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Abstract. We study the computational complexity of finding a max-
imum independent set of vertices in a planar graph. In general, this
problem is known to be NP-hard. However, under certain restrictions
it becomes polynomial-time solvable. We identify a graph parameter to
which the complexity of the problem is sensible and produce a number
of both negative (intractable) and positive (solvable in polynomial time)
results, generalizing several known facts.

1 Introduction

Planar graphs form an important class both from a theoretical and practical
point of view. The theoretical importance of this class is partly due to the fact
that many algorithmic graph problems that are NP-hard in general remain in-
tractable when restricted to the class of planar graphs. In particular, this is the
case for the maximum independent set (MIS) problem, i.e., the problem of
finding in a graph a subset of pairwise non-adjacent vertices (an independent set)
of maximum cardinality. Moreover, the problem is known to be NP-hard even for
planar graphs of maximum vertex degree at most 3 [9] or planar graphs of large
girth [15]. On the other hand, the problem can be solved in polynomial-time
in some subclasses of planar graphs, such as outerplanar graphs [5] or planar
graphs of bounded chordality [10].

Which other graph properties are crucial for the complexity of the problem
in the class of planar graphs? Trying to answer this question, we focus on graph
properties that are hereditary in the sense that whenever a graph possesses a
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certain property the property is inherited by all induced subgraphs of the graph.
In other words, a class of graphs is hereditary if deletion of a vertex from a graph
in the class results in a graph in the same class. Many important graph classes,
such as bipartite graphs, perfect graphs, graphs of bounded vertex degree, graphs
of bounded chordality, etc., are hereditary, including the class of planar graphs
itself.

Any hereditary property can be described by a unique set of minimal graphs
that do not possess the property – the so-called forbidden induced subgraphs. We
shall denote the class of graphs containing no induced subgraphs from a set M
by Free(M). Any graph in Free(M) will be called M -free. All our results are
expressed in terms of some restrictions on the set of forbidden induced subgraphs
M . In particular, in Section 2 we will impose a condition on the set M that will
imply NP-hardness of the maximum independent set problem in the class of
planar M -free planar graphs. In Section 3, by violating this condition we will
reveal new polynomially solvable cases of the problem that generalize some of
the previously studied classes.

All graphs in this paper will be finite, undirected, without loops or multiple
edges. For a vertex x ∈ V (G), we denote by N(x) the neighborhood of x, that is,
the set of vertices adjacent to x. The degree of x, deg(x), is the size of its neigh-
borhood. The independence number of a graph G is the maximum cardinality of
an independent set in G. The girth of a graph is the length of its smallest cycle,
while the chordality of a graph is the length of its largest chordless cycle. A sub-
division of an edge uv consists in replacing the edge with a new vertex adjacent
to u and v. For two graphs G and H, we denote by G+H the disjoint union of G
and H. In particular, nG is the disjoint union of n copies of G. As usual, Pn, Cn

and Kn denote the chordless path, the chordless cycle and the complete graph
on n vertices, respectively. Kn,m is the complete bipartite graph with parts of
size n and m. By Ts we denote the graph obtained by subdividing each edge of
the complete bipartite graph K1,s exactly once. Also, Ak is the graph obtained
by adding to a chordless cycle Ck a new vertex adjacent to exactly one vertex
of the cycle. Following [6] we call this graph an apple of size k. Si,j,k and Hi are
the two graphs shown in Figure 1.

rr
rr
r
ppp

rrrr ppp ��

�

r r r rp p pHH

H

1

2

i−1

i

1
2

j−1
j

1
2

k−1

k

r r r p p p r r
r

r

r

r
1 2 i

Fig. 1. Graphs Si,j,k (left) and Hi (right)
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2 A Hardness Result

From [9] we know that the MIS problem is NP-hard for planar graphs of vertex
degree at most 3. Murphy strengthened this result by showing that the problem
is NP-hard for planar graphs of degree at most 3 and large girth [15]. This
immediately follows from the fact that double subdivision of an edge increases
the independence number of the graph by exactly one. The same argument can be
used to show the following lemma, which, for the case of general (not necessarily)
planar graphs, was first shown in [1].

