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Abstract. We consider boundary value problems and transmission problems for strongly elliptic
second-order systems with boundary conditions on a compact nonclosed Lipschitz surface S with
Lipschitz boundary. The main goal is to find conditions for the unique solvability of these problems
in the spaces Hs , the simplest L2-spaces of the Sobolev type, with the use of potential type
operators on S . We also discuss, first, the regularity of solutions in somewhat more general Bessel
potential spaces and Besov spaces and, second, the spectral properties of problems with spectral
parameter in the transmission conditions on S , including the asymptotics of the eigenvalues.
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1. Statements of the Problems. For simplicity, we consider a strongly elliptic second-order
system on the n-dimensional torus T = T

n with 2π-periodic coordinates xj (j = 1, . . . , n) outside
an (n−1)-dimensional Lipschitz surface S with (n−2)-dimensional Lipschitz boundary ∂S (n � 2).
More precisely, we assume that S is a part of a closed Lipschitz surface Γ dividing the torus into
two domains Ω± and that ∂S divides Γ into two domains S = S1 and S2 . There is an obvious
ambiguity in the choice of the additional part S2 of the boundary Γ. The system is given on the
entire torus and is written in the divergence form

Lu := −
∑

∂jaj,k(x)∂ku(x) +
∑

bj(x)∂ju(x) + c(x)u(x) = f(x). (1.1)

Here the coefficients are m×m-matrices with complex entries, and u is a column m-vector; aj,k ∈
C1(T), bj ∈ C0,1(T) (i.e., the bj are Lipschitz), and c ∈ L∞(T); ∂k = ∂/∂xk . The sides of Γ facing
Ω± will be denoted by Γ± . In a similar way, we define S± . The boundary conditions will be posed
on S± .

By Hs we denote the L2-spaces of Bessel potentials; for s � 0, these are the Sobolev–
Slobodetskii L2-spaces. All notation and assumptions are the same as in [3] except that the bound-
ary surface itself has now a boundary. Some information on the spaces Hs, Hs

p , and Bs
p used in the

present paper can be found in [3]; it is reproduced in somewhat extended form in [4]. One could
also find it in [5]. (All the author’s papers included in the bibliography can be found on his Internet
page http://www.agranovich.nm.ru.)

The strong ellipticity is the uniform positive definiteness of the real part of the principal symbol,
the matrix a(x, ξ) =

∑
aj,k(x)ξjξk) with real ξ , |ξ| = 1. In addition, we assume that the real part

of the inner product (cu, u)T is sufficiently large, so that the form

ΦT(u, v) =
∫

T

[∑
aj,k(x)∂ku(x) · ∂jv(x) +

∑
bj(x)u(x) · v(x) + c(x)u(x) · v(x)

]
dx (1.2)

corresponding to the system is coercive on the space H1(T) in the sense that the (strengthened)
G̊arding inequality C ReΦT(u, u) � ‖u‖2

H1(T) holds. As a consequence, the equation Lu = f is
uniquely solvable in H1(T) for f ∈ H−1(T) by the Lax–Milgram lemma on weak solutions of the
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abstract equation Lu = f , where L is the bounded operator defined by formula (1.4) below. We
state this lemma in a form convenient to us (cf., e.g., [21]).

Lemma 1.1. Let H be a Hilbert space, let H∗ be the dual space of H with respect to the form
(f, v), v ∈ H , f ∈ H∗ , and let an f ∈ H∗ be given. Assume that a continuous sesquilinear form
Φ(u, v) on H satisfies the inequality

C ReΦ(u, u) � ‖u‖2
H . (1.3)

Then there exists a unique element u ∈ H such that

Φ(u, v) = (f, v) (1.4)

for all v ∈ H , and the operator L−1 : f �→ u is bounded.
Furthermore, the forms ΦΩ±(u, v) similar to the form ΦT(u, v) are coercive on the spaces

H̃1(Ω±), by which we mean that the inequalities C ReΦΩ±(u, u) � ‖u‖2
eH1(Ω±)

hold. (Here H̃s(Ω±)

is the subspace of Hs(T) formed by the elements supported in Ω± .) This ensures the unique
solvability of the Dirichlet problems in Ω± . We additionally assume that the forms ΦΩ± are coercive
on H1(Ω±); sufficient conditions for this are known. This ensures the unique solvability of the
Neumann problems in Ω± . In particular, one can consider generalized inhomogeneous anisotropic
elasticity systems (e.g., see [25]) and the Beltrami–Laplace equation with lower-order terms.

