01 and

Table 3

Convergence of the ~Ru computed by the semi-analytical model

Model Run-up

with (Dk;Dr)

Dr ¼ 1 Dr ¼ 0:1 Dr ¼ 0:01 Dr ¼ 0:005

Dk ¼ 1 0.1890 0.1910 0.1910 0.1910

Dk ¼ 0:1 0.6900 0.7205 0.7209 0.7209

Dk ¼ 0:01 0.8473 0.8994 0.9001 0.9001

Dk ¼ 0:001 0.8662 0.9207 0.9214 0.9215

Dk ¼ 0:0001 0.8682 0.9229 0.9236 0.9236

Note that the rundown in the FUNWAVE simulation is 0.9500 cm

Table 4

Convergence of ~Rd computed by the semi-analytical model

Model Run-down

with (Dk;Dr)

Dr ¼ 1 Dr ¼ 0:1 Dr ¼ 0:01 Dr ¼ 0:005

Dk ¼ 1 -0.0998 -0.1000 -0.1000 -0.1000

Dk ¼ 0:1 -0.3694 -0.3643 -0.3643 -0.3643

Dk ¼ 0:01 -0.4774 -0.4614 -0.4613 -0.4613

Dk ¼ 0:001 -0.4916 -0.4741 -0.4740 -0.4740

Dk ¼ 0:0001 -0.4931 -0.4754 -0.4753 -0.4753

Note that the rundown in the FUNWAVE simulation is

-0.4069 cm
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Figure 6
Left depth contours of the bathymetry of Shotgun cove. Dotted lines are used to generate the sample bathymetry shown in the right figure.

Right Bathymetry along the dotted green lines (blue) vs. bay slope approximation (red)
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Dk ¼ 0:00003. The simulated wave profile at the

maximum runup is shown in Fig. 7. Note that the

computed runup is about 0:53 m. This is in good

agreement with the realistic numerical experiment

without dispersion considering the simplifications that

go into the semi-analytical model. It is worth men-

tioning that the computational time required to execute

the developed numerical model is just a few minutes.

Finally, in the right plot of Fig. 8 we show the

computed maximum wave height in the realistic

experiment with dispersion. The maximum computed

runup is 0.7 or 0.2 m larger than the one obtained in

the realistic experiment without dispersion. However,

the discrepancy between the fully dispersive simula-

tion of the runup and the idealized simulation is only

0.17 m.
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idealized experiment has the same shape and amplitude as the initial profile used in the realistic models

A

B

0.5 km

   Depth, m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A

B

0.5 km

   Depth, m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8
The maximum run-up in the realistic experiments. Left results obtained while using the FUNWAVE model without dispersive terms. Right

results obtained while using the FUNWAVE model with dispersive terms

896 M. W. Harris et al. Pure Appl. Geophys.



7. Conclusions

In this paper, we develop a numerical method to

implement the recent generalization of the Carrier–

Greenspan transformation by RYBKIN et al. (2014).

We first present the reader with a concise overview of

the recent generalization of the Carrier–Greenspan

transformation. This generalization is valid for

inclined bays with arbitrary cross-sections, and

transforms the 1-D nonlinear shallow water wave

equations into a linear second order wave equation

with potential.

A finite difference method for solving the gen-

eralized Carrier–Greenspan transformation is then

developed by examining the analytic properties of the

transform in order to identify potential complications.

As we showed, the main difficulty when numerically

implementing the generalized Carrier–Greenspan

transform is a strong shoreline singularity in the

resulting linear wave equation. This singularity is

avoided in the following two steps: first, we use the

Newton-Raphson method to accurately compute the

critical functions F and W in order to limit the error

near the singularity, and, second, we select an

appropriate finite difference scheme to handle the

boundary at the moving shoreline.

To test the validity of our numerical algorithm we

first consider the case of wave runup in parabolic

bays as there is a known analytic solution for the

runup in these cases (DIDENKULOVA and PELINOVSKY

2011b). Results of these tests show that our method

generates solutions consistent with the known ana-

lytic solutions.

We then turned our attention to development of a

scheme for trapezoidal bays. The current realization

of the proposed numerical scheme is both robust and

efficient. The code efficiency is demonstrated by

comparing the computational results of our model

with the results of FUNWAVE. For our model, we

used an idealized trapezoidal bathymetry profile that

approximates the realistic bathymetry profile used in

FUNWAVE.

Our comparison reveals that the most important

characteristics, such as minimum run-down and

maximum run-up, are captured by the proposed

numerical scheme. There are also some discrepancies

between the proposed numerical scheme and

FUNWAVE. The most notable of which is the dif-

ference in wave dynamics between the minimum run-

down and maximum run-up. This can be seen in the

third and fifth pictures in Fig. 5. The differences

between the models are probably due to the de-di-

mensionalization of the semi-analytic method. Some

preliminary modeling results of several incident

N-waves show promising results in predicting the

runup, but further studies are necessary.

One of the limitations of the proposed algorithm

is the fact that the generalized Carrier–Greenspan

transformation is not applicable to waves once they

break, i.e., when the Jacobian in (10) vanishes. In

case of real geophysical tsunamis, the wave length is

typically rather long and thus the Jacobian may not

vanish in these cases.

Even though such waves tend have an appro-

priate length for our method to work, the length of

the entire wave train may span several different

‘‘sloping’’ segments of the bay. As of the writing of

this paper, our model has not been adapted to model

such a situation. Despite this current limitation, it is

possible to model wave runup in a bay defined by

multiple piece-wise segments by using a method

similar to the approach in KANOGLU and SYNOLAKIS

(1998). This would enable modeling of wave runup

at the head of such a bay, but this is a topic for the

future research and is beyond the scope of this

manuscript.
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