Lemma 1. For any k, the maximum independent set problem is NP-hard in
the class of planar (C3, . . . , Ck,H1, . . . ,Hk)-free graphs of vertex degree at most
3.

We now generalize this lemma in the following way. Let Sk be the class of
(C3, . . . , Ck,H1, . . . ,Hk)-free planar graphs of vertex degree at most 3. To every
graph G we associate the parameter κ(G), which is the maximum k such that
G ∈ Sk. If G belongs to no class Sk, we define κ(G) to be 0, and if G belongs to
all classes Sk, then κ(G) is defined to be ∞. Finally, for a set of graphs M , we
define κ(M) = sup{κ(G) : G ∈ M}.

Theorem 1. Let M be a set of graphs and X the class of M -free planar graphs
of degree at most 3. If κ(M) < ∞, then the maximum independent set prob-
lem is NP-hard in the class X.

Proof. To prove the theorem, we will show that there is a k such that Sk ⊆ X.
Denote k := κ(M) + 1 and let G belong to Sk. Assume that G does not belong
to X. Then G contains a graph A ∈ M as an induced subgraph. From the
choice of G we know that A belongs to Sk, but then k ≤ κ(A) ≤ κ(M) < k, a
contradiction. Therefore, G ∈ X and hence, Sk ⊆ X. By Lemma 1, this implies
NP-hardness of the problem in the class X. ut

This negative result significantly reduces the area for polynomial-time algo-
rithms. But still this area contains a variety of unexplored classes. In the next
section, we analyze some of them.

3 Polynomial Results

Unless P = NP , the result of the previous section suggests that the MIS problem
is solvable in polynomial time for graphs in a class of M -free planar graphs only
if κ(M) = ∞. Let us distinguish a few major ways to push κ(M) to infinity.

One of the possible ways to unbind κ(M) is to include in M a graph G with
κ(G) = ∞. According to the definition, in order for κ(G) to be infinite, G must
belong to every class Sk. It is not difficult to see that this is possible only if every
connected component of G is of the form Si,j,k represented on the left of Figure 1.
Let us denote the class of all such graphs by S. More formally, S :=

⋂
k≥3

Sk. Any
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other way to push κ(M) to infinity requires the inclusion in M of infinitely many
graphs. In particular, we will be interested in classes where the set of forbidden
subgraphs M contains graphs with arbitrarily large chordless cycles.

The literature does not contain many results when M includes a graph from
the class S, that is, a graph G with κ(G) = ∞, and only a few classes of this type
are defined by a single forbidden induced subgraph. Minty [14] and Sbihi [18]
independently of each other found a solution for the problem in the class of
claw-free (i.e., S1,1,1-free) graphs. This result was then generalized to S1,1,2-free
graphs (see [3] for unweighted and [11] for weighted version of the problem) and
to S1,1,1 + K2-free graphs [13]. Another important example of this type is the
class of mP2-free graphs (where m is a constant). A solution to the problem
in this class is obtained by combining an algorithm to generate all maximal
independent sets in a graph [20] and a polynomial upper bound on the number
of maximal independent sets in mP2-free graphs [2, 8].

Observe that all these results hold for general (not necessarily planar) graphs.
In the case of planar graphs, the result for mP2-free graphs can be further ex-
tended to the class of Pk-free graphs (for an arbitrary k) via the notion of tree-
width. In fact, the diameter of Pk-free planar graphs is bounded by a constant.
Therefore, the tree-width of Pk-free planar graphs is bounded by a constant,
since the tree-width of planar graphs is bounded by a function of its diame-
ter [7]. An extension of the result for Pk-free planar graphs was recently pro-
posed in [10] where the authors show that the tree-width is bounded in the class
of (Ck, Ck+1, . . .)-free planar graphs (for any fixed k).