Let Ω0 = T\S . Note that this domain is not Lipschitz. We need to define the space H1(Ω0). It
would be inadequate to define it as the space of restrictions of functions in H1(T) to Ω0 , because,
with this definition, the traces on S± of functions u ∈ H1(Ω0) would always coincide. We define
H1(Ω0) as the space of functions u ∈ L2(Ω0) whose restrictions to Ω± belong to H1 and the traces
γ±u = u± on Γ± (they belong to H1/2(Γ)) coincide on S2 ; furthermore,

‖u‖2
H1(Ω0) = ‖u‖2

H1(Ω+) + ‖u‖2
H1(Ω−). (1.5)

It follows that the jump [u] = u− − u+ of u on S belongs to H̃1/2(S). (By H̃s(S) we denote the
subspace of elements of Hs(Γ) supported in S .)

Remark. This definition of the space H1(Ω0) is equivalent to the following standard definition.
This is the space of functions u that belong to L2 in the domain Ω0 along with their first derivatives
∂ju in the sense of distributions, and

‖u‖2
H1(Ω0) = ‖u‖2

L2(Ω0) +
∑

‖∂ju‖2
L2(Ω0). (1.6)

The equivalence follows from Nečas’ integration by parts formula for H1 functions in a Lipschitz
domain [24, c. 121]: if we write it out in Ω± for a function u belonging to H1(Ω0) in the sense of
the first definition and a test function in C∞

0 (Ω0), then, after the addition of these formulas, the
terms on S2 cancel out.

Consequently, the space H1(Ω0) is independent of the choice of the surface S2 .
Since the system Lu = f on the torus is uniquely solvable, we shall assume that f = 0 in Ω0 .
The solutions of boundary value problems for the system Lu = 0 are sought in H1(Ω0). (We

consider only the simplest spaces until Section 6.) In particular, if ϕ is an arbitrary function in
C∞

0 (Ω0), then (u, L̃ϕ)Ω0 = 0. Here and below, L̃ is the formal adjoint of the operator L.
We consider the following problems.
1◦ . The Dirichlet problem for the system Lu = 0 in Ω0 with the Dirichlet conditions on S± :

u± = g± on S±, (1.7)

where g± ∈ H1/2(S) and [g] = g− − g+ ∈ H̃1/2(S).
2◦ . The Neumann problem for the same system in Ω with the Neumann conditions

T±u = h± on S±, (1.8)

where T±u is the conormal derivative, h± ∈ H−1/2(S), and [h] ∈ H̃−1/2(S).
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Let us comment on the latter setting. Recall that the conormal derivative T±u of a function u
in H1(Ω±) is in the general case defined via u and Lu = f by means of Green’s formula

(f, v)Ω± = ΦΩ±(u, v) ∓ (T±u, v±)Γ. (1.9)

See [21, p. 117]. Here v is an arbitrary test function in H1(Ω±), f ∈ H̃−1(Ω±), and the respective
duality is used in the forms on the left- and right-hand sides. The conormal derivative belongs to
H−1/2(Γ). Hence it belongs to H−1/2(S), and the same is true for the jump [Tu] = T−u − T+u.
However, the following statement holds.

Proposition 1.2. Let u be a solution of system (1.1) in Ω0 belonging to H1(Ω0). Then [Tu] ∈
H̃−1/2(S); i.e., supp[Tu] ⊂ S .

Proof. Let v be any function in C∞
0 (Ω0), and let Γ0 be a neighborhood of its support lying

inside Ω0 and having a smooth boundary. Integrating by parts, we obtain ΦΓ0(u, v) = 0. Hence

0 = ΦΩ+(u, v) + ΦΩ−(u, v) = (T+u, v)S2 − (T−u, v)S2 ,

and we see that [Tu]S2 = 0. �
A surface S with boundary serves as a model of a nonclosed screen in acoustics and elec-

trodynamics and of a crack in elasticity theory. In these cases, similar problems were considered
by Stephan and Costabel–Stephan (in particular, see [28]–[30] and [12]). They considered elas-
ticity problems for the Lamé system (the case of an isotropic medium). The g± , as well as the
h± , were originally assumed to coincide. Generalizations to anisotropic media in three-dimensional
domains were obtained in particular by Duduchava–Natroshvili–Shargorodskii [15] and Duduchava–
Wendland [16]. See also [19] and the bibliography in these papers. In all these papers, the surface
S and its boundary were assumed to be sufficiently smooth, and the Wiener–Hopf method was
applied with the use of pseudodifferential operators in the form proposed by Eskin [17]. This per-
mitted not only studying the regularity of the solution but also analyzing its asymptotic behavior
near the boundary of S . These papers suggest that it is possible to generalize the simpler results
on the unique solvability (or the Fredholm property) to arbitrary strongly elliptic second-order
systems in Lipschitz domains without smoothness assumptions, pseudodifferential operators, and
the Wiener–Hopf method. Just this possibility is realized in the present paper. We use the same
technique of reduction of problems to equivalent equations on S . The author touched upon these
problems in [6], but the generality is insufficient there. Clearly, the asymptotics of solutions could
hardly be reached without the Wiener–Hopf method, but we make some progress in the problem
on the regularity of solutions, which is useful also for spectral problems whose statement is given
below (problems 5◦ and 6◦).

