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Abstract—Reaction–diffusion type replicator systems are investigated for the case of a bimatrix. An
approach proposed earlier for formalizing and analyzing distributed replicator systems with one matrix
is applied to asymmetric conflicts. A game theory interpretation of the problem is described and the
relation between dynamic properties of systems and their game characteristics is determined. The sta-
bility of a spatially homogeneous solution for a distributed system is considered and a theorem on
maintaining stability is proved. The results are illustrated with two-dimensional examples in the case
of distribution.
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1. INTRODUCTION
Models of evolutionary game theory find wide application in many fields, among which two main cat-

egories are distinguished [1]: biological and economic. Replicator equations are widely used universal
tools for describing evolutionary processes; such equations are used in population genetics [2] and in the
theory of prebiological evolution [3, 4]. Most studies of the evolution of cooperation also rely on replicator
dynamics [5, 6]. One standard way of presenting replicator equations [7] is

 (1)

where v = (v1(t), …, vn(t))T is the vector that describes the state of a system (e.g., the probability distribu-
tion of the selection of strategies for a game in normal form). The interaction between a system’s elements
generates suitability (fitness) functions fi(v) of particular elements; here, expression f l(v) is an averaged
characteristic of this interaction. Many models use the matrix form for describing interaction: if A =

 is the payoff matrix, then fi(v) = .

The main assumption enabling us to use lumped replicator systems of form (1) is that there is no spatial
dependence in a system. However, the idea that all elements interact with one another with identical prob-
abilities is often not typical of actual biological systems. There are a number approaches that allow us to
consider spatial structure in replicator equations: the use of spatial lattices [8, 9], random graphs [10], and
reaction–diffusion systems [11, 12]. Modifications of system (1) with one matrix are considered in most
works devoted to studying distributed replicator systems.

In this work, a bimatrix case of replicator systems is considered; the approach proposed in [13] is used
for their analysis. We thus investigate the stability of distributed replicator systems under global regulation
for problems with two matrices, show the relation between game theory concepts and the concept of sta-
bility if space is taken into account, and demonstrate the existence of spatially nonhomogeneous solu-
tions.

2. COMMON REPLICATOR SYSTEMS: BIMATRIX GAMES
One possible biological formulation of the problem [14] considers a system with interaction between

two populations, each of which consists of n types. If we denote by xi, yj the absolute size of particular
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types, the states of the system are described by vectors x = (x1, …, xn)T, y = (y1, …, yn)T ∈ . In this case,
x(t) and y(t) are differentiable with respect to the real variable t > 0, which has the meaning of time. It is
assumed that the pairwise interaction of the i-th and j-th types associated with different populations
occurs randomly and is characterized by interaction matrices A =  and B =  with fixed ele-
ments.

The rate of growth in the size of a particular type is proportional to the evolutionary success of this type,
so the law of population reproduction is written as

 (2)

where (Ay)i and (Bx)j are elements of the corresponding vectors. We assume that the total size of each pop-
ulation is quite large and introduce frequencies (relative sizes) of the types

 (3)

Vector functions u(t) and v(t) then belong to simplexes of the form

Using (2) and differentiating (3), we obtain the bimatrix replicator system

 (4)

where (Av)i and (Bu)j represent the suitability (fitness) of a corresponding type. The average fitness is
determined as

System (4) is consistent with one of the basic principles of Darwinism: The reproductive success of an
individual (or a group) depends on the advantage of its own fitness over the average fitness in the popula-
tion. Let us write the basic characteristics of replicator systems of type (4); these characteristics must be
known when studying distributed systems.

• The stationary points of system (4) are determined by the equations

In the general case, the Jacobian matrix at a stationary point has the form [2] J = , where 0 is the

(n – 1)-by-(n – 1) zero submatrix, while C and D are submatrices formed by certain constant coefficients
• The characteristic polynomial of the system has the form p(λ) = det(λ2I – DC). If λ is an eigenvalue,

then –λ is also an eigenvalue. We take advantage of this below in analyzing the stability of the equilibrium
position (analysis shows specifically that in a two-dimensional case, the system cannot have a stationary
point of the focus or knot type).

