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Abstract—We discuss the general opportunity to create (asymptotically) a completely integrable
system from the original perturbed system by inserting additional perturbing terms. After such an
artificial insertion, there appears an opportunity to make the secondary averaging and secondary
reduction of the original system. Thus, in this way, the 3D-system becomes 1-dimensional. We
demonstrate this approach by the example of a resonance Penning trap.
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1. INTRODUCTION

Physical systems are often presented as ε-perturbations of some integrable systems. The leading
integrable Hamiltonians possess algebras of symmetries, and one can average and reduce the whole
system by using these symmetries. For example, if the original system is 3-dimensional, then the
reduced system has only 2 degrees of freedom. But this is still not enough, since we do not attain
complete integrability after such a primary reduction.

Now assume that we artificially insert an additional perturbing term (perturbing field, structure, ...)
into the original physical system in such a way that, after the primary reduction, this term, averaged
by the primary symmetries, becomes the new leading Hamiltonian. Since we control the artificial
additional term, we can try to make this secondary leading Hamiltonian integrable. Then one obtains an
opportunity to make the secondary reduction by its symmetry algebra.

Thus, the original 3D physical perturbed system is subjected to a double averaging and double
reduction procedure. The number of degrees of freedom is reduced twice and becomes 1. The resulting
reduced system now turns out to be completely integrable (of course, only asymptotically, with accuracy
O(ε∞)).

In this note, we demonstrate how such a general idea works by using the resonance Penning trap as
an example. The term “Penning trap” is applied to devices based on the use of an electric field created
by a cylinder-like or ring-like condenser or electrodes and of an axially directed magnetic field intended
to hold an electric charge in a compact domain near the center of the trap [1]–[9].

The mathematical model of an ideal Penning trap is equivalent to a harmonic 3D-oscillator of
hyperbolic type (with a saddle point). Three normal frequencies of this oscillator depend on the external
parameters: the magnetic field magnitude, the electric voltage, and the geometry of the electrodes. We
assume that these frequencies are in resonance as 2 : (−1) : 2. This assumption makes the leading
Hamiltonian of the trap superintegrable with a noncommutative symmetry algebra.

The whole Penning-trap Hamiltonian also contains some perturbations: inhomogeneous magnetic
corrections and anharmonic corrections in the electric potential; see, for instance, [1]–[9]. The
direct averaging and reduction of these perturbations by the oscillator symmetry algebra generate a
non-integrable system with 2 degrees of freedom.
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In order to make this system (asymptotically) integrable, we apply the general idea of “artificially
inserted perturbation” described above. Namely, we assume that there is a small deviation of the
homogeneous magnetic field from the axial direction. The corresponding artificial perturbing term in
the Hamiltonian is very simple: just a quadratic form in canonical phase variables. After the primary
averaging, this term generates an integrable system. Under a specific choice of the deviation angle, this
system has a resonance regime with its own noncommutative symmetry algebra. Thus, there arises a
nonobvious secondary resonance and a secondary symmetry algebra. This algebra is of non-Lie type.
Below we demonstrate its generators and permutation relations.

The inhomogeneous and anharmonic perturbations in the original physical trap can now be subjected
to double averaging and double reduction. This procedure generates an integrable system with one
degree of freedom. Thus, we essentially simplify the study of a given physical system (the Penning trap)
just by inserting a deviation of the magnetic field from its original axial direction.