We also consider the following problems for the system Lu = 0 in Ω0 .
3◦ . The problem with the conditions

[u] = g, [Tu] = h on S. (1.10)

Here g ∈ H̃1/2(S) and h ∈ H̃−1/2(S).
4◦ . The mixed problem with the conditions

u+ = g on S+, T−u = h on S−. (1.11)

Here again g ∈ H1/2(S) and h ∈ H−1/2(S). When considering this problem, we follow Duduchava–
Natroshvili [14], who considered the anisotropic elasticity system, but we again do not use the
smoothness assumptions and the Wiener–Hopf method. Here we assume that system (1.1) is for-
mally self-adjoint. Compare with [21, p. 231–234], where general mixed problems in a Lipschitz
domain with closed boundary are considered and equivalent equations on the boundary are ob-
tained in the case of a formally self-adjoint system.

The literature on mixed problems is extremely wide, and problem 4◦ is a nonstandard version of
these problems. In [5], we consider general (standard) mixed problems for strongly elliptic second-
order systems in a Lipschitz domain with closed boundary and obtain equivalent equations on the
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boundary without the formal self-adjointness assumption. One can see there certain analogies with
the present paper.

5◦ . The first spectral problem

[u] = 0, u± = −λ[Tu] on S. (1.12)

6◦ . The second spectral problem

[Tu] = 0, [u] = −λT±u on S. (1.13)

Similar spectral problems in the case of a closed Lipschitz boundary were considered in [3]
and [4]. Their original statement in the case of the Helmholtz equation is due to the Moscow
physicist B. Z. Katsenelenbaum and his collaborators N. N. Voitovich and A. N. Sivov, see [31]
or [8].

2. Potential Type Operators and Problem 3◦ . The inverse L−1 of the operator L on the
torus is an integral operator; this is the so-called Newtonian potential. Its kernel E (x, y) is the
fundamental solution for L. Recall that simple and double layer potentials are defined on functions
given on Γ (with a little extra regularity) by the formulas

A ψ(x) =
∫

Γ
E (x, y)ψ(y) dSy, (2.1)

Bϕ(x) =
∫

Γ
(T̃+

y E ∗(x, y))∗ϕ(y) dSy. (2.2)

Here T̃+( · ) is the conormal derivative for the operator L̃ formally adjoint to L (see [21]). These
operators were studied by elementary tools in [21]; see also [3]. For these operators, we need a
number of statements verified there. In particular, they can be found in [3]. Let us list them.

1. The operator A is extended to an operator that acts boundedly from H−1/2(Γ) into H1(T)
and hence into H1(Ω±). The function u = A ψ with ψ ∈ H−1/2(Γ) is a solution of the system
Lu = 0 in Ω±. The trace Aψ = γ±A ψ of this function on Γ is a bounded operator from H−1/2(Γ)
into H1/2(Γ). Under the assumption that the forms ΦΩ± are coercive on H̃1(Ω±), the operator A
is invertible.

2. The operator B acts boundedly from H1/2(Γ) into H1(Ω±). The function u = Bϕ with
ϕ ∈ H1/2(Γ) is a solution of the system Lu = 0 in Ω± .

3. As in [21], we set

B = 1
2(γ+B + γ−B) and B̂ = 1

2 (T+A + T−A ). (2.3)

The first of these operators is the direct value of the double layer potential; it is bounded in H1/2(Γ).
The second operator is bounded in H−1/2(Γ) and is equal to B̃∗ . This means that it is the adjoint
to the direct value of the double layer potential for L̃ with respect to the extension of the standard
inner product in L2(Γ) to the direct product H1/2(Γ) ×H−1/2(Γ). Under our assumption on the
coerciveness of the forms ΦΩ± on H1(Ω±), the operators 1

2I ±B and 1
2I ± B̂ are invertible.

4. One has
T±A = ±1

2I + B̂, γ±B = ∓1
2I +B, T+B = T−B. (2.4)

The operator H = −T±B is the so-called hypersingular operator; it acts boundedly from H1/2(Γ)
into H−1/2(Γ). Under our assumption on the coerciveness of the forms ΦΩ± on H1(Ω±), the
operator H is invertible. The operator H−1 is connected with A by the formulas

H−1 = (1
4I −B2)−1A = A(1

4I − B̂2)−1. (2.5)

5. The formula
u = Bϕ− A ψ, where ϕ = [u], ψ = [Tu], (2.6)

represents a solution of the system Lu = 0 in Ω± via the jumps on Γ. Here u ∈ H1(Ω±), ϕ ∈
H1/2(Γ), and ψ ∈ H−1/2(Γ).

