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Abstract

Three different approaches for evaluation of the research impact by a scientist are considered. Two
of them are conventional ones, scoring the impact over (a) citation metrics and (b) merit metrics. The
third one relates to the level of results. It involves a taxonomy of the research field, that is, a hier-
archy representing its composition. The impact is evaluated according to the taxonomy ranks of the
subjects that have emerged or have been crucially transformed due to the results by the scientist under
consideration [20]. To aggregate criteria in approaches (a) and (b) we use an in-house automated criteria
weighting method oriented towards as tight a representation of the strata as possible [25]. To compare
the approaches empirically, we use publicly available data of about 30 scientists in the areas of data anal-
ysis and machine learning. As our taxonomy of the field, we invoke a corresponding part of the ACM
Computing Classification System 2012 and slightly modify it to better reflect results by the scientists in
our sample. The obtained ABC stratifications are rather far each other. This supports the view that all
the three approaches (citations, merits, taxonomic rank) should be considered as different aspects, and,
therefore, a good method for scoring research impact should involve all the three.

1 Introduction: The problem and background

The issue of measuring research impact is attracting intense attention of scientists because metrics of re-
search impact are being widely used by various managing bodies and by public at large as easy-to-get
shortcuts for judging of comparative strengths among scientists, research centers, and universities. The ci-
tation index and such its derivatives as Hirsch index are produced by a number of organizations including
the inventors, currently named Thomson Reuters [32], and Google. These indexes are used sometimes in
evaluation and management in sciences, which can be subject to debate because of over-simplifications im-
manent to bibliometrics [3]. There have been a number of proposals to amend the indexes, say, by using
less extensive characteristics, such as centrality indexes in the intercitation graphs [6] or by following only
citations in “lead scientists” work [5]. Other proposals deny the usefulness of bibliometrics altogether; some
propose such drastic measures as the “careful socialization and selection of scholars, supplemented by peri-
odic self-evaluations and awards” [27], that is, moving back to the closed orders of monk-scientists. Other,

more practical systems, such as the UK Research Assessment Exercise (RAE, recently rebranded as REF)
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intends to assess most significant contributions only, and in a much informal way, which seems a better
option. Yet there have been criticisms of the RAE-like systems as well: on the one hand, in the absence
of a citation index, the peer reviews do not manifest any consistency in evaluations [12], and, on the other
hand, in the long run, the system has cut off everything which is out of the mainstream [19]. Therefore,
a recent initiative by a group of influential scientists DORA [30], while rejecting the bibliometrics as the
only assessment source, proposes to switch from counting publications only, to checking for the whole list
of scientific production including data sets, patents, and codes among others. The U.S. National Science
Foundation already modified its instructions so that the outputs of scientific research include products rather
than just publications [30]. This goes in line with what Alfred Nobel, the founder of the most prestigious
science prize, has expressed in his will: the prize goes to those who “have conferred the greatest benefit
on mankind” which is further detailed, say for physics, as “ have made the most important discovery or
invention within the field of physics” [24].

We adhere to this opinion. This paper is an attempt at exploring aspects of the concept of larger than
papers researcher’s productivity. Looking from a practical side, one can recognize that currently there are at

least four types of products of scientific research:
1. producing novel scientific results to be described in papers and monographs;

2. participating in the organization of sciences such as being a journal editor or running a research

conference;

3. transferring knowledge to and training of younger generations such as undergraduate and postgraduate

students;
4. developing technology innovations including patents and other industry related products.

They all should be counted as parts of the impact by a scientist.

Therefore we are going to explore how these can be reasonably measured and aggregated to derive a
reasonable measure of research impact. We recognize the difficulties in measuring the last item, of technical
innovations, for the currently living scientists because not so many of them ever get patents. To justfully
abandon this item we restrict ourselves with university based researchers only, since academics normally
are not required to get a practical use of their research results.

Another issue is in finding a direct measure to score the research results, item 1, which is so remarkably
avoided by using bibliometrics instead. Here we are going to employ a recently proposed idea of using a
hierarchical taxonomy of a research field for mapping research results in the field to those subjects that have
been created or drastically revised in the light of these results. The ranks of the receiving nodes define the
rank of the research results [20].

Another innovation reported in this paper is in the way of combining multiple criteria. A number of
popular approaches to multicriteria rank aggregation rely on weighted combinations of criteria in such a
way that the weights are defined either manually or in a supervised manner. For example, the former applies
to computing university league tables, and the latter is characteristic for defining ABC-classifications of
inventory items. Automatically deriving the weights have been pursued as well, mostly in the format of

the eigenvector corresponding to the maximum eigenvalue for a similarity-between-criteria matrix such, as



RankClus [31] and PCA [21]. This approach is much relevant when the criteria are well correlated so that a
better entity over one criterion would be better over most other criteria. If, however, criteria are essentially
conflicting at different entities, the first eigenvector would take into account too little of the data scatter and,
therefore, may be somewhat inappropriate. We develop an approach which is adequate at both correlated
and conflicting criteria. According to our approach, the issue is to be solved by finding such a direction
in the criteria space that all the entities are projected into compact well-separated clusters on it so that the
orthogonal hyperplanes may be considered as boundaries between different multicriterial strata of entities.
This approach was introduced and substantiated recently in [26, 25].

One more innovation described here is a case of practical implementation of our approaches. To be spe-
cific, we focus on the field of Computer Science related to data analysis, machine learning, cluster analysis
and data mining. As a relevant taxonomy of the domain we take relevant parts of the ACM Computing Clas-
sification System 2012 [2]. We pick up a sample of 30 leading scientists in the field such that the information
of their research results is publicly available. We consider three sets of criteria for research contributions:
(a) one comprises three Google citation criteria, (b) the second, criteria for items of merit, 2 and 3 from the
list above, and (c) the third utilizes adjusted ranks of research results within the taxonomy.

Our preliminary hypothesis is that the aggregate scales of both (a) citation and (b) merit relate to pop-
ularity of scientists rather than anything else. Therefore, the combined scales for (a) and (b) should have a
rather high correlation between them. On the other hand, the level of results has no straightforward relation
to popularity - the latter much depends on the scientist’s character and communication skills, while the for-
mer, on talent and luck. So any reasonable scale of the level of results should have rather low correlation
with both citation index and merit index. Our computations do show that this is largely true at our data,
although the level of correlation between (a) and (b) is not that high. To an extent, this observation sup-
ports the views expressed in DORA declaration [30]. Also, we may conclude that our method of mapping
research results to a taxonomy of the field (MMRRTF) could be considered a good way forward. It does
involve a great deal of manual component, of course. However, it is based on an agreed upon taxonomy
of the domain and explicitly mapping the results to taxonomy nodes. Therefore, its results are explicitly
expressed and admit public discussions of them, which leads to much less inconsistency in the assessments
than just mere subjective evaluations by panel members.

