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INTRODUCTION

The present article is an extension of the series of works [1, 2, 4] in which we studied the problem of
the efficient solvability of the independent set problem in a family of hereditary subclasses of the class of
planar graphs. Recall that a subset of pairwise nonadjacent vertices in a graph is called an independent
set (i.s.). An independent set in a graph is called maximum if it contains the largest possible number of
vertices; the size of a maximum independent set (m.i.s.) is called the independence number and denoted
by α(G) for a graph G.

The independent set problem (Problem IS) for a given graph consists in finding a maximum
independence set of the graph. It is well known that this problem is polynomially equivalent to the
computation of the independence number.

A class of graphs is called hereditary if it is closed under removal of vertices. Each hereditary (and
only hereditary) class X is determined by a set of forbidden induced subgraphs Y ; in this case, we write

X = Free(Y).

If in addition Y is finite then X is called finitely defined.
A hereditary class of graphs X is called IS-easy if there exists an algorithm solving Problem IS for

the graphs of this class in polynomial time. Otherwise, X is called IS-hard. Throughout the sequel,
we assume that P �=NP, and this condition is not explicitly included in the statements of the assertions,
for example, in the following: if Problem IS is NP-complete in a hereditary class X then X is IS-hard.
It is well known that the class P of all planar graphs and the class D(k) of the graphs with vertex degrees
at most k (k > 2) are IS-hard.

The goal of this article is to prove the IS-easiness of some subsets in P.
In [3], we introduced the notion of IS-boundary class of graphs—an inclusion minimal class

which is an intersection of a decreasing sequence of IS-hard classes—and proved that a finitely
defined class is IS-hard if and only if it contains some IS-boundary class. Thus, the knowledge of all
IS-boundary classes would make it possible to fully characterize all finitely defined IS-hard classes.

It is also proved in [3] that the class T of all graphs whose each connected component is a tree with
at most three leaves is boundary. In other words, each connected component is a triode where by a triode
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Ti,j,k we mean a tree obtained by joining one vertex to three other vertices by simple paths of lengths
i ≥ 0, j ≥ 0, and k ≥ 0.

It is yet unknown whether there exist other IS-boundary classes. Their existence is equivalent to the
existence of a graph G ∈ T for which the class Free({G}) is IS-hard [3]. The difficulty of the problem is
manifested in that up to now the complexity status of Problem IS for the class Free({P5}) is unknown.
At the same time, considering not the whole family of hereditary classes but a part thereof, we can hope
for an exhaustive answer to the question. For example, in [3], we proved that the class T is the only IS-
boundary class among (in the family of) strongly hereditary classes, i.e., of graph classes closed under
vertex and edge removal.

In considering some restrictions of the set of all graphs, there naturally appears the notion of a relative
boundary class which extends the notion of a boundary class. Let Y be an IS-hard class. Call a hereditary
class of graphs X IS-boundary relative to a class Y if there exists a sequence X1 ⊇ X2 ⊇ . . . of
IS-hard subsets in Y such that

X =
∞⋂

i=1

Xi,

and X is minimal with this property. The following holds for relative IS-boundary classes: If S is a finite
subset in Y then the class Y ∩ Free(S) is IS-hard if and only if it contains an IS-boundary relative to Y
class. It can be proved in almost the same manner as the corresponding assertion in [3].

The class T is IS-boundary relative to Y = P and Y = D(k) for k > 2. The proofs of these facts
repeat almost verbatim the corresponding proofs in [3]. Though we have not yet established whether
there are some other IS-boundary classes relative to Y = P or Y = D(3) (for this, we need to find
a graph G ∈ T for which the class Y ∩ Free({G}) is IS-hard), there is a more significant progress
in moving towards this aim than for simply boundary classes. Namely, we can prove that the class
Y ∩ Free({T1,i,j}) is IS-easy for all i, j and such Y [4, 5]. For G = T2,2,2, the question on complexity of
Problem IS in the class Y ∩ Free({G}) is open.

There appears a natural idea of considering the intersection P(3) of D(3) and P. The class T is IS-
boundary relative to P(3). It is possible that T is the only such class. Some boundary classes relative
to P(3) different from T exist if and only if among the classes P(3) ∩ Free({G}), G ∈ T , there are
IS-hard classes. For Y = P(3), we indeed manage to obtain a deeper advance towards proving the
uniqueness of T than for Y = D(3) and P. Namely, we will prove that the class P(3) ∩Free({T2,2,i}) is
IS-easy for each fixed i.

We adopt the following notation:
� graphs Ck and Pk are defined by counting their vertices, for instance, Ck = (x1, x2, . . . , xk);
� an apple Ak is a graph obtained from the cycle (a1, a2, a3, . . . , ak) by adding some vertex a0 adjacent
to a1;
� a glider is a graph obtained by adding the vertices x6 and x7 as well as the edges (x1, x6) and (x3, x7)
to the graph K2,3 with parts x1, x2, x3 and x4, x5;
� a tire is a graph obtained from two simple cycles (x1, x2, . . . , xk) and (y1, y2, . . . , yk) by adding the
edges (x1, y1), (x2, y2), . . . , (xk, yk);
� a punctured tire is a graph obtained by removal of an edge (xk−1, xk) from a tire;
� by G \ V we denote the graph obtained from G by removal of all vertices belonging to V ⊆ V (G).