We shall augment this list where necessary.
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Now let us proceed to the case of a surface S with boundary. In this case, formula (2.6) can be
written out with the jumps on S :

u = B[u]S − A [Tu]S . (2.7)

This function is a solution of the system Lu = 0 outside S belonging to H1(Ω0), because it belongs
to H1(Ω±) and u+ = u− on S2 . It is easily seen that the following statement holds.

Proposition 2.1. Problem 3◦ is uniquely solvable, and the solution is given by (2.7).

3. Dirichlet and Neumann Problems. Let us introduce the operators

ASψ = (Aψ)|S , BSϕ = (Bϕ)|S (ψ ∈ H̃−1/2(S), ϕ ∈ H̃1/2(S)). (3.1)

Obviously, AS is a bounded operator from H̃−1/2(S) into H1/2(S), and BS is a bounded operator
from H̃1/2(S) into H1/2(S).

Consider the Dirichlet problem. In (2.7), we pass onto two sides of S , add the resulting relations
and divide by 2, thus obtaining

g = BSϕ−ASψ, where g = 1
2(g+ + g−), ϕ = g− − g+. (3.2)

This is an equation for ψ, and it similar to those used in [28]–[30], [12], [15], and [16].
Proposition 3.1. The operator AS satisfies the G̊arding type inequality

‖ψ‖2
eH−1/2(S)

� C1 Re(ASψ,ψ)S , ψ ∈ H̃−1/2(S), (3.3)

and hence is invertible by the Lax–Milgram lemma.
Here, on the right-hand side, we use the duality of the spaces H1/2(S) and H̃−1/2(S) with

respect to the extension of the standard inner product in L2(S) to the direct product of these
spaces. Inequality (3.3) follows from the similar inequality

‖ψ‖2
H−1/2(Γ)

� C1 Re(Aψ,ψ)Γ, ψ ∈ H−1/2(Γ), (3.4)

for the operator A, which implies the invertibility of A by the same lemma. The derivation of this
inequality is omitted in [3], where the similar inequality for the operators N± (Neumann-to-Dirichlet
operators) is verified. To make the exposition self-contained, we verify inequality (3.4).

For u = A ψ, Green’s formulas (1.9) in Ω± , together with the relation ψ = −[TA ψ] (see the
first relation in (2.4)), imply the formula

ΦΩ+(u, u) + ΦΩ−(u, u) = (ψ,Aψ)Γ.

From the (strengthened) G̊arding inequalities in Ω± , we obtain

‖u‖2
H1(Ω+) + ‖u‖2

H1(Ω−) � C2 Re(ψ,Aψ)Γ = C2 Re(Aψ,ψ)Γ.

Since our Neumann problems in Ω± are uniquely solvable and since the a priori estimates for their
solutions in the case of the homogeneous system are two-sided, we have

‖T±u‖H−1/2(Γ) � C3‖u‖H1(Ω±).

Hence
‖ψ‖2

H−1/2(Γ)
= ‖[TA ψ]‖2

H−1/2(Γ)
� C1 Re(Aψ,ψ)Γ.

This proves (3.4).
Theorem 3.2. The Dirichlet problem in the setting 1◦ has exactly one solution in H1(Ω0).
Indeed, the jump [Tu]S can be found from the Dirichlet data with the use of Eq. (3.2), and

then the solution is constructed by formula (2.7). For the zero Dirichlet data, this solution is zero.
Let us proceed to the Neumann problem. Here the situation is similar. Let us introduce the

operator
HSϕ = (Hϕ)|S (ϕ ∈ H̃1/2(S)). (3.5)



6

This is a bounded operator from H̃1/2(S) into H−1/2(S). We compute the conormal derivatives of
both sides of (2.7) on both sides of S , add, and divide by 2, thus obtaining

h = −HSϕ− B̂Sψ, where h = 1
2(h+ + h−), ψ = h− − h+. (3.6)

This is an equation for ϕ, and again it is similar to the equations used in the same papers [28]–[30],
[12], [15], and [16].

Proposition 3.3. The operator HS satisfies the G̊arding type inequality

‖ϕ‖2
eH1/2(S)

� C4 Re(HSϕ,ϕ)S , ϕ ∈ H̃1/2(S), (3.7)

and hence is invertible by the Lax–Milgram lemma.
Here the duality of the spaces H−1/2(S) and H̃1/2(S) is used on the right-hand side. Inequality

(3.7) follows from the similar inequality

‖ϕ‖2
H1/2(Γ)

� C4 Re(Hϕ,ϕ)Γ, ϕ ∈ H1/2(Γ), (3.8)

for the operator H . To prove the latter inequality, we set u = Bϕ and derive the relation

ΦΩ+(u, u) + ΦΩ−(u, u) = (Hϕ,ϕ)Γ
from Green’s formulas. Then we proceed as in the previous case, using the fact that the estimates
for the solutions of the Dirichlet problem are two-sided.