The remainder is organized as follows. The next section provides an algorithmic background for the
Linstrat method for aggregating criteria in the format of a weighted sum of them [25, 26]. Our method for
mapping research results to a taxonomy of the fields is presented there too. The section 3 describes how
our sample of scientists has been formed and how scientists’ ranks have been defined by adapting an extract
from the taxonomy in ACM-CCS [2]. Section 4 presents data related to features of (a) citation and (b) merit
for our sample. Our results in determining stratifications and criteria weights are presented here as well.

Section 5 concludes with a summary and future work directions.



2 Methodology

2.1 The problem of stratification

There is general understanding that in the ranking problem one usually looks for an ordered partition in
which entities in the same class are considered to be equivalent over a pre-specified set of criteria, rather
than for just a linear ordering of the entities. Reasons for this may include a degree of indifference of the
decision-makers (as reflected, say, in the concept of ABC ranking in inventories) or a degree of imprecision
in the measurement of criteria or both. We refer to a partition, classes of which are linearly ordered by a
relation of precedence, as a stratification. Such areas as sociology and mineralogy use this term exactly in
this sense to express social inequality in the former and depth/time precedence in the latter.

Consider an example. Table 1 contains normalized food and housing prices for a foreigner in 10 cities
of the world [8].

Table 1: Prices of housing and food for a foreigner in ten cities normalized so that the minimum is zero and
maximum, the hundred.

City Housing Food
Moscow 96.7284 | 56.0364
London 93.2099 | 62.4146
Tokyo 100.0000 | 44.4191
Copenhagen 42.7160 | 100.0000
New-York 96.7284 | 38.9522
Peking 59.9383 12.0729
Sydney 34.4444 19.5900
Vancouver 12.9630 10.2506
Johannesburg 0 5.2392
Buenos-Aires | 14.1975 0

The left part of Fig. 1 presents a three cluster partition found using k-means clustering method with
cities Copenhagen, New-York and Peking taken as the initial centers. The right part of Fig. 1 presents a
three strata stratification corresponding to the direction of a combined criterion F = 0.4789 x HousingP +
0.5211 * FoodP. This combined criterion can be interpreted as a measure of “cost of living” that takes into

account the difference in the relative importance of the criteria.
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Figure 1: Ten cities over two normalized criteria: Housing price and Food price. They are partitioned in
three clusters (on the left) and in three strata (on the right).

As expected, clusters consist of similar cities (see Fig. 1 on the left). Those labeled by a square have
relatively low prices for both foods and housing. Cluster labeled by a circle is a singleton consisting of just
Copenhagen, with a highest food price and moderate housing prices. The cluster of triangles on the right, in
contrast, is of highest housing prices and moderate food prices. The strata, on the right side, are organized
over a different principle. The first stratum, for example, is not a cluster but rather a Pareto boundary at
highest prices. Each of the remaining cities is dominated, over both criteria, by a city from the first stratum.
It is formed not according to similarity but rather according to the combined weighted criterion as a set of a
higher cost of living. The second stratum is a set of a moderate living cost, and the third, of the lowest living
cost in the set.

One can classify methods for multicriteria stratification according to the extent of the assumed elasticity
of the criteria to each other or the value trade-off [17]. A constant elasticity e of criterion f] towards criterion
> would mean that a change of criterion f, by a unity is equivalent to the opposite change of f; in e units,
independently of values of these and other criteria. That is, criteria f; and f, can be combined into weighted
sum f] 4+ ef> in this case. The case of a constant elasticity between all the criteria fj(x), f2(x), ..., fm(x)
assumes that they can be equivalently substituted by an aggregate criterion f(x) which is expressed as their
weighted sum f(x) = wy fi(x) +wafa(x) + ... + Wi fm(x), where wi,wy,...,w,, are non-negative constant
weight coefficients summing to 1.

An opposite case is when all the criteria are mutually incomparable and there is no way that a change in
one criterion can be equivalently represented by a change in another criterion. That is, each criterion must be
taken into consideration whatever the other criteria’ values are. The absence of interrelation among criteria
leads to the multivariate relation “better than”, that is ”’better over every single criterion”, and the concept of
Pareto boundary as the only solution that needs no interrelation between criteria at all. Yet there is a kind of
equivalence between these two extremes: under rather mild mathematical conditions on the criteria and the
sets at which they are defined, every x maximizing the combined criterion f(x) = Y./" , w; f;(x) does belong
to the Pareto boundary. And vice versa, any point x belonging to the Pareto boundary can be found as a

maximizer of the combined criterion f(x) = Y, w, f; (x) for some x-specific set of weights w (see Fig. 2).
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Figure 2: An illustration of the equivalence between two approaches; one of weighted combined criteria and
the other, of Pareto boundary solutions.

For a detailed review of various interpretations of criteria weight coefficients one may refer to [10].
Much work on multicriterion ranking has been done along the lines of using an external information, say
from a Decision Maker, to try to reveal as much information on comparability of criteria at various prefer-
ence profiles (see, for example, Electre method [14] or PROMETHEE method [7]). Papers [23, 29] develop
methods for dividing resources in ABC groups according to their importance for the company by using a
criteria weighting system. The groupings are determined by using a combined weighted criterion in which
weights are found by solving a linear programming problem. These weights are not constant but depend on
the variants being compared.

As we concentrate on the case of a weighted combined criterion with constant weights, we should
mention the following. In the real world, there are some applications in which weighted combined criteria
are used in such a way that the weights are chosen manually by experts; such are methods applied in
composition of university league ranking tables (see, for instance, [11]). In some works, weights are learned

in a supervised or semi-supervised manner [18].

2.2 Linstrat criterion and method

We think of our Linstrat method as that inspired by the idea that Pareto boundaries, formed by consecutive
“shaving” off the current Pareto boundary from the dataset, can be approximated as strata between parallel
hyperplanes whose normal vector, that is, the vector of criteria weights, is taken such that the projections of
entities under consideration within each stratum are as close to each other as possible. This idea leads to an
optimization problem described below.

Consider a set of N items evaluated over M criteria so that the evaluation scores can be represented as a
matrix (x;;), where i € 1,...,N are the items or actions, j € 1,...,M criteria, and x;; is the value of jth criterion
at the ith item. Assume some criteria weights w = (wy,wa, ..., wy) such that w; > O atevery jand Zj w;=1.
These weights are taken into account in the combined criterion f = ZI}’IZI w;x; where x; is j-th column of
matrix X = (x;;). The problem is to divide the itemset in K disjoint subsets S = {S1,..Sk,...,Sk },k=1,...,.K
referred to as strata, according to values of the combined criterion f. Each stratum is characterized by a
value of the combined criterion cy, referred to as the stratum value, or center. These values are ordered

so that ¢, > ¢; whenever k < [. That means that any item from k-th stratum is ranked higher, or is more



preferable, than any item from stratum / if & < /.