1. SOME DEFINITIONS AND AUXILIARY RESULTS
A separating clique in a graph is a set of its vertices generating a complete subgraph whose removal

leads to increase of the number of connected components. Given a graph, a C-block is an inclusion
maximal connected induced subgraph having no separating clique. There is a polynomial algorithm for
finding all C-blocks in an input graph [3]. It is also known that, for every hereditary class, Problem IS
is polynomially reduced to its C-blocks [3].

For proving the main result, we need the two following auxiliary assertions:

Lemma 1. Suppose that a graph G ∈ P(3) contains a glider and is a C-block. Then

α(G) = α(G \ {x2, x4}) + 1.
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Proof. Prove that the vertex x2 is necessarily of degree 2. Suppose the contrary. Then deg(x2) = 3.
Since G is a planar C-block (and hence is a two-connected graph) with degrees of all vertices at most
three; therefore, there exists a path connecting x2 with x1 (or with x3) containing neither x4 nor x5 and
containing x6 (or x7). This is easy to show by considering both possible ways of location for x2 in the
planar packing of G (inside the cycle (x1, x4, x3, x5) and outside it) and noticing that otherwise {x2} is
a separating clique of G. Then, due to the planarity of G and the constraints on the vertex degrees in the
graph, the set {x3} ({x1}) is a separating clique. We obtain a contradiction to the assumption. Hence,

deg(x2) = 2.

Prove now that there is a m.i.s. in G that contains either x4 and x5 or x1, x2, and x3. Clearly, every
m.i.s. in G either contains x4 and x5 simultaneously or contains neither x4 nor x5. At the same time,
if x4 and x5 do not belong to some m.i.s. in G then x2 and exactly one vertex from each of the pairs
(x1, x6) and (x3, x7) belongs to this m.i.s. But then, from the given m.i.s., we can remove vertices from
each of the pairs and add x1 and x3; in result, we again obtain a m.i.s. in G. Thus, we have proved the
existence of a m.i.s. for G with the desired properties. It is easy to verify that there exists a m.i.s. of the
graph G \ {x2, x4} which contains either x1 and x3 or x5.

Thus, given some m.i.s. of G, we can remove a vertex (x2 or x4) so that, in result, we obtain an i.s. of
G \ {x2, x4}. Therefore, α(G) ≤ α(G \ {x2, x4}) + 1. On the other hand, to each m.i.s. of G \ {x2, x4},
we can add a vertex (x2 or x4) so that we obtain an i.s. in G. Therefore, α(G) ≥ α(G \ {x2, x4}) + 1.

Lemma 1 is proved.

Lemma 2. Suppose that H is an arbitrary graph containing a cycle (x1, x2, x3, x4, x5) (which
is not necessary induced), while (x2, x4) and (x3, x5) do not belong to E(H). If the degrees
deg(x2) = deg(x5) are equal to 2 or 3 and (x2, x5) belongs to E(H) then

α(H) = α(H \ {x1}).

Proof. Let IS be a m.i.s. of H . If x1 �∈ IS then α(H) = α(H \ {x1}).

Suppose now that x1 ∈ IS, then x2 and x5 do not lie in IS. Among x3 and x4, at most one vertex
belongs to IS. Consequently, there exists a vertex x ∈ {x2, x5} adjacent to a vertex in {x3, x4} not
belonging to IS. Then IS ∪ {x} \ {x1} is a m.i.s. in H . Therefore, α(H) = α(H \ {x1}).

Lemma 2 is proved.

2. ADJOINT CYCLES AND THEIR DESTRUCTION

Let G be a C-block of the class P(3) ∩ Free({T2,2,2}) containing some apple Ak (k ≥ 10). Call
an induced cycle (x1, x2, x3, x4, x5) in G adjoint (to the apple Ak) if

a0 = x5, a1 = x1, a2 = x2, a3 = x3.

Clearly, x4 can be adjacent to none of the vertices a6, a7, . . . , ak−1 since otherwise G would contain
an induced subgraph T2,2,2. Therefore, among the vertices of V (Ak), the vertex x4 can be adjacent only
to ak, a4, and a5.

A scrupulous analysis of the neighborhoods of some vertices reveals some properties of a m.i.s. in G.
Namely, it is always possible to indicate a vertex of the adjoint cycle (starting from the composition of the
neighborhoods) not lying in some m.i.s. of G. Removing this vertex does not change the independence
number, and the mechanism of destruction of adjoint cycles is an important component of the algorithm
for solving Problem IS in the class P(3)∩Free({T2,2,2}). The above-mentioned analysis is the contents
of the proofs of Lemmas 3–5.

Lemma 3. Let deg(x2) = 2. If deg(x4) = 2 or deg(x5) = 2 or x4 is adjacent only to the vertices
of an apple Ak then α(G) = α(G \ {x1}). In all other cases, α(G) = α(G \ {x4}).
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Proof. We may assume that there exists a vertex b, with (b, x5) ∈ E(G), b �= x1 and b �= x4 (otherwise,
α(G) = α(G \ {x1}) by Lemma 2). The vertex b must be adjacent to either ak or ak−1 (since the contrary
leads to the subgraph T2,2,2 in G induced by a1, a0, b, ak, ak−1, a2, a3).