Inequalities (3.4), (3.3), (3.8), and (3.7) express the well-known idea on the “strong ellipticity”
of potential type boundary operators corresponding to strongly elliptic systems. See the hints and
the literature in [20].

Now we obtain the following theorem similar to Theorem 3.2.
Theorem 3.4. The Neumann problem in the setting 2◦ has exactly one solution in H1(Ω0).
Note that in [5] we consider operators NS and DS similar to AS and HS .
4. Mixed Problem. To construct its solution u, we seek the jumps

ϕ = [u]S ∈ H̃1/2(S), ψ = [Tu]S ∈ H̃−1/2(S). (4.1)

By computing the conormal derivative of the function (2.7) on S− and the boundary value of this
function on S+ , we obtain the equations

−HSϕ− (−1
2I + B̂S)ψ = h,

(−1
2I +BS)ϕ−ASψ = g.

(4.2)

Here the order of the equations is not accidental: we follow [14] and [21]. The operator

T =
(

HS −1
2I + B̂S

1
2I −BS AS

)
(4.3)

acts boundedly from the space
H̃ = H̃1/2(S) × H̃−1/2(S) (4.4)

into the space
H = H−1/2(S) ×H1/2(S). (4.5)

These two spaces are dual with respect to the extension of the inner product (u1, v1)S + (u2, v2)S
to their direct product. For the column U = (ϕ,ψ)′ , we have

(T U,U) = (HSϕ,ϕ)Γ + ((−1
2I + B̂S)ψ,ϕ)Γ + ((1

2I −BS)ϕ,ψ)Γ + (ASψ,ψ)Γ. (4.6)

Assume that L is formally self-adjoint. This assumption includes the condition
∑

bjνj = 0 on S; (4.7)

see [4]. Then B̂ = B∗ , and one sees from (4.6) that

Re(T U,U) = (HSϕ,ϕ)Γ + (ASψ,ψ)Γ; (4.8)
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the other terms cancel out. (The symbol Re on the right-hand side is not needed here.) We use
Propositions 3.1 and 3.3 and find that the equation T U = F , where F is the column (h, g)′ , is
uniquely solvable by the Lax–Milgram lemma. This proves the following theorem.

Theorem 4.1. If the operator L is formally self-adjoint, then problem 4◦ is uniquely solvable.
One can consider the case in which only the principal part of L is formally self-adjoint, but we

do not dwell on this.
5. Spectral Problems. The following claim holds for eigenfunctions.
Proposition 5.1. Problems 5◦ and 6◦ are equivalent to the equations

ASψ = λψ, where ψ = [Tu]S , u = −A ψ, (5.1)

and

H−1
S ϕ = λϕ, where ϕ = [u]S , u = Bϕ, (5.2)

respectively.
The verification is similar to that made in [3] for the case of a closed boundary.
Here we point out that the invertible operators AS : H̃−1/2(S) → H1/2(S) and HS : H̃1/2(S) →

H−1/2(S) act from a wider space into a narrower space and from a narrower space into a wider
space, respectively. In particular, the space L2(S) is an intermediate space. Hence the spectral
problems make sense.

In what follows, we present spectral results similar to those given in [4] for the case of a closed
boundary Γ, and so we omit some details.

Consider the operator AS . The case of a formally self-adjoint system (1.1) is most favorable. In
this case (ASψ1, ψ2)S is an inner product in H̃−1/2(S), with respect to which AS is a self-adjoint
operator with positive discrete spectrum. The eigenfunctions form an orthonormal basis, and it
remains an orthogonal basis in H1/2(S) with respect to the inner product (A−1

S ϕ1, ϕ2)S . This
result can be carried on to the intermediate spaces Hs(S) = H̃s(S), |s| < 1/2. The eigenvalues
λj of AS arranged in nonincreasing order, taking multiplicities into account, satisfy the estimate
λj � Cj−1/(n−1) . Moreover, an asymptotic formula for the eigenvalues is true. We indicate a way
to obtain it in Section 7.

If only the principal part of L is formally self-adjoint, then AS is a weak perturbation of the
self-adjoint operator A0

S constructed from the system L0u = 0 with “adjusted” lower-order terms.
The eigenvalues, starting from some number, are contained in an arbitrarily narrow sector with
bisector R+ . The system of root functions is complete in H̃−1/2(S) and H1/2(S) and is a basis for
the Abel–Lidskii summability method of order n − 1 + ε with parentheses in these spaces, where
ε > 0 can be arbitrarily small. The completeness result can be carried on to the intermediate
spaces.