Geometrically, strata are formed by layers between parallel planes in the space of criteria. At any stratum
Sk, we assume that the value of the combined criterion f; = Z/}’Izl w;x;j atany i € S; approximates the stratum
value ¢, as much as possible. That is, in the equation x;jwy +xpwy + ... + Xjywy = ¢ + €, €; is an error
to be minimized over unknown weights w. The problem of finding an optimal w can be formulated as the

following optimization problem with respect to weights w, centers {c} and partitions S:

K M
min Z Z(le‘jo—Ck)z
wie,S k=1icS, j=1

M (1
such that wi=1

j=1
w;>0,jel.M.

At any given weight vector v, the criterion in (1) is but the conventional square-error clustering criterion
of K-means clustering algorithm over a single feature, the combined criterion f = 21}/1:1 w;x;. This implies
that finding the optimal stratification S, at a pre-specified K, amounts to finding K — 1 points dividing the
f-axis in K intervals to minimize the within-cluster variance, and the optimal centers c; are just within-
cluster means of f. An optimal stratification over a single feature can be found by using Fisher’s dynamic
programming clustering algorithm [15]. Therefore, the difficulty in minimization of (1) is concentrated in
the task of finding an appropriate w at a given stratification S. If an algorithm for this is specified, then one
can proceed in the manner of an alternating minimization algorithm: starting from some weight vector w(0),
find optimal S and c. Based on these, find an appropriate weight vector w(1), etc.

At first, we used an evolutionary algorithm for minimizing (1) with respect to w at a given S and c.
However, such an algorithm as a whole leads to unstable solutions at some datasets and, moreover, the
solutions at times are inferior to those found by using other approaches [22]. A modification based on a
direct algorithm for solving the quadratic programming problem is proposed in [25]. It starts from a random
w, but leads to a stable solution in most cases. Moreover, in our experiments with synthetic datasets it
typically outperforms its competitors by a high margin [25, 26]. Therefore we use this version of Linstrat

through the entire material reported in this paper.

2.3 Taxonomic rank of a scientist

The concept of taxonomic rank is not uncommon in the sciences. Moreover, it is quite popular in biology:
”A Taxonomic Rank is the level that an organism is placed within the hierarchical level arrangement of
life forms.”, according to a dictionary (see http://carm.org/dictionary-taxonomic-rank). Say, Eucaryota is a
domain (rank 1) containing Animals kingdom (rank 2). The latter contains Cordata phylum (rank 3) which
contains Mammals class (rank 4) which contains Primates order (rank 5) which contains Hominidae family
(rank 6) which contains Homo genus (rank 7) which contains, at last, Homo sapiens species (rank 8).
According to the proposal in [20], the taxonomic rank of a scientist should be defined in a similar way.
The relevant science domain should be structured by a hierarchical taxonomy such as that on Fig. 3. The
rank of scientist is defined then as the rank of a subdomain which has appeared because of the scientist’s

work or has been substantially transformed because of that. For example, if a domain has been structured as



shown on Fig. 3 and a scientist’s work has highly affected the subdomain labelled as A.1.2 (see the triangle
indicating that), then their rank would be 3, the number of characters, other than dot, in the code of the

subdomain. Of course, this goes in the opposite direction: the higher the rank, the lower the level.

Domain
T
Rank 1 A B
N
Rank 2 A.l il B.1
Rank 3 A.l.1 A.1.2 A.2.1
\ DN
A.l1.1.1 A.l1.1.2 A.1.1.3 A.l1.2.1 A.1.2.2

Figure 3: An illustrative taxonomy of a domain. The triangle shows that subdomain A.1.2 has been seriously
affected by the results in example.

In a practical implementation, when scoring the level of results for a currently living scientist, it is
much easier to map their individual papers to the taxonomy rather than the overall achievements. Indeed,
the overall achievement is not easy to formulate, whereas an individual paper usually represents a single
individual achievement which is not difficult to map to the taxonomy, even if onto two or more subdomains.
Together with the plurality of one’s results, this leads to the issue of multiple subdomains developed or
transformed by a scientist. If the work of a scientist has affected a number of subdomains in a taxonomy,
what rank should be assigned to them?

It seems natural that the contribution of an achievement at a lower layer to that of the highest layer
achievement is less by an order of magnitude at scoring the taxonomic rank of a scientist. Therefore, of
all the levels of the taxonomic hierarchy affected by them first and foremost the highest level is to be used.
In the case that only one subdomain is considered as highly affected by the scientist, then their rank is
defined as the taxonomy layer to which the subdomains belongs. Such is the case illustrated on Fig. 3 if
the subdomain in question is A.1.2, then the scientist’s rank is 3. In the case when two or more subdomains
on the highest level are affected by a scientist, the rank should be further decreased within the unit interval
separating the current rank from the higher one. The scale of the drop should depend on the range of numbers
of possibly affected subdomains. In our empirical investigation, we considered, for each of the scientists

in our sample, at most five papers leading to ground-breaking discoveries or methods within the taxonomy.



Thus, we thought that each additional subdomain of the highest level affected should make a drop in the
rank equal to 0.1. Then, an additional drop caused by a node of a lower layer should be about 0.01. For
example, if a scientist’s results highly affected 4 subdomains of rank 4 and 3 subdomains of rank 3, then
the taxonomy rank of the scientist will be 2.76. Indeed, 4 subdomains of rank 4 contribute -0.01 each; one
affected subdomain of rank 3 leads to the rank value 3, and each of the two remaining rank 3 subdomains
decreases that by 0.1 so that the final rank is 3 —2%0.1 —4%0.01 = 2.76. To make it simpler, we can assume
that additionally 0.1 is subtracted from each of the ranks found — this will not affect the results of the data
normalization to 0-100 scale, but the formula for computing the rank gets very simple. To formulate it, let
us denote R the set of nodes assigned to a scientist. Let it be partitioned in subsets Ry, i € H, of the same
rank where H = (hi,hy,...,h,) and hy < hy < ... < hj,. Then the taxonomic rank of the scientist is defined

as

P
r=h;— Z(O.l)k*hk.
k=1

This method for assigning a scientist their taxonomic rank suffers of issues of which the following
three seem of importance. First, the method is not automated. The mapping of a research paper to the
taxonomy is done manually, so that the result is highly affected by the person(s) performing the mapping;
it depends on both the knowledge of the domain and its history as well as on the extent of understanding
of the result. Still, any mapping decision is an explicitly stated judgement which can be discussed openly
and corrected if needed. What important is that the subjective part in the decision is quite minor. This much
differs from the currently available method of peer-reviewing. Indeed, peer-based results can be highly
subjective and dependent on various external features such as citation scores [12, 13, 33]. Second, there can
be no regular service for updating the taxonomy of the domain. In this case, a ground-breaking paper can
be assigned to a wrong sub-domain just because the proper one is not present yet in the taxonomy under
consideration. In our assignments reported in the next section this did happen more than once. In such
cases, because of the presence of the senior co-author whose career spans for the past 50 years, we did not
hesitate to expand the taxonomy with updated subdomains. Which means that this drawback can be dealt
with, at least partly. Third, and foremost, unlike in biology, the taxonomies of specific research domains,
especially those being under development, are subject to debate. Some popular concepts may go in a few
years, some new concepts may emerge, some new links can be discovered, whereas some old links become
obsolete. This is especially true for such a dynamic area as computer-related computations and services
in which the theoretical thinking is highly affected by the industrial progress in hardware. Say, initially
computers were oriented at computations, then at data processing, and nowadays, it seems they are oriented
at networking. Change in the overall perspective necessarily leads to a drastic change in the taxonomy of
the domain. For example, if one compares the current ACM Computing Classification System 2012 [2] with
its previous version, the ACM Classification of Computing Subjects 1998, one cannot help but notice great
differences in both the subdomain list and the structure of their mutual arrangement. Yes indeed, the current
taxonomies of domains can be not well structured and, thus, unstable. However, the appreciation of the
level of results goes in line with the taxonomic structure of the domain. The more important is a subdomain,
the more important are ground-breaking results of it. Indeed, unlike the level of citations, the recognition

of the relative importance of this or that subdomain is subject to change. This just shows that the domain



taxonomy cannot be considered stable while the domain is being developed, so is the level of results.