2. HAMILTONIAN WITH ARTIFICIALLY INSERTED PERTURBING TERM

The Hamiltonian of the trap with all types of perturbations is of the form

Ĥ = Ĥ0 + εĤ1 + ε2Ĥ2 + O(ε3). (2.1)

Here Ĥ0 is the Hamiltonian of the ideal trap,

Ĥ0 =
1

2

[
p̂2
1 + p̂2

2 + p̂2
3 + 2ω(p̂1q2 − p̂2q1) + (ω2 − ω2

0)(q
2
1 + q2

2) + 2ω2
0q

2
3

]
, (2.2)

where by p̂j = −i~∂/∂qj we denote the momentum operators corresponding to the Cartesian coordi-
nates qj (j = 1, 2, 3) and by ω, ω0 positive parameters obeying condition ω > ω0. The homogeneous
magnetic field of the ideal trap is directed along the third axis. The electric potential of the ideal trap has
the form U0 = (ω2

0/2)(2q
2
3 − q2

1 − q2
2). The real physical electric potential U obeys the Laplace equation

∆U = 0 and is approximated by the function U0 near the center q = 0 of the trap:

U = U0 + third- and fourth-degree terms + . . . .

After rescaling the coordinates in a small domain near the center and after averaging, the terms of the

third and fourth degrees together generate the summand Ĥ2 in (2.1), and the higher-degree terms are
put in the remainder O(ε3).

The term Ĥ1 in (2.1) is due to the artificially inserted deviation of the homogeneous magnetic field
from its “ideal” direction along the third axis. The direction of the deviation is given by the vector
B = (B1,B2,B3). Thus,

Ĥ1 =
1

2
k̂ · [q × B], k

def
= (p1 + ωq2, p2 − ωq1, p3). (2.3)

By making the change of coordinates

q1 =
1√

2 4

√
ω2 − ω2

0

(x+ + x−), p1 =
4

√
ω2 − ω2

0√
2

(p+ + p−),
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1√

2 4

√
ω2 − ω2

0
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4

√
ω2 − ω2

0√
2

(x− − x+), (2.4)

q3 =
1

4
√

2
√

ω0

x0, p3 =
4
√

2
√

ω0p0,

we transform the Hamiltonian (2.2) to the normal form

Ĥ0 =
1√
2

[
ω+(p̂2

+ + x2
+) − ω−(p̂2

− + x2
−) + ω0(p̂

2
0 + x2

0)
]
, where ω± =

ω2 ± (ω2 − ω2
0)

1/2

√
2

.

(2.5)
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Now let us assume that

ω2 =
9

8
ω2

0. (2.6)

Then ω+ = ω0, ω− = ω0/2 and the Hamiltonian (2.5) becomes

Ĥ0 =
ω0√

2
[2ẑ∗+ẑ+ − ẑ∗−ẑ− + 2ẑ∗0 ẑ0] +

3~ω0

2
√

2
, (2.7)

where

ẑ± =
1√
2
(x± + ip̂±), ẑ0 =

1√
2
(x0 + ip̂0). (2.8)

So, under condition (2.6), the Hamiltonian of the ideal Penning trap is the linear combination of three
one-dimensional oscillators whose frequencies are in resonance as 2 : (−1) : 2.

3. PRIMARY SYMMETRY ALGEBRA

The spectrum of Ĥ0 is discrete and infinitely degenerate under the resonance condition (2.6). The
degeneracy is controlled by the symmetry algebra, i.e., by the algebra of all operators commuting with

Ĥ0. The following operators can be chosen as the generators of this algebra:

S± = ẑ∗±ẑ±, S0 = ẑ∗0 ẑ0, (3.1)

Aρ = ẑ∗+ẑ0, Aσ = ẑ∗+(ẑ∗−)2, Aθ = (ẑ∗−)2ẑ∗0 . (3.2)

The commutation relations between these generators (and the conjugate operators) are the following
ones:

[S+, Aρ] = ~Aρ, [S0, Aρ] = −~Aρ,

[S+, Aσ] = ~Aσ, [S−, Aσ ] = 2~Aσ ,

[S−, Aθ] = 2~Aθ, [S0, Aθ] = ~Aθ,

[Aρ, A
∗

σ] = −~A∗

θ, [Aρ, Aθ] = ~Aσ, (3.3)

[A∗

ρ, Aρ] = ~(S0 − S+), [Aσ, A∗

θ] = −4~
(
S− +

~

2

)
Aρ,

[A∗

σ , Aσ] = ~(4S+S− + S2
− + 2~S+ + 3~S− + 2~

2),

[A∗

θ, Aθ] = ~(S2
− + 4S−S0 + 3~S− + 2~S0 + 2~

2).