Suppose first that x4 is adjacent only to the vertices of Ak or that deg(x4) = 2. Prove that the
vertices x4 and a5 are necessarily nonadjacent (therefore, either deg(x4) = 2, or (x4, a4) ∈ E(G), or
(x4, ak) ∈ E(G)). Suppose the contrary. The vertices b and a6 must be adjacent because otherwise
G contains the subgraph T2,2,2 induced by the vertices x4, x5, b, x3, x2, a5, and a6. Hence, b is adjacent
to neither a7 nor a8 (because k ≥ 10). But then G contains the subgraph T2,2,2 induced by a6, a5, a4, b,
a0, a7, and a8; a contradiction.

Demonstrate now that there exists a m.i.s. in G that does not contain x1. This will imply the first
part of the lemma. Consider IS, an arbitrary m.i.s. in G. We may assume that x1 ∈ IS (otherwise,
α(G) = α(G \ {x1})). If x3 �∈ IS then IS ∪ {x2} \ {x1} is a m.i.s. in G. If x3 ∈ IS then the set of
vertices IS ∪ {x2, x4} \ {x1, x3} is also a m.i.s. in G (since either deg(x4) = 2, or (x4, ak) ∈ E(G), or
(x4, a4) ∈ E(G)).

In what follows, we assume that x4 is adjacent to x �∈ V (Ak). The vertices b and x4 are nonadjacent
(and hence b �= x) since otherwise b = x and either the vertices x1, ak, ak−1, x5, x, x2, and x3 or the
vertices x3, x2, x1, x4, x, a4, and a5 generate a subgraph T2,2,2 in G. Prove that there exists a m.i.s.
in G not containing x4. This implies the second part of the lemma. Let IS′ be some m.i.s. containing x4

(if there is no such set then the assertion is obvious). If non of the vertices b and x1 belongs to IS′

then IS′ ∪ {x5} \ {x4} is a m.i.s. in G. If exactly one vertex y ∈ {x1, b} belongs to IS′ then the set
IS′ ∪ {x5, x2} \ {x4, y} is also a m.i.s. for G. Therefore, we may assume that b and x1 belong to IS′.
Finally, we may assume that a4 ∈ IS′ (therefore, (b, a4) �∈ E(G)); otherwise, IS′ ∪ {x3} \ {x4} is a m.i.s.
for G.

Recall that b must be adjacent to at least one of the vertices ak−1 and ak. Denote by ai the vertex
in {ak−1, ak} adjacent to b and having minimal index (among these vertices, both can be adjacent to b
simultaneously). The vertex x is necessarily adjacent to one of the vertices a4 and a5 (otherwise G would
contain the subgraph T2,2,2 induced by the set of vertices {x3, x2, x1, x4, x, a4, a5}). Show that b and x
are nonadjacent. Suppose the contrary. Then b is adjacent to exactly one vertex of {ak−1, ak}. Clearly,
x must be adjacent to ai−1 or ai−2 (otherwise G contains the subgraph T2,2,2 induced by ai, ai−1, ai−2, b,
x, ai+1, and ai+2, where the subscripts of the vertices are understood modulo k). This is a contradiction
since x must be adjacent to x4, b, a4 or a5, ai−1 or ai−2. Indeed, x is not adjacent to a5 (and hence must
be adjacent to a4) since otherwise G would contain the subgraph T2,2,2 induced by x4, x5, b, x3, x2, x,
and a5.

Note that if x is adjacent to some y �∈ {a4, x4} then b and y are also adjacent; otherwise the vertices
x4, x5, b, x, y, x3, and x2 would induce a subgraph T2,2,2. Therefore, IS′ ∪ {x3, x} \ {a4, x4} is a m.i.s.
for G.

Lemma 3 is proved.

Lemma 4. Suppose that deg(x5) = 2 and there exists c �∈ V (Ak) adjacent to x2. If the set
{x1, x4, a4, c} is independent then α(G) = α(G \ {x3}); otherwise, α(G) = α(G \ {x4}).

Proof. Suppose that {x1, x4, a4, c} is not independent and prove that α(G) = α(G \ {x4}). Let IS
be a m.i.s. for G containing x4 (if there is no such m.i.s. then, obviously, α(G) = α(G \ {x4})).
If {x1, x4, a4, c} is not independent then at least one of the vertices x1, c, and a4 does not belong to IS.
This implies that at least one of the sets

IS ∪ {x5} \ {x4}, IS ∪ {x2, x5} \ {x1, x4}, IS ∪ {x3, x5} \ {x1, x4}
is a m.i.s. for G. Therefore, we may assume that the set {x1, x4, a4, c} is independent.

Suppose that there is some a′ �∈ V (Ak) adjacent to a4. Prove that a′ must be adjacent to c. Suppose
the contrary. Then a′ must be adjacent to x4 since otherwise the vertices a3, a2, c, x4, x5, a4, and a′

would generate a subgraph T2,2,2. Clearly, c must be adjacent to either ak or ak−1 since otherwise the
vertices x1, x5, x4, x2, c, ak, and ak−1 would generate some T2,2,2. Moreover, c cannot be adjacent
to ak−1 (therefore, it is adjacent to ak) since otherwise a2, c, ak−1, a1, a0, a3, and a4 would generate
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T2,2,2. The vertex c must be adjacent to a5, since otherwise x3, x4, x5, x2, c, a4, and a5 would generate
some T2,2,2. But then the vertices ak, c, a5, ak−1, ak−2, a1, and a0 generate a subgraph isomorphic
to T2,2,2; a contradiction.