3 Developing an empirical testing base for the taxonomic rank evaluation
To put a testing to our methods, we need, first of all, to take a sample of scientists working in the same
domain and score their contributions. The following steps should suffice:

1. Specify a knowledge domain

2. Take its appropriate taxonomy

3. Collect a representative sample of scientists with results in the domain

4. For each of the scientists in the sample, map their ground-breaking results to the taxonomy

5. Compute the taxonomic rank of each of the scientists in the sample

Further on we describe our work on implementation of these steps.

3.1 A taxonomy of the data analysis subjects

For an empirical evaluation, we decided to focus on the domain of intelligent data analysis including what
is referred to as machine learning and data mining areas. We know some of its history and the current state.
We feel that our expertise in other domains is even more embryonic. As to the taxonomy of the domain, we
tried first to consider taxonomy from textbook [21], then from textbook [16] — both appear to be difficult to
use for mapping individual research results into because both cover rather basic subjects only, and it remains
entirely unclear at which places in them real-world research results should be mapped to. In this aspect, the
ACM CCM 2012 taxonomy has provided us with much better guidance. Parts of ACM CCS 2012 related
to the domain under consideration can be considered as composed of the branches in the ACM CCM 2012
presented in Table 3.

Table 2: ACM CCS 2012 high rank items covering data analysis, machine learning and data mining.

Subject index | Subject name

1. Theory of computation

1.1. Theory and algorithms for application domains
2. Mathematics of computing

2.1. Probability and statistics

3. Information systems

3.1. Data management systems

3.2. Information systems applications
3.3. World Wide Web

34. Information retrieval

4. Human-centered computing

4.1. Visualization

5. Computing methodologies

5.1 Artificial intelligence

5.2. Machine learning




This part extended by the less general concepts from ACM CCS 2012 is presented in Table 3. For the
sake of saving room, parts of the hierarchy not affected by the mapping of research results are minimized.
On the other hand, the part under consideration is updated by adding items concerning the outsanding results
by scientists from our sample that have been not covered in the taxonomy. These concern, as a rule, only
leaves of the tree, as can be seen in Table 3. This table represents that part of the taxonomy which has
been used for mapping there outstanding results by scientists from our sample. The subdomains (taxonomy
nodes) affected by these results are marked by one or two stars. A one star node refers to a subdomain being
part of ACM-CCS 2012; a two star node refers to a subdomain added by the authors.

Table 3: ACM CCS 2012 based taxonomy of data analysis, machine learning and data mining. Taxons that
have been seriously affected by a scientist from our sample are marked with a star. Taxons added to better
reflect ground breaking results from the sample are marked with two stars.

Subject index Subject name
1. Theory of computation
1.1. Theory and algorithms for application domains
1.1.1. Machine learning theory
1.1.1.1. Sample complexity and generalization bounds
1.1.1.2. Boolean function learning
1.1.1.3.%* Unsupervised learning and clustering
1.1.1.4. Kernel methods
1.1.1.4.1. Support vector machines
1.1.1.4.2. Gaussian processes
1.1.1.4.3.%* Modelling
1.1.1.5. Boosting
1.1.1.6.* Bayesian analysis
1.1.1.7.- 1.1.2.12.
2. Mathematics of computing
2.1. Probability and statistics
2.1.1. Probabilistic representations
2.1.1.1. Bayesian networks
2.1.1.2.% Markov networks
2.1.1.3.-2.1.1.8.
2.1.1.8.1. Kernel density estimators
2.1.1.8.2. Spline models
2.1.1.8.3.* Bayesian nonparametric models
2.1.2. Probabilistic inference problems
2.1.2.1. -2.1.3.6.
2.1.3.7. Kalman filters and hidden Markov models
2.1.3.7.1%% Factorial HMM
2.1.3.8.-2.1.5.3.
2.1.53.1.* Robust regression
2.1.5.4.-2.1.5.10.
2.1.6.-2.1.9.
3. Information systems
3.1. Data management systems
3.1.1. Database design and models




3.1.1.1. - 3.1.15.
3.1.1.5.2.*

3.1.1.53.-3.1.15.7.

3.1.2.
3.1.2.1.
3.1.2.1.1.*

3.1.2.1.2.-3.1.2.1.5.

3.1.2.2.-3.1.5.9.
3.2.

3.2.1.
3.2.1.1.
3.2.1.2.
3.2.1.2.1%%*
3.2.1.2.2%*
3.2.1.3.*
3.2.1.3.1%*
3.2.1.3.2%%*
3.2.1.3.3%*
3.2.14.
3.2.1.4.1%*
3.2.1.4.2%%*
3.2.1.4.3%*
3.2.1.4.4%*
3.2.1.4.5%%*
3.2.1.4.6%*
3.2.1.4.7%*
3.2.1.5.
3.2.1.6.*%
3.2.1.7%%
3.2.1.7.1%*
3.2.1.7.2%%*
3.2.1.7.3%*
3.2.1.7.4%%*
3.2.1.7.5%%*
3.2.1.8.%*
3.2.1.11%*
3.2.1.11.1%*
3.2.1.11.2%*
3.2.1.10.%%*
3.2.1.9%%*
3.2.1.9.1.%*
3.2.1.9.2.%%*
3.2.1.9.3%%*
3.2.1.12%*
3.3.

3.3.1.
33.1.1. -3.3.15.
3.3.1.6%*

Data streams

Data structures
Data access methods
Multidimensional range search

Information systems applications
Data mining

Data cleaning

Collaborative filtering
Item-based
Scalable

Association rules
Types of association rules
Interestingness
Parallel computation

Clustering
Massive data clustering
Consensus clustering
Fuzzy clustering
Additive clustering
Feature weight clustering
Conceptual clustering
Biclustering

Nearest-neighbor search

Data stream mining

Graph mining
Graph partitioning
Frequent graph mining
Graph based conceptual clustering
Anomaly detection
Critical nodes detection

Process mining

Text mining
Text categorization
Key-phrase indexing

Data mining tools

Sequence mining
Rule and pattern discovery
Trajectory clustering
Market graph

Formal concept analysis

World Wide Web
Web mining

Knowledge discovery



3.4. Information retrieval

34.1. Document representation
34.1.1.-34.15.

34.1.6.% Ontologies

3.4.1.7. Dictionaries

34.18. Thesauri

342.-343.