Below we report further progress in this direction. In particular, we show that
the MIS problem can be solved in polynomial time in the class of (Ak, Ak+1, . . .)-
free planar graphs. We thus generalize the result not only for (Ck, Ck+1, . . .)-
free planar graphs, but also S1,1,1-free, S1,1,2-free and S1,1,1 + K2-free planar
graphs. Observe that, in contrast to planar graphs of bounded chordality, the
tree-width of (Ak, Ak+1, . . .)-free planar graphs is not bounded, which makes
it necessary to employ more techniques for the design of a polynomial-time
algorithm. One of the techniques we use in our solution is known as decomposition
by clique separators [19, 21]. It reduces the problem to connected graphs without
separating cliques, i.e., without cliques whose deletion disconnects the graph. We
also use the notion of graph compression defined in the next section. In addition,
in Section 3.2 we prove some auxiliary results related to the notion tree-width.
Finally, in Section 3.3 we describe the solution.

3.1 Graph Compressions and Planar Ts-free Graphs

A compression of a graph G = (V,E) is a mapping φ : V → V which maps any
two distinct non-adjacent vertices into non-adjacent vertices and which is not
an automorphism. Thus, a compression maps a graph into its induced subgraph
with the same independence number. Two particular compressions of interest
will be denoted

(
a
b

)
and

(
a b
c d

)
.
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By
(
a
b

)
we mean the compression which maps a to b and leaves all other

vertices fixed. This map is a compression if and only if ab ∈ E(G) and N(b) −
{a} ⊆ N(a)− {b}.

The compression
(
a b
c d

)
is defined as follows: φ(a) = c, φ(b) = d and the

remaining vertices of the graph are fixed. This map is a compression if

– c 6= d,
– ac, bd ∈ E and ab, cd 6∈ E,
– every vertex adjacent to c different from a and b is also adjacent to a,
– every vertex adjacent to d different from a and b is also adjacent to b.

A graph which admits neither
(
a
b

)
nor

(
a b
c d

)
will be called incompressible.

Lemma 2. Let G be an incompressible Ts-free planar graph and a, b two vertices
of distance 2 in G. Then |N(a) ∩N(b)| ≤ 4s + 1.

Proof. Let us call a vertex x ∈ N(a) ∩N(b)

– specific if every neighbor of x, other then a and b, belongs to N(a) ∩N(b),
– a-clear (b-clear) if x has a neighbor non-adjacent to a (to b).

Notice that every vertex in N(a) ∩ N(b) is either specific or a-clear or b-clear.
Let us estimate the number of vertices of each type in N(a) ∩N(b).

First, suppose that N(a) ∩ N(b) contains 4 specific vertices. Then, due to
planarity of G, two of these vertices are non-adjacent, say x and y. But then(

a b
x y

)
is a compression. Therefore, N(a)∩N(b) contains at most 3 specific vertices.

Now suppose N(a) ∩ N(b) contains 2s a-clear vertices. Consider a plane
embedding of G. This embedding defines a cyclic order of the neighbors of each
vertex. Let x1, x2, . . . , x2s be the a-clear vertices listed in the cyclic order with
respect to a. Also, for each i = 1, 2, . . . , 2s, denote by yi a vertex adjacent to
xi and non-adjacent to a. Some of the vertices in the set {y1, y2, . . . , y2s} may
coincide but the vertices {y1, y3, y5 . . . , y2s−1}must be pairwise distinct and non-
adjacent. But then the set {a, x1, x3, x5 . . . , x2s−1, y1, y3, y5 . . . , y2s−1} induces a
Ts. This contradiction shows that there are at most 2s − 1 a-clear vertices.
Similarly, there are at most 2s− 1 b-clear vertices. ut

Lemma 3. Let G be an incompressible Ts-free planar graph. Then the degree of
each vertex in G is at most (4s + 1)(4s− 1).