The two alternatives are open: either the vertices x4 and a5 are nonadjacent or adjacent.

Case 1. Let the vertices x4 and a5 be nonadjacent. The vertex c must be adjacent to a5 since otherwise
G would contain the subgraph T2,2,2 induced by the set of vertices {x3, x2, c, x4, x5, a4, a5}. The vertex c
cannot be adjacent to ak since otherwise G would contain T2,2,2 induced by ak, a1, a0, c, a5, ak−1,
and ak−2. The vertex x4 must be adjacent to ak since otherwise x2, c, a5, x3, x4, a1, and ak would
generate a subgraph T2,2,2.

Prove that α(G) = α(G \ {x3}). Let IS′ be a m.i.s. containing x3 (if there is no such a set then
the desired equality is obvious). If none of the vertices x1 and c belongs to IS′ then IS′ ∪ {x2} \ {x3}
is a m.i.s. for G. If x1 ∈ IS′ and c �∈ IS′ then IS′ ∪ {x2, x5} \ {x1, x3} is a m.i.s. for G. If x1 �∈ IS′

and c ∈ IS′ then IS′ ∪ {x2, a4} \ {c, x3} is a m.i.s. for G. Finally, if c ∈ IS′ and x1 ∈ IS′ then the set
IS′ ∪ {x2, x5, a4} \ {x1, x3, c} is a m.i.s. for G. The equality α(G) = α(G \ {x3}) is proved.

Case 2. Let the vertices x4 and a5 be adjacent. Prove that α(G) = α(G \ {x3}). Clearly, c must be
adjacent to at least one of the vertices ak−1 and ak; otherwise the vertices a1, ak, ak−1, x5, x4, a2, and c
would generate a subgraph isomorphic to T2,2,2 in G. At the same time, it cannot be adjacent to ak−1

(and hence it cannot be adjacent to ak) since otherwise there would be the subgraph T2,2,2 induced by
a2, c, ak−1, a1, a0, a3, and a4.

Let IS′′ be a m.i.s. containing x3. If c �∈ IS′′ then

either IS′′ ∪ {x2} \ {x3} or IS′′ ∪ {x2, x5} \ {x1, x3}
is a m.i.s. for G. Therefore, we can assume that c ∈ IS′′, and hence ak �∈ IS′′. If a5 �∈ IS′′ then
IS′′ ∪ {a4} \ {x3} is a m.i.s. for G. Hence, we can assume that c ∈ IS′′, x3 ∈ IS′′, a5 ∈ IS′′. If x5 �∈ IS′′

then IS′′ ∪ {a4, x4} \ {x3, a5} is a m.i.s. for G; if x5 ∈ IS′′ then IS′′ ∪ {a4, x1, x4} \ {x3, x5, a5} is
a m.i.s. for G. Thus, there always exists a m.i.s. for G not containing x3; and hence α(G) = α(G \ {x3}).

Lemma 4 is proved.

Lemma 5. Suppose that the vertex x5 is adjacent to b �∈ V (Ak) ∪ {x4} and x2 is adjacent
to c �∈ V (Ak). If b = c and x4 is adjacent to a4 or x4 adjacent to x �∈ V (Ak) and x is adjacent
to a5 and is not adjacent to a4 then α(G) = α(G \ {x3}). If b �= c and b is adjacent to ak then
α(G) = α(G \ {x4}). In all other cases, α(G) = α(G \ {x5}).

Proof. Consider the two cases: b �= c and b = c.

Case 1. Let b �= c. In proving Lemma 3, we have showed that, for deg(x5) > 2, the vertices x4 and a5

are nonadjacent (and the degree of x2 does not influence the validity of this fact). The vertex b must be
adjacent to at least one of the vertices ak−1, ak. Clearly, x4 cannot adjacent to ak; otherwise the planarity
of G would create an obstacle to the adjacency of b and ak−1. Since G is a planar graph, either x4 and c
are nonadjacent or (x4, c) ∈ E(G) and (ak−1, c) �∈ E(G), (ak, c) �∈ E(G). Prove that in fact x4 and c are
adjacent.

Suppose the contrary. The vertex c must be adjacent to at least one of the vertices in {ak−1, ak}
(otherwise there would be the subgraph T2,2,2 in G induced by x1, x2, c, x5, x4, ak, and ak−1). Show that
(ak−1, c) �∈ E(G) (consequently, (ak, c) ∈ E(G) and (ak−1, b) ∈ E(G)). Let (ak−1, c) ∈ E(G); hence,
(ak, b) ∈ E(G). If (c, a4) �∈ E(G) then the vertices x2, x1, x5, c, ak−1, a3, and a4 generate a subgraph
T2,2,2 in G and if (c, a4) ∈ E(G) then the vertices c, x2, x1, ak−1, ak−2, a4, and a5 generate a subgraph
T2,2,2 in G. Neither of the vertices b and c can be adjacent to ak−2 or ak−3. If b is adjacent to
a ∈ {ak−3, ak−2} then G contains the subgraph T2,2,2 induced by the vertices x5, b, a, a1, ak, x4, and x3.
If c is adjacent to a ∈ {ak−3, ak−2} then G contains the subgraph T2,2,2 induced by the vertices x2, c,
a, x1, x5, a3, and a4. But then the vertices ak−1, ak−2, ak−3, b, x5, ak, and c induce a subgraph T2,2,2