34.4. Retrieval models and ranking
344.1.* Rank aggregation
3442.-3444.

3445.%* Learning to rank
34.4.6.-34.73.

4. Human-centered computing

4.1. Visualization

4.1.2. Visualization techniques

4.1.2.1. -4.1.2.6.

4.1.2.7%%* Elastic maps

4.1.3. Visualization application domains
4.1.3.1.-4.1.3.4.

4.14.-4.1.7.

5. Computing methodologies

5.1. Artificial intelligence

5.1.1. Natural language processing
5.1.1.2. -5.1.1.7.

5.1.1.7.1%* Wikipedia based semantics
5.1.1.8. Phonology / morphology
5.1.1.9. Language resources

5.1.2. Knowledge representation and reasoning
5.1.2.1.-5.1.2.3.

5.1.2.4.% Probabilistic reasoning
5.1.2.5.-5.1.2.12.

5.1.3. Computer vision

5.1.3.1. Computer vision problems
5.1.3.1.1. Interest point and salient region detections
5.1.3.1.2. Image segmentation
5.1.3.1.3. - 5.1.3.1.10.

5.1.3.2. Computer vision representations
5.1.3.2.1. Image representations
5.1.32.1.1% 2D PCA

5.1.3.2.2. Shape representations
5.1.3.2.3. Appearance and texture representations
5.1.3.2.4. Hierarchical representations
5.2. Machine learning

5.2.1. Learning paradigms

5.2.1.1. Supervised learning

52.1.1.1.* Ranking

5.2.1.1.2. Learning to rank

5.2.1.1.3.% Supervised learning by classification



52.1.14.-5.2.1.1.6.
5.2.1.2.
52.1.2.1.%
5.2.1.2.2.*
52.1.23.%
5.2.1.2.4.
5.2.1.2.5.
5.2.1.2.6.
52.1.2.7.%
5.2.1.2.7.1%%*
5.2.1.2.7.2%%*
52.13.-5.2.2.6.
52.2.7%*
5.2.2.7.1.%%
5.2.3.
5.23.1.
5.2.3.1.1%%*
5.2.3.1.2%%*
5.2.3.1.3%*
523.2.
5.2.3.2.1.%*
5.2.3.2.1.1%*
52322
5.2.3.2.3%%*
5.2.3.2.4%%*
5.2.3.2.5%%*
5.2.33.
5.2.3.3.1%%*
5.2.3.3.2%%*
5.2.3.3.2.1%%*
5.2.3.3.3%%*
5.2.3.3.3.1%*
5.2.3.3.3.2%%*
5.2.3.3.4%%
5.2.3.3.5%*
5.2.34.
5.2.3.4.1.
52342
5.2.35.%*
5235.1.%
5.2.3.5.2.
5.23.53.
5.2.354.*
5.2.3.5.5.
5235.6.%
5.2.3.5.7.%%
5.2.3.6.
5.2.3.6.1.

Supervised learning by regression
Unsupervised learning

Cluster analysis

Anomaly detection

Mixture modeling

Topic modeling

Source separation

Motif discovery

Dimensionality reduction and manifold learning

Graph embedding
Supervised dimesionality reduction

Semi-supervised learning settings
Kernel approach
Machine learning approaches
Classification and regression trees
Parallel implementation
Splittting criteria
Model trees
Kernel methods
Kernel support vector machines
Dynamic kernel SVM
Gaussian processes
Kernel matrix
Kernel independent components
Kernel-based clustering
Neural networks
Self-organized map
Training approaches
Evolutionary approach
Representation
Rule-based netwok archirtecture
Fuzzy representation
Evolving NN
Ensembling
Logical and relational learning
Inductive logic learning
Statistical relational learning
Learning in probabilistic graphical models
Maximum likelihood modeling
Maximum entropy modeling
Maximum a posteriori modeling
Mixture models
Latent variable models
Bayesian network models
Markov network models
Learning linear models
Perceptron algorithm



5.2.3.6.2%% Linear discriminant analysis
5.2.3.6.2.1%%* Tensor representation
523.7% Factorization methods

5.23.7.1.* Non-negative matrix factorization
5.2.3.7.2. Factor analysis

5.2.3.7.3. Principal component analysis
5.2.3.77.3.1%* 2D PCA

5.2.3.7.3.2%* Sparse PCA

5.2.3.7.4. Canonical correlation analysis
5.2.3.7.5.* Latent Dirichlet allocation
5.2.3.7.6.%% Independent component analysis
5.2.3.7.7%* Nonlinear principal components
5.2.3.7.8%%* Multidimentional scaling
5.2.3.7.8.1%% Least moduli

5.2.3.8. Rule learning

5.2.3.8.1.%% Neuro-fuzzy approach
52.39.-5.23.13.

5.2.3.13.1.% Deep belief networks

5.2.3.14%%* Multiresolution

5.2.3.15%* Support vector machines

5.2.4. Machine learning algorithms

5.24.1. Dynamic programming for Markov decision processes
524.1.1.-5.2.4.22.

5.2.4.2.3.%% Fusion of classifiers

5.2.4.3. Spectral methods

5.2.4.3.1%%* Spectral clustering

5244. Feature selection

5.2.4.5. Regularization

5.2.4.5.1%* Generalized eigenvalue

5.2.5. Cross-validation

3.2 Sample of scientists and their taxonomic ranks

In our sampling, we rely on Google citation indexes and try to pick up those with maximum citations.
Ideally, we wanted to take about 15-20 scientists from the USA and a couple of scientists from a country
such as Australia, Canada, China, France, Germany, Netherlands, Russia, United Kingdom, etc., so that the
relative contributions by countries would be reflected in the sample. This also would warrant a variation
in citation levels: from many dozen thousands at some of the USA scientists to a very few thousands at
those in Europe. This ideal composition, though, was difficult to achieve because for any scientist from the
sample we needed data not only on citation and taxonomic rank, but on merit as well. The merit data was
not always available, so that we went as far as to contact over e-mail those of sampled scientists for whom
the merit data was not easily available, asking them to fill in the slots of the numbers of successful PhDs
supervised, journal editing positions, and chairing at conferences. Unfortunately, not all of the addressees
replied to our messages, so that we had to remove from the sample those whose merit data were missing. In

our final sample there are 30 active scientists in the domain.