Finally, in the most general case the spectrum is discrete, and the estimate sj � C1j
−1/(n−1)

for the s-numbers is preserved. The completeness and the summability by the Abel–Lidskii method
are preserved if the opening angle of the sector with bisector R+ containing all values of the forms
ΦΩ±(u, u) is less than π/(n − 1). The eigenvalues lie in this sector. To prove this, one derives the
following optimal estimate for the resolvent of the operator A−1

S in the complementary sector: if

(A−1
S − λI)ϕ = ψ (5.3)

(note that the letters ϕ and ψ had a different meaning in the preceding text), then

‖ϕ‖H1/2(S) + |λ|‖ϕ‖
eH−1/2(S) � C2‖ψ‖ eH−1/2(S). (5.4)

See the hints in [3, Section 6]. Again, the completeness result carries on to intermediate spaces.
The spectral properties of the operator H−1

S are similar to those just presented. If L is formally
self-adjoint, then we equip H−1/2(S) with the inner product (H−1

S ψ,ψ)S .
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6. Regularity of Solutions.
6.1. As before, we assume that the forms ΦΩ± are coercive on H1(Ω±).
Now, instead of Hσ , we need the more general spaces Hσ

p of Bessel potentials and the Besov
spaces Bσ

p , 1 < p <∞; for p = 2, these spaces coincide with Hσ (e.g., see [3] or [4]). First, assume
that the boundary is closed (does not itself have a boundary). Then the solution of the homogeneous
system Lu = 0 in Ω± can be sought in the spaces H1/2+s+1/p

p (Ω±) or B1/2+s+1/p
p (Ω±), the Dirichlet

data are given in B
1/2+s
p (Γ), and the Neumann data are given in B

−1/2+s
p (Γ), |s| < 1/2. (For other

s, the Dirichlet data on the Lipschitz surface Γ or S become meaningless in general.) Set t = 1/p.
As in the author’s previous papers, the admissible points (s, t) form the square

Q = {(s, t) : |s| < 1/2, 0 < t < 1}. (6.1)

The Dirichlet and Neumann problems, which are uniquely solvable at the center (0, 1/2) of the
square, remain to be uniquely solvable at least for |s| < ε and |t − 1/2| < δ with sufficiently
small positive ε and δ by Shneiberg’s theorem on the extrapolation of invertibility for operators
in interpolation scales [27]. No additional assumptions about the system are needed in this case.
Furthermore, probably for smaller ε and δ , one can extend the assertions on the boundedness and
invertibility of the operators

A : B−1/2+s
p (Γ) → B1/2+s

p (Γ) and H : B1/2+s
p (Γ) → B−1/2+s

p (Γ).

The operators 1
2I ±B in B

1/2+s
p (Γ) and 1

2I ± B̂ in B
−1/2+s
p (Γ) are bounded and invertible as well.

One can also generalize formula (2.6). All of this is explained in [3] and [4].
Passing to the case of a nonclosed boundary, first of all it is necessary to define the space

H
1/2+s+1/p
p (Ω0). We define it in the same way as in the already considered case of s = 0 and p = 2:

this space consists of the functions u ∈ Lp(Ω0) that belong to H1/2+s+1/p
p in Ω± and whose traces

on Γ (which belong to B1/2+s
p (Γ)) coincide on S2 , so that the jump [u] belongs to B̃1/2+s

p (S). The
space B1/2+s+1/p

p (Ω0) is defined in a similar way. The remark in Section 1 extends at least to the
spaces H1

p(Ω).

Now we can consider the solutions of the system Lu = 0 in H
1/2+s+1/p
p (Ω0) or B1/2+s+1/p

p (Ω0).
In the Dirichlet problem,

g± ∈ B1/2+s
p (S) and [g] ∈ B̃1/2+s

p (S). (6.2)

In the Neumann problem,

h± ∈ B−1/2+s
p (S) and [h] ∈ B̃−1/2+s

p (S), (6.3)

because Proposition 1.2 can be generalized as follows.

Proposition 6.1. Let u be a solution of the system Lu = 0 in Ω0 belonging to H1/2+s+1/p
p (Ω0).

Then [Tu] ∈ B̃
−1/2+s
p (S).

The proof is similar to that of Proposition 1.2 (with L2 replaced by Lp).
Next, we obtain the boundedness of the operators

AS : B̃−1/2+s
p (S) → B1/2+s

p (S) and HS : B̃1/2+s
p (S) → B−1/2+s

p (S), (6.4)

as well as of the operators
1
2I ±BS : B̃1/2+s

p (S) → B1/2+s
p (S) and 1

2I ± B̂S : B̃−1/2+s
p (S) → B−1/2+s

p (S) (6.5)

for |s| < ε and |t− 1/2| < δ with sufficiently small ε and δ . Now note that the families of spaces
used here are interpolation families for the complex interpolation method with respect to each of
the indices. For the families {B1/2+s

p (S)} and {B−1/2+s
p (S)}, this follows from the fact that the

transition from spaces on Γ to the corresponding spaces on S is a retraction. (The inverse passage
with the use of the extension operator is a coretraction.) As for the families {B̃1/2+s

p (S)} and
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{B̃−1/2+s
p (S)}, one can use the duality theorem for the complex interpolation method, because these

spaces are dual to B−1/2−s
p′ (S) and B

1/2−s
p′ (S), respectively, and reflexive. See, e.g., [9, Sections 4.5

and 6.4]. Since our operators are invertible at the center of the square, we can apply Shneiberg’s
theorem and conclude that these operators are invertible for our (s, t), possibly with smaller ε and
δ . Thus, the following theorem holds.