Proof. Let a be a vertex in G, A the set of neighbors of a and B the set of
vertices of distance 2 from a. Consider the bipartite subgraph H of G formed
by the sets A and B and all the edges connecting vertices of A to the vertices of
B. Let the size of a maximum matching in H be π and the size of a minimum
vertex cover in H be β. According to the theorem of König, π = β.

Observe that every vertex x ∈ A has a neighbor in B, since otherwise
(

a
x

)
is

a compression. Thus, H contains a set D of deg(a) edges no two of which share
a vertex in A. By Lemma 2, the degree of each vertex of B in the graph H is at
most 4s + 1. Therefore, to cover the edges of D we need at least deg(a)/(4s + 1)
vertices, and hence π ≥ deg(a)/(4s + 1).
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In the graph H, consider an arbitrary matching M with π edges. In the graph
G, contract5 each edge of M into a single vertex obtaining in this way a planar
graph G′, and denote the subgraph of G′ induced by the set of “contracted”
vertices (i.e., those corresponding to the edges of M) by H ′. If deg(a) > (4s +
1)(4s − 1), then H ′ contains at least 4s vertices. By the Four Color Theorem
[17], it follows that H ′ contains an independent set of size s. The vertices of this
set correspond to s edges in the graph G that induce an sK2. Together with
vertex a these edges induce a Ts, a contradiction. ut

3.2 Tree-width and Planar Graphs

In this section, we derive several auxiliary results on the tree-width of planar
graphs. More generally, our results are valid for any class of graphs excluding an
apex graph as a minor. An apex graph is a graph that contains a vertex whose
deletion leaves a planar graph. A graph H is said to be a minor of a graph G if
H can be obtained from G by means of vertex deletions, edge deletions and edge
contractions. We say that a class of graphs is minor closed if with every graph
G it contains all minors of G. Both graphs of bounded tree-width and planar
graphs are minor closed.

If H is not a minor of a graph G, we say that G is H-minor-free and call H
a forbidden minor for X. It is well known that any minor-closed graph class can
be described by a unique finite set of minimal forbidden minors. For instance,
the class of planar graphs is exactly the class of (K5,K3,3)-minor-free graphs.

For brevity, let us call a family of graphs apex-free, if it is defined by a single
forbidden minor H, which is an apex graph.

An n×n grid Gn is the graph with the vertex set {1, . . . , n}×{1, . . . , n} such
that (i, j) and (k, l) are adjacent if and only if |i − k| + |j − l| = 1. By a result
of Robertson and Seymour [16], graphs of large tree-width must contain a large
grid as a minor. For apex-free graph families, even more is true. In the following
lemma, an augmented grid is a grid Gn augmented with additional edges (and no
additional vertices). Vertices (i, j) with {i, j} ∩ {1, n} 6= ∅ are boundary vertices
of the grid; the other ones are nonboundary.

Lemma 4. [7] Let H be an apex graph. Let r = 14|V (H)|−22. For every integer
k there is an integer gH(k) such that every H-minor-free graph of tree-width at
least gH(k) can be contracted into an k′×k′ augmented grid R such that k′ ≥ k,
and each vertex v ∈ V (R) is adjacent to less than (r + 1)6 nonboundary vertices
of the grid.

With extensive help of this lemma we shall derive the main result of this
section, which we state now.

Lemma 5. For any apex graph H and integers k, s and d, there is an integer
N = N(H, k, s, d) such that for every H-minor-free graph G of tree-width at

5 The contraction of an edge uv consists of replacing the two vertices u and v with a
single vertex x adjacent to every vertex in (N(u) ∪ N(v)) \ {u, v}.
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least N and every nonempty subset S ⊆ V (G) of at most s vertices, the graph
G contains a chordless cycle C such that:

– every vertex v ∈ V (G) is non-adjacent to at least k consecutive vertices of C.
– the distance between C and S is at least d.