Now comes a most controversial part of this project — establishing which areas of the domain have been
developed or transformed by this or that scientist from the sample. One of the aspects under fire is crediting
somebody for this or that result. Indeed, in the current era of globalization any idea of merit can be traced
back to, usually, multiple origins. We accept an easy touch position so that a person is credited with an
innovation if this is what they claim themselves, and an important part of the community does support the
claim. Another issue is a correct interpretation of the set of main contributions by a person. How can
one select the most important items from a few hundred publications? In no way can we claim that our
selections have been correct in all the cases; we only hope that did not do much harm because we selected
a number of publications, usually from 4 to 6, (co-)authored by each scientist from our sample. Another,
even more controversial issue is of choosing subdomains in the taxonomy drastically affected by this or that
publication. This is accompanied with a bunch of more-or-less arbitrary decisions starting from deciding
was this or that effect drastic indeed and finishing by a decision to add this or that node to the taxonomy.
Luckily, the AMS-CCS 2012 is flexible enough to admit different interpretations of the same term. For
example, “Clustering” appears in it as part of 1.1 Theory and algorithms for application domains, as well
as part of 3.2. Information systems applications, as well as part of 5.2. Machine learning. This allows to
properly choose a location within the taxonomy for both algorithms, systems and applications.

All in all, our main argument for the usefulness of our approach is a clear visibility of the entire argument
from a piece of work (paper) to formulation of a result to mapping that to a specific (set of) node(s). This
gives an opportunity to operationally discuss and correct, if needed, any part of the picture. The only issue
preventing us from presenting all the detail of the dataset and its mapping to the taxonomy is that the project
involves scientists’ names. We think that there is a kind of an implicit universal non-disclosure agreement
making it inconvenient to collect a dataset about peer scientists for publicly ranking them without their
consent or even their knowledge of that. The only exception from this “agreement” that can be admitted
here are the names of Dr. Panos Pardalos and Dr. Boris Mirkin. There are two reasons for that. First, each
of the two did want to be included into the sample. Second, this disclosure makes an evidence that our data
relate to real, not imaginary, scientists. Therefore, we report here that P. Pardalos is labeled S19 and Boris
Mirkin S5, in our sample.

The results of mapping of scientists from our sample to the taxonomy are presented in Table 4. The table
also presents the derived taxonomic ranks and the same ranks, 0-100 normalized. The normalization went
according to the accepted rule except that the minimum rank, 3.50, gets a 100 mark, and the maximum one,
4.89, gets a 0. By looking at the values of the taxonomic rank, it seems quite obvious that the number of
strata should be set to 3, as most values concentrate around 0, 30 and 70 or more. This specifies the number

of strata to look for over all the criteria under consideration.



Table 4: Mapping main research results to the taxonomy; layers of the nodes affected; Tr - taxonomic ranks
derived from them; Trn - taxonomic ranks normalized to the range O to 100; and three strata obtained by
k-means partitioning of the ranks.

Scientist Mapping to taxonomy Layers Tr | Trn | Stratum
S1 4.1.2.7,52.1.2.7,5.2.3.7.7 4,5,5 3,88 | 73 1
S2 2.1.1.2,2.1.1.2,52.2.7,5.2.3.5,5.2.3.5 44,444 3,50 | 100 1
32.142,52123,52.12.7,52354,
S3 52376 5,5,5,5,5 4,50 | 29 2

4 1.1.1.4.3,3.4.45,5.2.1.1.1,5.2.1.2.7,
5232.1523.7.8

S5 32.144,32.144,32.145,3.2.1.4.6,3.2.1.11.1 5,5,5,5,5 450 | 29 2

3.1.1.5.2,3.1.2.1.1,3.1.2.1.1,

54,5555 | 390 | 71 1

56 3.2.1.6,,3.2.1.7 3:3,5,4.4 317\ 8l !

S7 5.2.3.5.6,5235.7 5.5 4,80 7 3

S8 32.13.1,32.14.1,52.3.3.1,5.1.3.2.1,5.1.3.24 5,5,5,5,5 4,50 | 29 2
5.2.1.2.3,52332,523.5.1,5.2.3.54,

S9 52362 5,5,5,5,5 450 | 29 2

S10 5.2.3.3.2,5.23.13.1 5,5 4,80 7 3

S11 32.1.2,3.2.1.2.1,3.2.1.3.3,3.2.1.4.1, 455.5.5 3.86 | 74 1

32.1.72
32.19.1.1,3.2.1.10,3.2.1.11.2,5.1.1.7.1,

S12 5.2.3.1.3,52.34.1 6:4,5,5,5,5 | 3.86 | 74 !
1.1.1.3,5.2.1.2.1,5.2.1.2.1,5.2.2.7.1,
S13 52371 4,5,5,5,5 386 | 74 1
S14 32.1.3.1 5 4,90 0 3
S15 52431 5 4,90 0 3
S16 52423 5 4,90 0 3
2.1.3.7.1,5.24.3.1,5.2.3.7.5.,5.2.1.2 4,
ST 52324,523732,52354.,5243.1 3:3,3,5,6:5,5 | 4,39 | 36 2
S18 3.2.1.9.1,3.2.1.9.2,5.2.3.3.3.1 5.5,6 4,79 8 3
S19 3.2.1.7.5,3.2.1.9.3,5.2.3.2.1.1,5.24.5.1 5,5,6,5 4,69 | 15 3
S20 3.2.14.3,5.2.3.7.7,5.2.3.7.8.1 5,5,6 4,79 8 3
1.1.1.6,2.1.1.2,2.1.1.8.3,3.2.1.6,
S21 34.16,5.1.24,52.1.1.3 4454445 | 3,571 95 !
S22 32.1.22,52.1.2.7.1,5.2.3.1.2,5.2.3.6.2.1 5,6,5,6 4,78 9 3
S23 3.2.1.3,3.2.1.3.1,3.4.4.1 4,54 379 | 79 1
S24 2.1.5.3.1 5 4,90 0 3
S25 5.2.3.3.3.2,52.3.8.1 6,5 4,89 1 3
3.2.1.11.1,3.2.1.11.1,3.3.1.6,5.2.2.7,
S26 57356 5,544,5 377 | 81 1
S27 3.2.1.3.23.2.14.1,5.2.1.2.1,5.2.3.1.1 5,5,5,5 4,60 | 21 2
S28 32.1.8 4 390 | 71 1
S29 5.23.3.2.1,5.2.3.3.3.3,5.23.34 6,6,5 4,88 1 3
S30 5.1.3.2.1.1,5.2.1.2.7.2,5.2.3.3.5 6,6,5 4,88 1 3




3.3 Scoring citation and merit

There are a number of engines to score citation indexes of scientists. They are slightly differing over the
databases of publications involved or the time periods used in evaluations or some measure modifications.
Yet there are no verified claims of superiority or inferiority of ones over others. Therefore we limit ourselves
with the citation indexes routinely available at Google Scholar. The three metrics readily available for every

scientist who has arranged their Scholar Google profile are:
e Number of citations that the scientist has received (Citations);
e Number of their papers that received at least 10 citations (#10);
e Hirsch index (H): The number h of papers that received at least h citations.

Table 5 contains values of the three criteria in July 2013 as well as the gain values, per cent, showing
how much they increased to September 2014. Three columns on the right present criteria values in 2014
normalized so that the minimum is 0 and maximum, 100. Although some empirical proof of stability of the
Linstrat stratification method has been described in [25], these two data sets can be used to further test the
stability of the method.