Relations (3.3) have the following three Casimir operators:

Cρ = AρA
∗

ρ − S+(S0 + ~),

Cσ = AσA∗

σ − S+S−(S− − ~), (3.4)

Cθ = AθA
∗

θ − S0S−(S− − ~).

In the realization (3.1), (3.2), these three operators vanish.

We also have the following “quasi-Casimir” operators:

C+ = AρA
∗

σ − S+A∗

θ,

C− = AσA∗

θ − S−(S− − ~)Aρ, (3.5)

C0 = AρAθ − (S0 + ~)Aσ .

The commutators of these operators with all generators are proportional to operators (3.5). In the
realization (3.1), (3.2), the operators (3.5) also vanish.

Thus, the symmetry algebra of the resonance oscillator (2.6) can be defined as an algebra with nine
generators and relations (3.3) factorized by the ideal generated by elements (3.4) and (3.5).

In this quotient algebra, we still have one additional Casimir element

C = 2S+ − S− + 2S0, (3.6)
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which is, in fact, the operator Ĥ0 (2.7); namely,

Ĥ0 =
ω0√

2

(
C +

3~

2

)
.

The general theory of resonance symmetry algebras can be found in [10]–[14].

4. PRIMARY AVERAGING

We follow the general scheme of algebraic averaging [11]–[13], [15]–[18]. Let us construct a unitary

V = exp

{
− iεR

~

}
such that V −1 · Ĥ · V = Ĥ0 + εĤ10 + ε2Ĥ20 + O(ε3), (4.1)

where

[Ĥ0, Ĥ10] = [Ĥ0, Ĥ20] = 0. (4.2)

The operator R = R0 + εR1 is obtained from the homological equations

i

~

[
Ĥ0, R0

]
= Ĥ1 − Ĥ10,

i

~

[
Ĥ0, R1

]
= Ĥ2 +

i

2~

[
R0, Ĥ1 + Ĥ10

]
− Ĥ20. (4.3)

These equations can be solved as follows:

Ĥ10 =
1

2π

ˆ 2π

0

e−
it

~
CĤ1e

it

~
C dt, Ĥ20 =

1

2π

ˆ 2π

0

e−
it

~
C

(
Ĥ2 +

i

2~

[
R0, Ĥ1 + Ĥ10

])
e

it

~
C dt, (4.4)

R0 =

√
2

2πω0

ˆ 2π

0

e−
it

~
CĤ1e

it

~
Ct dt, R1 =

√
2

2πω0

ˆ 2π

0

e−
it

~
C

(
Ĥ2 +

i

2~

[
R0, Ĥ1 + Ĥ10

])
e

it

~
Ct dt,

(4.5)

The operators on the right-hand sides in (4.4), (4.5) are computed by using the fact that the operator
C is the linear combination (3.6) of the “action” operators S±, S0 and by taking into account that the
evolution of the coordinates ẑ±, ẑ0 with respect to the actions can be derived explicitly.

The final formulas for the perturbing terms Ĥ10, Ĥ20 in the Hamiltonian (4.1) are

Ĥ10 =
ξ√
2

(
η

(
2S+ + S− +

3~

2

)
−

√
1 − η2(Aρ + A∗

ρ)

)
, (4.6)

Ĥ20 = linear and quadratic combinations of generators (3.1), (3.2), (4.7)

where we use the notation

ξ2 = B2
1 + 2B2

3, η =
√

2B3/ξ, (4.8)

and we choose B2 = 0 without loss of generality.

The explicit expression for Ĥ20 in (4.7) can be obtain from the concrete information about the
inhomogeneous part of the magnetic field and the anharmonic part of the electric potential of the trap.