in G. Thus, x4 and c are adjacent. Then deg(c) = 2; otherwise (by the planarity of G) the set {c} would
be a separating clique.
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Demonstrate that if b is adjacent to ak then there exists a m.i.s. for G not containing x4. Let IS
be a m.i.s. for G. We may assume that x4 ∈ IS. If at least one of the vertices x2 and b does not lie
in IS then either IS ∪ {c} \ {x4} or IS ∪ {x5} \ {x4} is a m.i.s. for G. If x2, x4, b belong to IS then
IS ∪ {x1, c} \ {x2, x4} is a m.i.s. for G and this set does not contain x4.

Prove that if b is adjacent to ak−1 then there exists a m.i.s. without x5. If there exists a vertex
x adjacent to ak (to b) and not belonging to V (Ak) then it must be adjacent to b (to ak). Indeed,
if (x, ak) ∈ E(G) and (x, b) �∈ E(G) then G contains the subgraph T2,2,2 induced by the vertices a1,
a0, b, ak, x, a2, and a3. If (x, b) belongs to E(G) and (x, ak) �∈ E(G) then G contains the subgraph
T2,2,2 induced by the vertices a0, b, x, a1, ak, x4, and x3. Let IS′ be a m.i.s. containing x5. If ak ∈ IS′

then IS′ ∪ {b} \ {x5} is a m.i.s. for G. If x2 ∈ IS′ and ak �∈ IS′ then IS′ ∪ {x4} \ {x5} is a m.i.s. for G.
If neither ak nor x2 belongs to IS′ then IS′ ∪ {x1} \ {x5} is a m.i.s. for G.

Case 2. Suppose now that b = c. The vertex x4 cannot be adjacent to ak since the contrary leads
to the subgraph T2,2,2 induced by x4, ak, ak−1, x5, b, a3, and a4. Prove that if x4 is adjacent to a4 then
there exists a m.i.s. for G not containing x3. Clearly, deg(b) = 2 since otherwise the set {b} would be a
separating clique. Let IS′′ be a m.i.s. for G containing x3. If x5 �∈ IS′′ then IS′′ ∪ {x4} \ {x3} is a m.i.s.
for G. If x5 ∈ IS′′ then IS′′ ∪ {x2} \ {x3} is a m.i.s. for G. Thus, in both cases, there exists a m.i.s. not
containing x3. Prove also that if x4 is adjacent to x �∈ V (Ak) and x adjacent to a5 and nonadjacent to a4

then there exists a m.i.s. not containing x3. Let IS′′ be a m.i.s. for G containing x3. If there is a vertex
y adjacent to a4 and not belonging to V (Ak) then it must be adjacent also to x; otherwise, the vertices
x3, x4, x, a4, y, a2, and a1 induce a subgraph T2,2,2. This implies that if x ∈ IS′′ then IS′′ ∪ {a4} \ {x3}
is a m.i.s. for G. Therefore, we may assume that x �∈ IS′′. We may also assume that x5 ∈ IS′′ since
otherwise IS′′ ∪ {x4} \ {x3} is a m.i.s. for G. But then IS′′ ∪ {x2} \ {x3} is a m.i.s. for G. Hence, in the
case under consideration, there is a m.i.s. not containing x3.

Show that, in all other cases, there exists a m.i.s. for G not containing x5. Let IS′′′ be a m.i.s.
containing x5. If (x4, x) ∈ E(G) and x �∈ V (Ak)∪ {b} then x is adjacent to a4 or to a5, since otherwise G
would contain the subgraph T2,2,2 induced by the vertices a3, a2, a1, x4, x, a4, and a5. Only the following
situations are possible:

(a) The vertex b is adjacent to x4. If x3 ∈ IS′′′ then IS′′′ ∪ {b} \ {x5} is a m.i.s. for G. If x3 �∈ IS′′′

then IS′′′ ∪ {x4} \ {x5} is a m.i.s. for G.

(b) The degree of x4 is equal to 2 or x4 is adjacent to a5. If none of the vertices in a neighborhood of x4

(except x5) belongs to IS′′′ then IS′′′ ∪ {x4} \ {x5} is a m.i.s. for G. If x3 ∈ IS′′′ then IS′′′ ∪ {b} \ {x5}
is a m.i.s. for G. If (x4, a5) ∈ E(G) and x3 �∈ IS′′′ while a5 ∈ IS′′′ then x2 ∈ IS′′′ (by the maximality of
IS′′′), and hence IS′′′ ∪ {x3, b} \ {x2, x5} is a m.i.s. for G.