To prove Lemma 5, we will need a few auxiliary results. First, we recall
that in apex-free graphs, large tree-width forces the presence of arbitrarily long
chordless cycles [10]. More formally:

Lemma 6. For every apex graph H and every integer k there is an integer
fH(k) such that every H-minor-free graph of tree-width at least fH(k) contains
a chordless cycle of order at least k.

Next, we prove two additional lemmas that will be needed in the proof of
Lemma 5.

Lemma 7. For every apex graph H and every integer k there is an integer
f(H, k) such that every H-minor-free graph G of tree-width at least f(H, k)
contains a chordless cycle C such that every vertex v ∈ V (G) is non-adjacent to
at least k consecutive vertices of C.

Proof. Let r = 14|V (H)| − 22, let fH be the function given by Lemma 6,
and let gH be the function given by Lemma 4. Furthermore, let f(H, k) =
gH

(
fH

(
(k + 1)(r + 1)6

)
+ 2

)
. We will show that the function f(H, k) satisfies

the claimed property.
Let G be an H-minor-free graph of tree-width at least f(H, k). By Lemma 4,

G can be contracted into an k′×k′ augmented grid R where k′ ≥ fH((k+1)(r+
1)6)+2 and such that each vertex v ∈ V (R) is adjacent to less than (r+1)6 non-
boundary vertices of the grid. For i, j ∈ {1, . . . , k′}, let V (i, j) denote the subset
of V (G) that gets contracted to the vertex (i, j) of the grid. Furthermore, let R0

denote the (k′ − 2)× (k′ − 2) augmented sub-grid, induced by the nonboundary
vertices of R. Since the tree-width of an n×n grid is n, and the tree-width can-
not decrease by adding edges, we conclude that the tree-width of R0 is at least
k′− 2 ≥ fH((k + 1)(r + 1)6). Moreover, as R0 is H-minor-free, Lemma 6 implies
that R0 contains a chordless cycle C0 of length at least (k + 1)(r + 1)6. By the
above, every vertex v ∈ V (R) is adjacent to less than (r + 1)6 vertices of R0.
Therefore, the neighbors of v on C0 (if any) divide the cycle into less than (r+1)6

disjoint paths whose total length is at least |V (C0)|− (r+1)6. In particular, this
implies every vertex of V (R) is non-adjacent to at least |V (C0)|−(r+1)6

(r+1)6 ≥ k con-
secutive vertices of C0.

Let the cyclic order of vertices of R0 on C0 be given by ((i1, j1), (i2, j2), . . .,
(is, js)). To complete the proof, we have to lift the cycle C0 to a chordless cycle
C in G. Informally, we will replace each pair of incident edges (ip−1, jp−1)(ip, jp)
and (ip, jp)(ip+1, jp+1) in C0 with a shortest path connecting vertex (ip−1, jp−1)
to vertex (ip+1, jp+1) in the graph G whose internal vertices all belong to Vip,jp

.
Implementation details of this “lifting” procedure are omitted due to the lack of
space. ut
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Our second preliminary lemma states that the tree-width of apex-free graphs
cannot be substantially decreased by contracting the set of vertices at constant
distance from some set of constantly many vertices. We remark that this fails
for minor-closed families that exclude no apex graph (in the statement of the
lemma, take G to be the graph obtained from an n × n grid by adding to it a
dominating vertex).

Lemma 8. Let H be an apex graph, and let s, d and m be integers. Then, there
is an integer t = t(H, s, d,m) such that the following holds:

Let G be an H-minor-free graph of tree-width at least t, and let S ⊆ V (G)
be a set of at most s vertices of G. Furthermore, let U be the set of vertices in
G that are at distance less than d from S, and let G′ be the graph obtained from
G by contracting the set U into a single vertex. Then, the tree-width of G′ is at
least m.