Theorem 6.2. The operators (6.4) and (6.5) are invertible for |s| < ε and |t − 1/2| < δ with
sufficiently small ε and δ .

The same is true for the operator (4.3) if L = L̃. Formula (2.7) can be generalized as well. This
leads to the following main result.

Theorem 6.3. There exist ε > 0 and δ > 0 such that for any g± ∈ B
1/2+s
p (S) and h± ∈

B
−1/2+s
p (S), |s| < ε, |t− 1/2| < δ , the Dirichlet and Neumann problems, respectively, have unique

solutions in H
1/2+s+1/p
p (Ω0). Furthermore, problems 3◦ and 4◦ are uniquely solvable in the same

spaces. The spaces H in these statements can be replaced by the similar spaces B .
As a consequence, the regularity of solutions increases—within the indicated limits—with in-

creasing regularity of g± and h± .
6.2. Let us proceed to spectral problems.

Theorem 6.4. The root functions of the operator AS belong to the union of the spaces B1/2+s
p (S),

|s| < ε, |t − 1/2| < δ . The spectrum is independent of (s, t). In the spaces B
1/2+s
p (S) and

B̃
−1/2+s
p (S), the assertions on the basis property are preserved for p = 2 provided that L is formally

self-adjoint ; in all other cases, the assertions on the completeness and the summability of the series
by the Abel–Lidskii method are preserved. The assertions on the basis property and completeness
extend to the spaces intermediate with respect to s.

Similar results hold for the operator H−1
S with the spaces B̃−1/2+s

p (S) and B
1/2+s
p (S) replaced

by B−1/2+s
p (S) and B̃

1/2+s
p (S), respectively.

We give some clarifying remarks. The smoothness of the eigenfunctions of AS is seen from the
equation ASψ = λψ. Similarly, one obtains the smoothness of the associated functions. Using the
(dense) embeddings of our spaces, we verify, as in [1], that the assertions on the completeness and
the independence of the spectrum from (s, t) are preserved. The interval of values of s for which
the basis property is obtained in the case of a formally self-adjoint operator L becomes somewhat
wider. The summability of spectral expansions by the Abel–Lidskii method is derived with the use
of an abstract theorem in [2] from the resolvent estimate

‖ϕ‖
B

1/2+s
p (S)

+ |λ|‖ϕ‖
eB
−1/2+s
p (S)

� C‖ψ‖
eB
−1/2+s
p (S)

, (6.6)

which generalizes (5.4) and can be obtained by interpolation theory techniques again with the use of
Shneiberg’s theorem. Namely, one first obtains an estimate, uniform with respect to the parameter,
of the first term on the left-hand side and then uses Eq. (5.3) to estimate the second term.

The completeness is additionally obtained in all spaces corresponding to the points of the square
Q, in which the spaces where the completeness has been established are densely embedded. The
embeddings are dense automatically.

7. Spectral Asymptotics. Here we obtain asymptotic formulas for the eigenvalues of AS and,
under additional assumptions, for the eigenvalues of H−1

S . See Theorem 7.1 below. Now we assume
that the operator L is formally self-adjoint. First, we present the results for operators in a domain
with closed boundary; cf. [4].

7.1. The paper [7] gives an asymptotic formula for the eigenvalues of an integral operator on
an “almost smooth” Lipschitz surface Γ, namely, for a negative-order pseudodifferential operator
whose kernel is the restriction to Γ × Γ of the kernel of an elliptic pseudodifferential operator in
R

n of order less by one. An almost smooth surface is defined there as a surface infinitely smooth
outside a closed set of zero measure. One can consider a torus instead of R

n .
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Our operator A may just serve as an example, provided that the coefficients of L are infinitely
smooth. If this is the case, then we take the Newtonian potential for the operator on the torus;
its kernel is the fundamental solution for L. The assumption about the infinite smoothness of the
coefficients of L can eventually be removed by approximating the given coefficients by infinitely
smooth ones; hence we shall assume that the coefficients are infinitely smooth. The operator A is
originally considered in L2(Γ).