(c) The vertex x4 is adjacent to x �∈ V (Ak) that is adjacent to a4. We may assume that x3 �∈ IS′′′ and
x ∈ IS′′′, x2 ∈ IS′′′ (otherwise, one of the sets

IS′′′ ∪ {b} \ {x5}, IS′′′ ∪ {x4} \ {x5}
would be a m.i.s. for G or IS′′′ would be maximal). Then the set IS′′′ ∪ {x3, b} \ {x2, x5} is a m.i.s. for G.

Lemma 5 is proved.

We say that a hereditary class of graphs X is a class without adjoint cycles if, for its arbitrary graph
and every apple Ak (k ≥ 10) in this graph, there is no cycle adjoint to this graph. The main result of this
section is

Theorem 1. Problem IS for graphs of the class P(3) ∩ Free({T2,2,2}) is polynomially reduced
to the same problem for its hereditary part without adjoint cycles.

Proof. Problem IS for the graphs in P(3) ∩ Free({T2,2,2}) is polynomially reduced to its C-blocks.
Let G be a connected graph without separating cliques of class P(3) ∩ Free({T2,2,2}) and let x be
its vertex. In time polynomial in the number of vertices of G, we can check whether G contains the
apple Ak as an induced subgraph for which k ≥ 10, the vertex x has degree 3 in this apple, and there is
a cycle c adjoint to Ak. To this end, by direct exhaustion, we can find all cycles of length 5 in G (their
number is linear with respect to the number of vertices) and choose among these those containing x.
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Let C ′ = (x, y1, y2, y3, y4) be one of such cycles. Remove from G the vertices y1, y3, y4 and their
neighborhoods (y1, y2, y4 and their neighborhoods) and obtain a graph G1 (G2). Clearly, in G, the cycle
C ′ is adjoint to some apple if and only if in G1 there is an induced path of length at least 8 joining x and y2

or in G2 there is an induced path of such length joining x and y3. The check of the existence of such a
path can be done as follows: For definiteness, consider G1. Let v ∈ V (G1); denote by Nk(v) the set of
the vertices in G1 situated at distance k ≥ 0 from v. Clearly,

|N0(v)| = 1, |Nk(v)| ≤ 3 · 2k−1,
∣∣∣∣

k⋃

i=0

Ni(v)
∣∣∣∣ ≤ 1 + 3 + 3 · 2 + 3 · 22 + · · · + 3 · 2k−1 = 3 · 2k − 2

for each k ≥ 1. Consider the subgraph G1 induced by the set of vertices

4⋃

k=0

(Nk(x) ∪ Nk(y2)).

This graph contains at most 2 · (3 · 24 − 2) = 92 vertices. Therefore, in time O(1), we can check in this
graph the existence of an induced path from x to y2 of length at least 8. Suppose that the graph has
no such path. Then, in G1, the induced path between x and y2 is of length at least 8 exists if and only
if there exist induced paths P1 from x to z1 ∈ N3(x) and P2 from y2 to z2 ∈ N3(y2) such that, after
removing the vertices of the paths P1 \ {z1} and P2 \ {z2} and their neighborhoods, z1 and z2 are in
one connected component. The cartesian product N3(x) and N3(y2) contains at most 222 elements;
therefore, the search of P1 and P2 is executed in polynomial time. This and earlier arguments imply that
the check of the existence of an adjoint cycle C (and its finding if it exists) are executed in polynomial
time.

It follows from Lemmas 3–5 that there exists a vertex y ∈ V (C) such that y does not belong to some
m.i.s. for G and α(G) = α(G \ {y}). At the same time, the search of y (starting from the statements of
Lemmas 3–5) is executed in polynomial time. Having implemented (in polynomial time) the destruction
of the adjoint cycles and reduction to connected graphs without separating cliques sufficiently many
times, we obtain a system of induced subgraphs {G1, G2, . . . , Gs} (without separating cliques) in G
every apple Ak (k ≥ 10) in each of which has no cycle adjoint to this apple. Every such graph contains
at least two vertices. Each vertex in G belongs to at most three graphs in {G1, G2, . . . , Gs}. Therefore,
2s ≤ 3|V (G)|. This implies that the above-indicated reduction holds.

Theorem 1 is proved.

3. ACCORDIONS AND THEIR DESTRUCTION

Recall that, by Lemmas 1 and 2, Problem IS for the graphs in P(3) ∩ Free({T2,2,2}) is polynomially
reduced to graphs in this class not containing induced glider and subgraph complementary to a simple
path with five vertices. At the same time, by Theorem 1, for such graphs, the problem is polynomially
reduced to C-blocks for which a sufficiently large induced apple has no adjoint cycles.

Note that the independence number of a tire with 2n vertices is equal to n (if n is even) or n − 1
(if n is odd) and the check if a graph is a tire is done in polynomial time. Note also that the independence
number of a punctured tire with 2n vertices is equal to n and the check if a given graph is a punctured tire
is executed in polynomial time. Thus, Problem IS for graphs in P(3) ∩ Free({T2,2,2}) is polynomially
reduced to simplest graphs; i.e., to graphs of this class different from a tire and a punctured tire that are
C-blocks themselves, do not contain induced subgraphs of the form indicated at the beginning of this
paragraph, and for which each induced apple Ak (k ≥ 10) has no adjoint cycles.