Proof. By an easy inductive argument on the number of connected components
of G[S], we may assume that S induces a connected subgraph of G. If d = 0,
then G′ = G, and we have t = m.

Let now d ≥ 1. For i = 1, . . . , d, let G(i) denote the graph obtained from G
by contracting the set V (i) of vertices at distance less than i from S into a single
vertex v(i). Furthermore, let r = 14|V (H)| − 22. Also, let gH be the function
given by Lemma 4.

Consider the following recursively defined function h : {1, . . . , d} → N:
h(1) = m, and h(i + 1) = gH(2(r + 1)3h(i)), for all i = 1, . . . , d − 1. Let
t := t(H, s, d,m) := h(d) + s.

With the above notation, we have G′ = G(d). So, it suffices to show the
following:

Claim. For all i = 1, . . . , d, the tree-width of G(i) is at least h(d + 1− i).

We now prove the claim by induction on i. For i = 1, note that G(1) contains
G−S as an induced subgraph, and therefore tw(G(1)) ≥ tw(G−S) ≥ tw(G)−s ≥
t− s = h(d) = h(d− i + 1) (where tw(K) denotes the tree-width of a graph K).

For the induction hypothesis, assume that the statement holds for some i ≥ 1:
the tree-width of G(i) is at least h(d + 1 − i) = gH(2(r + 1)3h(d − i)). By
Lemma 4, G(i) can be contracted into an k × k augmented grid R such that
k ≥ 2(r +1)3h(d− i), and each vertex v ∈ V (R) is adjacent to less than (r +1)6

nonboundary vertices of the grid.
Therefore, R must contain a large subgrid R′ such that v(i) ∈ V (G(i)) does

not belong to R′, and has no neighbors in R′. More precisely, R′ can be chosen
to be of size k′×k′, where k′ ≥ b k−2√

(r+1)6
c ≥ k

2(r+1)3 ≥ h(d− i) . By definition of

V (i+1) and since v(i) has no neighbors in R′, we conclude that the graph G(i+1)

contains the grid R′ as a minor. Thus, the tree-width of G(i+1) is at least the
tree-width of R′, which is at least h(d − i) = h(d + 1 − (i + 1)). The proof is
complete. ut

We conclude this section with a short proof of Lemma 5, based on Lemmas 7
and 8.
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Proof. (Lemma 5) Let f(H, k) be given by Lemma 7. We let N := N(H, k, s, d) :=
t(H, s, d + 1, f(H, k)), where t is given by Lemma 8.

Let G′ be the graph obtained from G by contracting the set of vertices at
distance less than d + 1 form S into a single vertex. Then, by Lemma 5, the
tree-width of G′ is at least f(H, k). By Lemma 7, G′ contains a chordless cycle
C such that every vertex v ∈ V (G′) is non-adjacent to at least k consecutive
vertices of C.

Using the same argument as in the proof of Lemma 5, C ′ can be lifted to a
chordless cycle C of G such that every vertex v ∈ V (G) is non-adjacent to at
least k consecutive vertices of C. ut

3.3 Solution to the Problem for Planar (Ak, Ak+1, . . .)-free Graphs

In this section, we prove polynomial-time solvability of the MIS problem in the
class of planar (Ak, Ak+1, . . .)-free graphs, for an arbitrary integer k.

Theorem 2. For any k, the maximum independent set problem can be solved
in the class of planar (Ak, Ak+1, . . .)-free graphs in polynomial time.

Proof. Let k be an integer and G be a planar (Ak, Ak+1, . . .)-free graph. Without
loss of generality we can assume that G is incompressible and has no clique
separators. If G is T11-free, then by Lemma 3 the degree of vertices in G is
bounded by a constant. It was recently shown in [12] that the MIS problem in
the class of (Ak, Ak+1, . . .)-free graphs of bounded vertex degree is polynomial-
time solvable. This enables us to assume that G contains a T11 as an induced
subgraph. In this subgraph, we will denote the vertex of degree 11 by a, the
vertices of degree 2 by b1, . . . , b11 and the respective vertices of degree 1 by
c1, . . . , c11.