To derive the asymptotics, one uses a special partition of the surface into small parts Uj

(j = 0, . . . ,K). The operator A can be written in the form
∑
Aj,k , where Aj,k = θjAθk · and

θj is the characteristic function of the part Uj . The asymptotics in the case of the operator Aj,j

corresponding to a smooth part Uj of Γ, j > 0, is known, e.g., from the results by Birman and
Solomyak. The key point is an estimate of the s-numbers of the other operators Aj,k . It has the
form

sl(Aj,k) � Cmin(εj , εk)l−1/(n−1), (7.1)

where εj is estimated via the measure of the set Uj and tends to zero together with this measure.
Here it is important that our operator A satisfies the original assumption on the kernel. The
estimate (7.1) permits one to use the perturbation technique developed by Birman–Solomyak [10]
and obtain the desired result. See [7, Section 4] for details. Clearly, the result can also be obtained
for operators of the form θAθ · , where θ is the characteristic function of a part of the surface Γ.
Just this is used in what follows.

The above assumption on the structure of the kernel does not hold for the operator H−1 . But
estimates of the form (7.1) for its s-numbers can also be obtained if the operator can be written in
two forms T1A and AT2 , where T1 and T2 are bounded operators. It is seen from (2.5) that H−1

admits such representations. However, we need the boundedness and invertibility of the operators
1
2I ± B and 1

2I ± B̂ in L2(Γ) rather than in the spaces indicated in Section 2. There are results
of this kind in the literature, but they were obtained (on the basis of a totally different approach
to problems in Lipschitz domains) not for all strongly elliptic systems. They are certainly true
for the Beltrami–Laplace equation [23] and the Lamé system [13], to which lower-order terms can
be added. In these cases, the asymptotics can also be obtained by this method for the operator
H−1 on an almost smooth surface. In the other cases, one obtains the order-sharp estimate of the
eigenvalues.

The fact that A and H−1 are treated as operators in L2(Γ) does not affect the eigenfunctions
and eigenvalues.

The restriction that the surface Γ should be almost smooth was removed in the case of the
operator A by Rozenblum and Tashchiyan [26].

7.2. Let us proceed to operators on a nonclosed surface. Let

ASψ = λψ. (7.2)

Here originally ψ ∈ H̃−1/2(S). But ψ, together with the left-hand side, belongs to H1/2(S). Hence ψ
belongs to the intermediate spaces H̃s(S)=Hs(S), |s|< 1/2, in particular, to L2(S). This permits
one, using the extension of functions by zero, to rewrite Eq. (7.2) in the form

θAθψ = λψ, (7.3)

where θ is the characteristic function of S . Conversely, (7.2) follows from (7.3).
Let us present the definitive result. The eigenvalues λj(AS) of AS are numbered in nonincreasing

order, counting multiplicities.
Theorem 7.1. One has

λj(AS) = CAS
j−1/(n−1) + o(j−1/(n−1)), (7.4)

where

Cn−1
AS

= (2π)−(n−1)

∫∫

T ∗S
nα(x′, ξ′) dx′dξ′, (7.5)
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α(x′, ξ′) is the principal symbol of A, and nα(x′, ξ′) is the number of eigenvalues of α greater
than 1.

A similar result holds for the operator H−1
S in the case of an almost smooth surface Γ, provided

that L is either a scalar operator or a matrix operator with the Lamé operator in the principal part.
The cotangent bundle and the symbol on a Lipschitz surface are understood formally, but the

cotangent spaces and the symbol are defined almost everywhere on S , and therefore formula (7.5)
has a meaning both in the case of an almost smooth surface (see [7]) and in the general case (see
[26]).

We do not dwell on the computation of the symbols of A and H−1 (in the smooth case); see
the hints in [4].

In conclusion, we make three remarks.
1. We assume that both domains Ω± lie on the torus. In principle, the torus can be replaced by

a domain containing Γ with smooth boundary and, say, with the homogeneous Dirichlet condition
on the boundary. Likewise, it is possible to consider a more general smooth manifold with smooth
boundary or without boundary. It is also possible (and useful) to consider R

n ; then one should pose
appropriate conditions at infinity in Ω− , which, of course, affects the choice of spaces. See [11].

2. If one assumes that the forms ΦΩ± are coercive but not in the strengthened sense, then,
instead of the unique solvability of the problems and the invertibility of the operators, one obtains
results on their Fredholm property with index zero. These generalizations do not require much
effort but lead to complicated statements, and so we have avoided this.

3. This paper was extended (mixed problems and spectral asymptotics were added) in December
of 2010.

I am very indebted to T. A. Suslina, who looked over the paper and sent me a list of valuable
editorial remarks.
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vol. 164, Birkhäuser, Basel, 2006, 1–21.

[7] M. S. Agranovich and B. A. Amosov, “Estimates of s-numbers and spectral asymptotics for
integral operators of potential type on nonsmooth surfaces,” Funkts. Anal. Prilozhen., 30:2
(1996), 1–18; English transl.: Functional Anal. Appl., 30:2 (1996), 75–89.

[8] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, and N. N. Voitovich, Generalized
Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin, 1999. (Revised English
edition of [31].)
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