2.1. Replicator Systems in Game Theory

The game theory interpretation of system (4) is based on a normal two-player game where the players
have different finite sets of strategies and different payoff matrices A and B (games of this type are referred
to as bimatrix). In this formulation of the problem, n is the number of pure strategies of players and u, v ∈
Sn are the mixed strategies of the players. The dominance of one type in a population corresponds to pure
strategies, while the possible simultaneous coexistence of several types accords with mixed strategies.
Below, we consider a system in form (4); in doing so, we consider that the Nash equilibrium in a bimatrix
game with payoff matrices A and B is a stationary point of system (4) (the reverse is generally not true) [7].
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3. DISTRIBUTED REPLICATOR SYSTEM
Let us consider a replicator system with diffusion:

 (5)

where  and  are positive diffusion coefficients. For this system, ui = ui(x, t) and vi = vi(x, t), where x
is a spatial variable, t > 0, and fA(t) and fB(t) are the fitnesses of each player.

Considering the biological and game theory premises of the model, it makes sense to examine the
restricted domain of the definition of the spatial variable: D ∈ ≫ ℝk with piecewise smooth boundary Γ,
x ∈ D (k = 1, 2, or 3). We assume that ui(x, t) and vi(x, t) are differentiable with respect to t for any x ∈ D

and (as functions of x with fixed time) belong to Sobolev space (D) when D ∈ ℝ1, or  when D ∈ ℝ2

(D ∈ ℝ3).
We set a condition analogous to that of the constancy of frequencies for lumped system (4):

Then fitnesses of the two populations have the forms fA =  and fB = . On boundary

Γ of set D, we set homogeneous Neumann condition  where n is an external nor-

mal to the boundary of the set. Cauchy conditions u(x, 0) = , v(x, 0) =  are set at instant t = 0.
We assume that Dt = D × [0; ∞) and Sn(Dt) is the set of nonnegative vector functions y(x, t) with the

norm of elements

We find the solution to the above initial-boundary value problem in class Sn(Dt) of functions that satisfy
the equalities

met for all functions η(x, t) (differentiable with respect to t) with a compact carrier on [0, +∞) that belong
to the corresponding Sobolev space in x.

As equilibrium positions of dynamic system (5), we consider solutions wA(x) and wB(x) of the system of
equations

 (6)

with boundary and balance conditions
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We denote as Sn(D) the set of nonnegative functions (x) and (x) that belong to the corresponding
Sobolev space when 1 ⩽ i ⩽ n and satisfy these conditions. Average fitnesses for the problem in question
are fixed, since

Stationary points of the initial system with no diffusion satisfy the steady-state equations of system (6);
we shall refer to these as spatially homogeneous solutions of system (5). In this case, the reverse is also
true: the spatially homogeneous solutions of system (6) are also the stationary points of initial system (4).
We introduce the following definition in order to analyze the stability of the stationary solutions to
system (5):

Definition 1. Stationary solution w*(x) = (wA*, wB*) ∈ Sn × Sn to system (6) is Lyapunov stable if for any
ε > 0 there exists a neighborhood

of pair (wA*(x), wB*(x)) such that the following inequalities hold under any initial conditions for system (5)
which belong to neighborhood Uδ) at any t ⩾ 0:

Here, ui(x, t) and vi(x, t) represent the corresponding solution to system (5) with boundary conditions

(x) and (x) (1 ⩽ i ⩽ n).
Let us consider the boundary eigenvalue problem

 (7)

If ψ0(x) = 1, then  is a complete system in Sobolev space  such that

 (8)

where δij is the Kronecker symbol. The corresponding eigenvalues satisfy condition [15] 0 = λ0 < λ1 ⩽ …
⩽ λi ⩽ … ⩽ .

Theorem 1. Assume that the pair (u*, v*) ∈ int(Sn × Sn) is the Lyapunov stable equilibrium position of sys-

tem (4); then for any positive values of diffusion coefficients  and  (1 ⩽ i ⩽ n) this position yields the stable
spatially homogeneous stationary solution to distributed system (5).

We find the solution to system (5) in the form

 (9)

where (u*, v*) is the equilibrium position of an initial system with no diffusion (4), while (t) and (t)
are smooth functions that tend to zero when t → ∞; in this case, ψi satisfy (7) and (8) for all i. Using the
Cauchy conditions and the constancy condition of frequencies, we obtain
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(i) We assume that k = 0, insert the solution to form (9) into system (5), and consider that equalities
(Av*)i – (u*, Av*) = 0 and (Av*, C0) = 0 hold in the equilibrium position (in view of (10)). We retain only
linear terms, use the analogous procedure for E0, and obtain system of equations

 (11)

where  = ( , …, )T and  = ( , …, )T. The Jacobian matrix of initial system with no diffusion
(4) taken at point (u*, v*) coincides with the matrix of this system:

The trivial equilibrium position of system (11) is therefore also stable.