Table 5: Citation metric scores: total number of citations, number of papers received 10 or more citations,
and Hirsch index. Columns 2-4 contain values of criteria in 2013. Columns 5-7 show the gains of the
corresponding metrics in 2014. Last three columns are 2014 values normalized from O to 100.

In 2013 Gain, % Normalized
Scientist | Citations | #10 | Hirsch | Citations | #10 | Hirsch | Citations | #10 | Hirsch
S1 5138 | 101 32 11 6 3 0 8 9
S2 37371 | 175 78 15 4 4 20 | 20 46
S3 113240 | 476 144 14 6 4 68 | 70 100
S4 70932 | 292 98 17 15 5 41 | 40 63
S5 5205 | 61 31 16 7 3 0 2 8
S6 47844 | 316 96 15 10 8 27 | 44 61
S7 38862 | 299 97 16 | 44 4 21 | 41 62
S8 9400 | 119 46 14 7 2 3 11 20
S9 26630 | 134 42 18 12 8 14 14 17
S10 92538 | 239 102 32 4 15 55| 31 66
S11 39468 | 182 73 13 6 6 22 | 22 42
S12 55831 | 220 65 16 4 5 32| 28 36
S13 14653 | 104 53 18 12 6 6 9 26
S14 95598 | 608 122 19 | 40 7 57| 91 82
S15 84127 | 179 83 25 7 4 50 | 21 50
S16 12028 | 86 45 17 10 7 4 6 20
S17 77512 | 342 116 19 12 9 45 | 48 77
S18 30009 | 150 65 14 8 7 16 16 36
S19 26220 | 402 76 7 7 1 13| 58 45
S20 5408 | 50 21 2 6 -9 0 0 0
S21 24117 | 121 70 14 7 9 12 12 40
S22 18665 | 260 70 26 12 11 9| 34 40
S23 82781 | 203 89 10 4 1 49 | 25 55
S24 164251 | 280 108 16 10 7 100 | 38 71
S25 5530 | 50 29 16 11 7 0 0 7
S26 29334 | 155 65 11 8 5 15 17 36
S27 54579 | 661 87 11 23 4 31 | 100 54
S28 54098 | 472 111 1 1 0 31 69 73
S29 23773 | 309 69 16 14 10 12 | 42 39
S30 14954 | 179 61 31 20 13 6| 21 33

Merit of a scientist is a rather vague concept to represent the level of services to and appreciation of
the scientist by the “research community”. Of many possible criteria we select those related to the success
of the “research school” established by the scientist and the level of recognition of them. Of course, the
levels of citations reflect both. Yet here we are going to use measures related to personal efforts made and
personal positions taken by a scientist. The success manifests itself both scientifically and administratively.
The former can be measured by the number of successful PhD students (co)-supervised by the scientist. The
latter can be measured by the number of research publishing journals at which the scientist has a role. The
level of recognition can be measured by the number of conferences at which the scientist has been invited

to give a plenary presentation or to participate in organization of. With some adjustment, these three can be



expressed, for a scientist, as
e Number of successful PhD students supervised (PDS);

e Number of scientific journals in which they have been chief or associate editor (at any time) or a

member of the editorial board currently (EJ);

e Number of conferences at which they have participated as either chair or co-chair or program-chair or
keynote-chair or deputy chair or global chair (CC).

These data over our sample of 30 scientists are presented in Table 6.

Table 6: Three merit criteria: PDS — number of successful PhDs supervised, CC - number of conferences
(co)-chaired, EJ - the number of journals (co)-edited. Columns 2 through 4 contain real counts, and columns
5-7 are those 0-100 normalized.

Merits Normalized values

Scientist | PDS | CC | EJ | PDS | CC EJ
S1 28 51 2 49 6 3
S2 15 12| 4 22 16 8
S3 381 24| 9 69 | 31 22
S4 9 8 10 6 19
S5 16 | 21 | 4 24 | 27 8
S6 18 1 29 8 0
S7 4 0 1 0 0 0
S8 71 19| 6 6| 25 14
S9 11 5116 14 6 42
S10 30| 36| 2 53 | 47 3
S11 12 71 5 16 9 11
S12 5|1 20| 6 2 26 14
S13 8 5 8 9 11
S14 8 | 11 2 8 14 3
S15 31 31 2 55 4 3
S16 1 2 2 1 3
S17 34 2| 8 61 3 19
S18 12 6| 6 16 8 14
S19 53| 77 |27 | 100 | 100 72
S20 10 21 5 12 3 11
S21 9 7 1 10 9 0
S22 6| 18| 8 4| 23 19
S23 9 91 9 10 12 22
S24 17 3] 8 27 4 19
S25 7 7] 3 6 9 6
S26 30 30| 6 53| 39 14
S27 25| 28 | 12 43 | 36 31
S28 16 | 29 | 37 24 | 38 | 100
S29 13| 28 | 15 18 | 36 39
S30 71 16| 17 6| 21 44




3.4 Combined criteria and stratifications obtained
Here are the analyzes that we conducted over the data in Tables 4, 5, 6:

1. Found a 3-strata stratification over three citation features in Table 5. The combined criterion is formed
with weights 0.5, for Citations, 0.5, for #10, and O for Hirsch over the data at 2014. For the data of
2013, the respective weights are 0.44 (Citations), 0.56 (#10), 0 (Hirsch). Given that the Citations
criterion grew by two-digit percentage points from 2013 to 2014 at 90% of the sample while the #10
criterion by only a one-digit per cent value in most cases, the change of the weights between the two
criteria from 2013 to 2014 is consistent. The fact that the Hirsch index criterion’s weight is O in both
cases goes in line with the overwhelming critiques the criterion has been exposed to recently, see
[3, 27, 30, 33].

2. Found a 3-strata stratification over three merit features in Table 6. The combined criterion is formed
with weights 0.22 at PDS, 0.10 at CC, and 0.69 at EJ. The relative weight values are consistent with
our intuition based upon the prevailing practice of mantaining a heavy and just submission reviewing

process in leading journals.

3. Took the two found combined criteria, for citation and merit, and considered them together with the
taxonomic rank to find a panoramic stratification embracing all the three aspects of the researcher’s
impact: level of results, level of citation, and level of merit. The combined panoramic criterion is
formed by summing those three with the weights 0.80 (Taxonomy rank), 0.04 (Combined citation),

and 0.16 (Combined merit), which also corresponds to our intuition.

For the sake of convenience, we summarize these results in Table 7, for the weights, and in Table 8, for

the combined criteria and stratifications.

Table 7: Weights of individual criteria in those combined, Citation combined, Merit combined, and Research
impact panoramic.