Let N = N(K5, 6k + 8, 23, k + 2) be the constant defined in Lemma 5. We
shall show that the tree-width of G is less than N . Assume by contradiction
that the tree-width of G is at least N . Then by Lemma 5, with S = V (T11), the
graph G contains a chordless cycle C such that

– every vertex of G is non-adjacent to at least 6k + 8 consecutive vertices of
C.

– the distance between C and T11 is at least k + 2.

Fact 1. No vertex of G can have more than 4 neighbors on C. Moreover, if a
vertex v has 3 neighbors on C, then these neighbors appear in C consecutively.
If v has 4 neighbors, they can be split into two pairs of consecutive vertices. If v
has 2 neighbors, they are either adjacent or of distance 2 in C.

Indeed, if v has more then 4 neighbors on C, then a large portion of C
containing at least 6k + 8 consecutive vertices together with v and one of its
neighbors create a forbidden induced apple. The rest of Fact 1 also follows from
(Ak, Ak+1, . . .)-freeness of G, which can be verified by direct inspection.

Claim. G has a chordless cycle containing vertex a and some vertices of C.
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Proof. Since G has no clique separators, it is 2-connected. Therefore, there exist
two vertex-disjoint paths connecting a to C. Let P = (x1, . . . , xp) and Q =
(y1, . . . , yq) be two such paths, where x1 and y1 are adjacent to a, while xp and
yq have neighbors on C. Without loss of generality, we shall assume that the
total length of P and Q is as small as possible. In particular, this assumption
implies that x1 and y1 are the only neighbors of a on P,Q, and no vertex of P or
Q different from xp and yq has a neighbor on C. Any edge connecting a vertex
of P to a vertex of Q will be called a (P,Q)-chord.

Fact 3. The neighborhood of xp on C consists of two adjacent vertices and
the neighborhood of yq on C consists of two adjacent vertices.

Obviously, to avoid a big induced apple, xp must have at least two neighbors
on C. Consider a longest sub-path P ′ of C such that xp has no neighbors on P ′.
We know that P ′ has at least 6k +8 vertices. Moreover, by maximality of P ′, xp

is adjacent to the two (distinct!) vertices u, v on C outside P ′ each of which is
adjacent to an endpoint of P ′. Then, u and v must be adjacent, for otherwise G
would contain a forbidden apple induced by the vertex set P ′ ∪ {u, v, xp, xp−1}.
The same reasoning shows that the neighborhood of yq on C consists of two
adjacent vertices.

Fact 3. The neighborhood of xp on C does not coincide with the neighborhood
of yq on C, and there are no (P,Q)-chords different from x1y1.

For the sake of contradiction, suppose that N(xp) ∩ C = N(yq) ∩ C =
{xp+1, yq+1}. Denote by T 1 the triangle xp, xp+1, yq+1 and by T 2 the triangle
yq, xp+1, yq+1. To avoid a separating clique (one triangle inside the other), we
must conclude that, without loss of generality, xp is inside C while yq is outside
C in the planar embedding of G. If additionally a is inside C, then Q meets the
cycle before it meets yq. This contradiction completes the proof of the first part
of Fact 2.

To prove the second part, suppose that G contains a (P,Q)-chord different
from x1y1. Let xiyj be such a chord with maximum value of i + j. In order to
prevent a large induced apple, xi must be adjacent to yj−1. By symmetry, yj

must be adjacent to xi−1. This implies, in particular, that both i > 1 and j > 1.
Denote by T 1 the triangle xi−1, xi, yj , by T 2 the triangle yj−1, xi, yj and by C ′

the cycle formed by vertices xp, xp−1, . . . , xi, yj , . . . , yq and a portion of C. The
rest of the proof of Fact 3 is identical to the above arguments.