Lemma 6. Let G be a simplest graph containing a graph Ak (k ≥ 10). Then the neighborhood
of a0 without a1 is nonempty, and, among the vertices of Ak, each vertex of this truncated
neighborhood is adjacent to a2 or to ak but not to both the vertices simultaneously.
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Proof. Since G is a simplest graph, it is a C-block and contains no cycles adjoint to Ak. Hence, there
is at least one vertex x �= a1 adjacent to a0. The vertex x cannot be adjacent to a3 and ak−1; otherwise,
either there is an adjoint cycle to Ak or the vertices x, a1, a0, ak−1, ak−2, a3, and a4 generate a subgraph
T2,2,2 in G. If x is adjacent neither to a2 nor to ak then G contains the subgraph T2,2,2 induced by the
vertices a1, a0, x, a2, a3, ak, and ak−1. Therefore, x must be adjacent to a2 or to ak but not to both;
otherwise G would contain the glider induced by the vertices ak−1, ak, a1, a0, x, a2, and a3.

Lemma 6 is proved.

In a simplest graph G, consider a cycle Ck of the apple Ak, k ≥ 10. We will consider the sets
{x1, . . . , xp} (p ≥ 2) of consecutive vertices of this cycle containing a1 and having the following
properties:

(i) each vertex xi is adjacent to yi �∈ V (Ck), where all vertices yi are different;
(ii) for each i ∈ 2, p − 1, the set of vertices V (Ck) ∪ {yi} induces an apple in G;
(iii) the graph G contains the edges (y1, y2), (y2, y3), . . . , (yp−1, yp).

The family of sets with these properties is nonempty since it contains either {ak, a1} or {a1, a2}. This
follows from Lemma 6. As {x1, . . . , xp}, consider a set in the family under consideration with the greatest
number of elements. The sets {x1, . . . , xp} and {a1, a2, a3, . . . , ak} do not coincide since G is different
form a tire or a punctured tire. The maximality of the set {x1, . . . , xp}, Lemma 6, and the prohibition in G
of T2,2,2, a glider, and the complement to a path with 5 vertices as induced subgraphs implies that, for
each i ∈ {1, p}, either deg(yi) = 2 or yi is adjacent to a vertex in V (Ak) situated at distance 2 from xi.
Call the subgraph of G an accordion if it is induced by the set {x1, x2, . . . , xp, y1, y2, . . . , yp}.

The vertex xp is adjacent to a vertex xp+1 ∈ V (Ck), xp+1 �= xp−1; xp+1 is adjacent to a vertex
xp+2 ∈ V (Ck), xp+2 �= xp; . . ., the vertex xk−1 is adjacent to a vertex xk ∈ V (Ck), xk �= xk−2 and xk

is adjacent to x1.
An accordion is of the first type if deg(y1) = deg(yp) = 2; otherwise call it an accordion of the

second type. In an accordion of the second type, y1 is adjacent to xk−1 or yp is adjacent to xp+2.
Prove that Problem IS for the simplest graphs is reduced to Problem IS for the simplest graphs

containing only accordions of the first type. To this end, suppose that a set of vertices

{x1, x2, . . . , xp, y1, y2, . . . , yp}
induces an accordion of the second type in G. Assume for definiteness that y1 is adjacent to xk−1 (it is
possible that also yp is adjacent to xp+2). Clearly, if xk is adjacent to y �∈ {x1, x2, . . . , xk} then either
(y, xk−2) ∈ E(G) or (y, xk−3) ∈ E(G) (otherwise G would contain the subgraph T2,2,2 induced by xk−1,
y1, y2, xk, y, xk−2, and xk−3. From G, construct a graph G′ by the following rules:

(P1) if deg(xk) = 2 or xk is adjacent to a vertex y �∈ {x1, x2, . . . , xk} and (y, xk−3) ∈ E(G) then G′

is obtained from G by removing the edge (xk−1, y1);

(P2) if xk is adjacent to a vertex y not lying in {x1, x2, . . . , xk} and the edges (y, xk−2) ∈ E(G) and
(y, xk−3) �∈ E(G) then G′ is obtained from G by removing the vertices xk−1, xk, x1, y1 and adding the
edges (xk−2, y2) and (y, x2).

Lemma 7. If G′ is obtained from G by (P1) then these graphs have the same independence
numbers; moreover, G′ ∈ P(3) ∩ Free({T2,2,2}).

Proof. Observe that G′ is s skeleton subgraph in G. Therefore, α(G) ≤ α(G′). Prove the reverse
inequality. Let IS be a m.i.s. for G′. If the vertices y1 and xk−1 do not belong to IS simultaneously then
IS is a m.i.s. for G. If y1 ∈ IS and xk−1 ∈ IS then consider the degree of the vertex xk. If deg(xk) = 2
then IS ∪ {xk} \ {xk−1} is a m.i.s. for G. If deg(xk) = 3 (i.e., (y, xk) ∈ E(G)) and there exists a vertex z
adjacent to xk−2 and different from xk−1 and xk−3 then either z = y or z is adjacent to y. Otherwise, the
vertices xk−1, xk−2, z, xk, y, y1, and y2 would induce a subgraph T2,2,2 in G. Then IS ∪ {xk} \ {xk−1}
(if y �∈ IS) or IS ∪ {xk, xk−2} \ {xk−1, y} (if y ∈ IS) is a m.i.s. for G. Thus, in both cases, there is an
independent set in G with the number of vertices equal to α(G′). Therefore, α(G) ≥ α(G′). Hence, the
independence numbers of G′ and G are equal.
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Show that G′ ∈ P(3) ∩ Free({T2,2,2}). For this, it suffices to check that G′ has no induced sub-
graphs T2,2,2 containing xk−1 and y1. Suppose that such a subgraph exists. Let z∗ denote its vertex of
degree 3. Obviously, z∗ belongs to the intersection of the sets

N1(y1) ∪ N2(y1), N1(xk−1) ∪ N2(xk−1).