Citation Merit Panoramic
Citations 0.5 | PDS 0.22 | Taxonomic rank  0.80
#10 0.5 | CC 0.10 | Citation combined 0.04
Hirsch 0.0 | EJ 0.69 Merit combined  0.16




Table 8: Stratifications and combined criteria values at the sample of scientists over various sets of criteria:
Cc and Ccn — citation combined criterion values as computed and normalized to 0-100 scale, respectively;
Mc and Mcn — merit combined criterion values as computed and normalized to 0-100 scale, respectively; Trn
— taxonomic rank normalized; P and Pn — panoramic combined criterion values as computed and normalized
to 0-100 scale, respectively; Cs, Ms, Ts, and Ps — three-strata stratifications over criteria Ccn, Mcn, Trn, and

Pn, respectively.

Scientist | Cc | Ccn | Mc {Mcn | Tr | P | Pn | Cs | Ms | Ts | Ps
S1 4 5 13 17 73 161 | 73 | 3 3 1 1
S2 20 | 27 | 12 15 | 100 | 84 | 100 | 3 3 1 1
S3 69 | 93 | 33 | 41 29 | 33| 39 1 2 2 |2
S4 41 | 55 16 19 71 [ 62| 74 | 2 3 1 1
S5 1 1 13 17 29 126 30 | 3 3 2 | 2
S6 35 | 48 7 9 81 | 68 | 81 2 3 1 1
S7 31 | 42 0 0 7 7 8 2 3 313
S8 7 9 13 16 29 | 26 | 31 3 3 2 | 2
S9 14| 19 | 32 | 40 29 130 | 36 | 3 2 2 | 2
S10 43 | 58 | 18 23 7 11| 13 | 2 3 313
S11 22 | 30 | 12 15 74 163 | 75 | 3 3 1 1
S12 30 | 41 12 15 74 1 63| 76 | 2 3 1 1
S13 7 10 | 10 13 74 162 | 74 | 3 3 1 1
S14 74 | 100 | 5 6 0 5 5 1 3 313
S15 36 | 48 | 15 18 0 5 5 2 3 313
S16 5 7 3 3 0 1 0 3 3 313
S17 46 | 63 | 27 33 36 |37 ] 43 | 2 2 2 | 2
S18 16 | 22 | 14 17 8 10 | 11 3 3 313
S19 35| 48 | 81 | 100 | 15 |30 ] 35 | 2 1 312
S20 0 0 10 13 8 8 9 3 3 313
S21 12 | 16 3 4 95 |78 | 93 | 3 3 1 1
S22 21 | 29 | 16 | 20 9 11| 13 | 3 3 313
S23 37 | 50 | 18 23 79 |70 | 83 | 2 3 1 1
S24 69 | 93 19 | 24 0 7 8 1 3 313
S25 0 0 6 8 1 2 2 3 3 313
S26 16 | 22 | 25 31 81 | 71| 84 | 3 2 1 1
S27 65| 88 | 34 | 42 21 | 27 | 32 1 2 2 |2
S28 50 | 68 | 77 96 71 | 75| 89 | 2 1 1 1
S29 27 | 36 | 34 | 42 1 9 10 | 2 2 313
S30 13| 18 | 33 | 41 1 8 9 3 2 313

To summarize these results in general, let us take Pearson correlation coefficients between the four

criteria, Cc, Mc,T, and P, as well as Spearman correlation coefficients between the stratification rankings,
Cs,Ms,Ts, and Ps. They are presented in Table 9.



Table 9: Pairwise correlation between criteria and between stratifications.

Pearson Spearman
Criterion Ccn  Mcn P Stratification ~ Cs Ms Ps
Tr -0.12  -0.04 0.99 Ts -0.12  -0.02 0.98
Cc 0.31 -0.04 Cs 025 -0.10
Mc 0.10 Ms 0.06

As one can see, the three aspects under consideration, Citation, Merit, and Taxonomy rank, are rather
uncorrelated pair-wise, which justifies, up to the extent of the representativeness of our sample, the choice
for measurement scales of these aspects. Yet the two indirect scales, Citation and Merit, are somewhat
positively correlated, probably to that extent at which they both relate to the popularity of a scientist. Of
course, the comprehensive Panoramic criterion much correlates with its major constituent, the Taxonomy
rank. Especially impressive this correlation is at the stratifications: Ps almost coincides with Ts, differing
from Ts by just one scientist’s move from stratum 3 to stratum 2.

On the level of individual researchers, S5 and S19, their lot put them into the middle lane, stratum 2,
of the Panoramic scale. Yet the trajectories are different. Scientist S5, Boris Mirkin, makes very little on
both, Citation and Merit, scales, yet falls in stratum 2 over the Taxonomy. In contrast, scientist S19 is good
on both Citation and Merit, especially on the latter, where he is the best of the entire sample and shares the
stratum Ms=1 with just one other researcher. He falls within Ps=2 just because the papers that have been
published by him on data analysis, although quite fine from the optimality point of view, did not pay much
attention to the structure of the data analysis area. It seems rather obvious that with the publication of results
in this volume, P. Pardalos will be getting a higher rank of the ACM-CCS taxonomy, which should propel
him to much higher scores on that in a very near future.

4 Conclusion

This paper attempts at taking a more rounded view on the problem of evaluating impact of a researcher than it
is assumed usually. Rather than concentrate on conventional citation scoring or more recent network related
scoring or even somewhat controversial peer-review evaluations, we come up with an idea that the impact
cannot be properly evaluated without looking at the meaning and level of the research results obtained by
scientists. We realize that the idea is not quite novel. Yet we suggest an operational approach to implement
the idea by mapping the published research results to a taxonomy of the domain and we show how this can
be done by developing an example of such an evaluation. The example concerns the very area at which we
conduct our research projects ourselves, the domain of data analysis, data mining, and machine learning.
We take a small sample of scientists in this area so that we are able to manually map their research results
to a suitable taxonomy, which is an adaptation of the ACM CCS 2012 taxonomy.

We also tackle two other dimensions of the impact, citation and merit, by taking three operationally
defined criteria for each. To combine the criteria, we use another in-house idea of finding such a weighting
of them which approximates the Pareto slices with between-hyperplane layers. Although rather unconven-
tional, this approach has been found competitive in our previous work [25, 26].

Our empirical results are well matching the conventional wisdom, which may seem rather suspicious.



But they all have been computed from the data without any attempt at trimming them. We make our data
available so that everybody could make their own computations. First of all, the controversial Hirsch index
to score the citation levels appears quite homely here: it gets a zero weight, so it is out of the picture
by itself. Second, when combining the found scales for all three dimensions, Citation combined, Merit
combined, and Taxonomic rank, the latter much outweighs the others by getting the weight of 80% in the
combined, Panoramic, criterion. Third, the three dimensions are mutually uncorrelated, except for a small
positive correlation between the Citation and Merit combined, probably because both reflect popularity of a
scientist.

This suggests directions for future work. First of all, one needs to extend the empirical research both in
getting larger samples and tackling on other research domains. Second, we should try automating the task
of mapping one’s research results to the taxonomy. Third, we should take a look whether other uncorrelated
dimensions for research impact exist and, if yes, what are they and how one could measure them. Making
these and similar steps will bring us closer to the final goal of developing a comprehensive measure of

research impact.
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