From Fact 3 we conclude that if x1y1 is not a chord, then G has a desired
cycle, i.e., a chordless cycle containing a and some vertices of C. From now
on, assume x1 is adjacent to y1. Denote by C∗ a big chordless cycle formed of
P , Q and a portion of C containing at least half of its vertices, i.e., a portion
containing at least 3k + 4 consecutive vertices of C. We will denote this portion
by P ∗.

Observe that among vertices b1, . . . , b11 there is a vertex, name it z1, which
is adjacent neither to x1 nor to y1, since otherwise G has a separating clique (a
triangle with a vertex inside it). Let us show that z1 has no neighbors on C∗.
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Indeed, z1 cannot have neighbors on P ∗, since the distance between z1 and P ∗

is at least k + 2. If z1 has both a neighbor on P and a neighbor on Q, then
G contains a big induced apple. If z1 is adjacent to a vertex xi ∈ P and have
no neighbors on Q, then either the pair of paths P,Q is not of minimum total
length (if i > 2) or G has a big induced apple (if i = 2).

Since G has no clique separators, vertex z1 must be connected to the cycle
C∗ by a path avoiding the clique {a, x1, y1}. Let R = (z1, . . . , zr) be a shortest
path of this type. Since z1 has no neighbors on C∗, r must be strictly greater
than 1. According to Fact 1, zr cannot have more then 4 neighbors on P ∗.
Moreover, these neighbors partition P ∗ into at most 3 portions (of consecutive
non-neighbors of zr) the largest of which has at least k vertices. Therefore, zr has
at least k consecutive non-neighbors on the cycle C∗. By analogy with Fact 2,
we conclude that the neighborhood of zr on C∗ consists of two adjacent vertices.
Also, by analogy with Fact 3, we conclude that the only possible chord between
R and the other path connecting z1 to C∗ (i.e. (z1, a)) is the edge az2. Therefore,
G has a chordless cycle containing vertex a and some vertices of C, and the proof
of the claim is completed. ut

Denote by Ca = (a, v1, v2, . . . , vs) a chordless cycle containing the vertex a
and a part of C. The vertices of Ca belonging to C will be denoted vi, vi+1, . . . , vj .
Since the distance between T11 and C is at least k + 2, none of the vertices
b1, b2, . . . , b11 is adjacent to any of the vertices vi−k, vi−k+1, . . . , vk+j . Clearly
among vertices b1, b2, . . . , b11 at least 9 do not belong to Ca. Among these 9, at
least 5 vertices are adjacent neither to v1 nor to vs (since otherwise G contains
a separating clique, i.e., a triangle with a vertex inside it). Without loss of
generality, let the vertices b1, b2, . . . , b5 be not in Ca and non-adjacent to v1, vs.
It is not difficult to see that none of these 5 vertices has a neighbor in the set
{v3, v4, . . . , vs−3, vs−2}, since otherwise a big induced apple arises (remember
that none of these 5 vertices is adjacent to any of vi−k, vi−k+1, . . . , vk+j). For the
same reason, none of b1, b2, . . . , b5 can be adjacent simultaneously to v2 and vs−1

and none of them can be non-adjacent simultaneously to v2 and vs−1. Therefore,
we may assume without loss of generality that in a fixed plane embedding of G,
among these 5 vertices there are 2, say bi, bj , such that bi is inside the 4-cycle
a, bj , v2, v1. Due to planarity, vertex ci has no neighbors on the cycle Ca except
possibly v1 and v2. However, regardless of the adjacency ci to v1 or v2, the
reader can easily find a big induced apple in G. This contradiction shows that
if G contains a T11, then the tree-width of G is bounded by a constant, which
completes the proof of the theorem. ut
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