(ii) We multiply the equations of system (5) by functions ψk(x), retaining only the linear terms upon
inserting (9), and obtain system (in view of expression (7))

where λk is an eigenvalue of problem (7). The Jacobian matrix of this system has the form

For its trace, we have tr(J) = –λk  < 0. Hence, equilibrium position (u*, v*) is stable.

3.1. Game Dynamics of Distributed Replicator Equations

Definition 2. Pair ( (x), (x)) ∈ Sn(D) × Sn(D) is the distributed Nash equilibrium if the following
conditions are met:

Note that if ( , ) is the distributed Nash equilibrium, it is also the Nash equilibrium in the classical
sense:

For any t, we have
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Theorem 2. If ( (x), (x)) ∈ int(Sn × Sn) is a Lyapunov stable solution to system (5), then ( (x)),

(x) is the distributed Nash equilibrium.
The proof is analogous to the one for symmetric replicator systems that was given in [13].

4. REPLICATOR SYSTEMS WITH 2-BY-2 MATRICES: 
THE PARENTAL CONTRIBUTION

Let us consider systems (4) with two strategies; these can be divided into two classes according to the
type of equilibrium position [2]: a center or a saddle. We shall discuss the problem known as the parental
contribution or the “battle of the sexes.” In its initial formulation [16], the problem considers the contri-
bution from individuals of the two sexes to rearing their common descendants with a set of two strategies
(“protect” or “leave”) and the following parameters: the probability of the descendants surviving with dif-
ferent pairs of strategies, the probability of producing descendants with another female (for males), and
the number of the female’s descendants [17]. The contribution to rearing common descendants is also
estimated in the alternative interpretation [18], but here other parameters and types of behavior are taken
into account [2, 17].

Two types of strategies are taken for each sex: A female can use “slow” and “fast” strategies (v1, v2); a
male can also use two types of strategies, “fickle” and “loyal” (u1, u2). We introduce constants that char-
acterize payoffs: g signifies a successful rearing of descendants (raising the fitness of both sexes), –c cor-
responds to one individual (a female) rearing descendants alone, –c/2 denotes individuals rearing descen-
dants equally, and –e represents the costs of prolonged courting.

Payoff matrices A (male) and B (female) are defined as

where 0 < e < g < c < 2(g – e). The equilibrium position of the system (the center) is

This simplified model of interaction between the sexes is therefore an example of a natural biological
oscillator.
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Fig. 1. Phase portrait of a battle-of-the-sexes system with no diffusion.
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The problem is solved via numerical integration using a Euler explicit scheme of the first order; deriv-
atives are approximated by central differences. For purposes of numerical simulation, we took the follow-
ing values of costs: g = 1.0, c = 1.1, and e = 0.1. Figure 1 shows the phase portrait of this system. When the
mechanism of diffusion is activated, spatial inhomogeneity is gradually eliminated. Figure 2 illustrates the
change in u1(t, x) for diffusion coefficients  =  = 0.02 and the spatially inhomogeneous initial distri-
bution.

5. REPLICATOR SYSTEMS WITH 2-BY-2 MATRICES: 
HAWKS AND DOVES

Let us consider one more classical example: Two individuals (or two species) compete for a territory or
a useful resource. Each player can choose the “hawk” strategy or the “dove” strategy. The names of these
strategies are conditional and specify only two types of behavior: launching a war of aggression or retreat-
ing. In the asymmetric form of the game, we assume that the losses of the players differ if they choose dif-
ferent strategies.

We assume that the first and second players are the “natives” and the “invader,” respectively. If both
players choose aggressive behavior, we assume that the losses are identical and equal to a; if both players
retreat, we assume that the losses are zero. With an attack by the invader, the losses are e ≤ c; with
aggressive behavior by the natives, they are –b ≤ d. Here, a ≤ c ≤ e and a ≤ d ≤ b. Matrices A and B have
the form

This class of problems (but with different interpretations) is often encountered. The prisoner’s dilemma
and the coordination game are analogous to it in game theory. In any version, if there exists an inner sta-
tionary point, it is a saddle.

The problem in question was also studied numerically for the following parameters: a = 1, b = 3, c =
4, d = 5, and e = 3. The phase portrait of the system is presented in Fig. 3. When all diffusion coefficients
equal 0.02, the spatially inhomogeneous initial conditions become spatially homogeneous with the pas-
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Fig. 2. Solution to a distributed replicator battle-of-the-sexes system, depending on time.
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sage of time (Fig. 4). Here, the stability of the attained equilibrium position is a result of the stabilizing
effect of diffusion (normally, this is an unstable equilibrium). The stabilizing effect is observed only for
sufficiently high diffusion coefficients.
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