5. SECONDARY INTEGRABLE HAMILTONIAN AND SECONDARY RESONANCE

The perturbing terms Ĥ10, Ĥ20, . . . in (4.1) commute with the leading term Ĥ0. Therefore, we now
have to study the Hamiltonian

Ĥ10 + εĤ20 + O(ε2) (5.1)

on the eigenspaces of the resonance oscillator Ĥ0.

The symmetry algebra of the operator Ĥ10 (4.6) is trivial in general position (commutative and

generated by Ĥ0, S− and Ĥ10 itself), and its spectrum is nondegenerate. However, under a special
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resonance condition imposed on the components of the perturbing magnetic field B, this algebra

becomes noncommutative, and a spectral degeneracy of Ĥ10 appears.
First, let us note that it follows from the commutation relations (3.3) that, on the eigensubspace

where Ĥ0 takes the value (~ω0/
√

2)(n + 3/2), the spectrum of Ĥ10 consists of the following numbers:

ξ~√
2

(
(1 + 3η)n+ − (1 − 3η)n− − η

(
n − 3

2

))

with integers n+, n−, and n. Thus, the degeneracy of the spectrum is equivalent to the resonance
condition

(1 + 3η) : (1 − 3η) = k : l or (k − l)B1 = 4
√

(k + l)2 + kl/2B3, (5.2)

where k, l are positive coprime integers.

Below we choose the lowest resonance k = 1, l = 0, i.e., η = 1
3

or 4B3 = B1.

Theorem 5.1. Under condition (5.2), the symmetry algebra of the secondary integrable Hamil-

tonian Ĥ10 (4.6) is noncommutative. The generators of this secondary resonance algebra are

A0
def
= S−,

A±

def
=

(
1 ± 1

3

)
S+ +

(
1 ∓ 1

3

)
S0 ∓

2
√

2

3
(Aρ + A∗

ρ), (5.3)

B
def
=

√
2√
3
Aσ +

2√
3
Aθ. (5.4)

The commutation relations between generators (5.3), (5.4) read

[A0, B] = 2~B, [A−, B] = 2~B, [A+, B] = 0,

[B∗, B] = 2~(A2
0 + 2A0A− + 3~A0 + ~A− + 2~

2). (5.5)

The Casimir elements of this algebra are

M = A+ − A− + A0, C = A+ + A− − A0, K = BB∗ − A0(A0 − ~)A−. (5.6)

In the realization (3.1), (3.2), the Casimir elements (5.6) read

M =
2

3B3

Ĥ10 −
1

3
(C + 3~), C =

√
2

ω0

Ĥ0 −
3~

2
, K = 0, (5.7)

Based on this theorem, the next step is the secondary averaging of the perturbation Ĥ20 from (4.7).
Finally, this procedure results in the unitary transformation of the original Hamiltonian (2.1) to the new
Hamiltonian of the form

Ĥ0 + εĤ10 + ε2Ĥ200 + O(ε3) (5.8)

with the secondary perturbing term Ĥ200 commuting with the leading parts:
[
Ĥ0, Ĥ200

]
= 0,

[
Ĥ10, Ĥ200

]
= 0.

The explicit formula for Ĥ200 is obtained by the same integral operation as in (4.4), but, instead of the
Casimir operator C in the exponent, one now must use the Casimir operator M . The resulting reduced
system (5.8) is completely integrable, but of course, only asymptotically, with accuracy O(ε3). The
accuracy can be made O(ε∞) by applying the averaging procedure (4.1)-(4.5) in all higher orders in ε.

Note that the effective averaged Hamiltonian Ĥ200 of the Penning trap is a quadratic function in the
generators of the symmetry algebra (5.5). This algebra is of non-Lie type (since the right-hand side of the
commutation relation between B∗ and B in (5.5) is nonlinear in the generators). Thus, the Hamiltonian

Ĥ200 represents a kind of “Euler top” over this nonlinear version of su(1, 1). General methods of analysis
of such a non-Lie type systems via quantum complex structures and coherent transformations were
developed in [16]–[20]; for applications to the case of Penning traps, see [21]–[23].
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