Furthermore,

N1(y1) ∪ N2(y1) ⊆ {x1, x2, xk, y2, y3},

N1(xk−1) ∪ N2(xk−1) ⊆ {xk−3, xk−2, xk, x1, x, y},
where x �∈ V (Ck) is a vertex adjacent to xk−2. Since

{
x1, x2, xk, y2, y3

}
∩

{
xk−3, xk−2, xk, x1, x, y

}
=

{
x1, xk

}
,

this implies that z∗ ∈ {x1, xk}. If z∗ = x1 then the formation of an induced subgraph T2,2,2 is impossible
because it is prevented by the edge (x2, y2). If z∗ = xk then a subgraph T2,2,2 can be induced by vertices
xk, x1, y1, xk−1, xk−2, y, and z′, where (z′, y) ∈ E(G′) and z′ �∈ {xk−3, xk}, which is impossible since
for z′ �= x3 the vertices xk, x1, x2, xk−1, xk−2, y, and z′ induce a subgraph T2,2,2 in G, and for z′ = x3

the vertices x3, x2, x1, y, xk−3, x4, and x5 induce such a subgraph in G. Therefore, also in the second
case an induced subgraph T2,2,2 does not appear.

Lema 7 is proved.

Lemma 8. If G′ is obtained from G by (P2) then

α(G) = α(G′) + 2, G′ ∈ P(3) ∩ Free({T2,2,2}).

Proof. Prove there exists a m.i.s. for G containing at least one of the vertices x1 and y1. Obviously,
if some m.i.s. IS of this graph contains none of these vertices then, by the maximality of IS, at least
one of the vertices in {xk−1, y2} and at least one of the vertices in {xk, x2} belong to this set. At the
same time, in each of these sets, exactly one vertex possesses this property. Therefore, if xk−1 ∈ IS then
IS ∪ {y1} \ {xk−1} is a m.i.s. for G and if y2 ∈ IS then IS ∪ {y1} \ {y2} is also m.i.s. for G. Hence,
there is always a m.i.s. for G containing either x1 or y1.

Prove now that there exists a m.i.s. for G containing the vertices x1, xk−1, y, y2 or the vertices
xk−2, xk, y1, x2. Suppose for definiteness that y1 belongs to some m.i.s. IS′ in G. We may assume that
xk ∈ IS′ (it is clear that, by the maximality of this independent set, either xk or y belongs to it; if y ∈ IS′

the it can be replaced with xk). A similar argument leads to the conclusion that xk−2 and x2 belong
to IS′. It is proved similarly that if x1 ∈ IS′ then {x1, xk−1, y, y2} ⊆ IS′.

Note that IS′ \ {xk, y1} is an i.s. for G′. If IS′ contains x1, xk−1, y, y2 then IS′ \ {xk−1, x1} is an i.s.
for G′. Hence, α(G′) ≥ α(G)− 2. Prove the reverse inequality. By analogy with the previous arguments,
we can prove that there exists a m.i.s. IS′′ for G′ containing either the vertices xk−2 and x2 or y and y2.
In the first case IS′′ ∪ {xk, y1} is an i.s. for G, and in the second, so is IS′′ ∪ {xk−1, x1}. Therefore,
α(G) ≥ α(G′) + 2. These inequalities imply that

α(G) = α(G′) + 2.

Check that the graph G′ belongs to the class P(3) ∩Free({T2,2,2}). Clearly, G ∈ P(3). Suppose that
G contains an induced subgraph H isomorphic to T2,2,2 with a vertex z of degree 3. Clearly, H contains
exactly one of the edges (y, x2), (xk−2, y2). It is also clear that z �∈ {x2, y2}. Therefore, only the following
cases are possible:

Case 1: z = y and H contains the simple path P = (y, x2, x3).
Case 2: z = xk−2 and H contains the simple path P = (xk−2, y2, y3).
Case 3: z = xk−3 and H contains the simple path P = (xk−3, xk−2, y2).
Case 4: z = x3 and H contains the simple path P = (x3, x2, y).
Case 5: z = y3 and H contains the simple path P = (y3, y2, xk−2).
Case 6: H contains the simple path P = (z, y, x2).
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In each of the cases, there is an induced subgraph T2,2,2 in G obtained from H as follows: in Cases
1–2, by replacing the path P with the path (y, xk, x1) or with (xk−2, xk−1, y1); and in Cases 3–6, by
replacing the edges (xk−2, y2), (x2, y), (y2, xk−2), and (y, x2) with the edges (xk−2, xk−1), (x2, x1),
(y2, y1), and (y, xk); a contradiction. Hence, G′ ∈ Free({T2,2,2}).

Lemma 8 is proved.

Lemma 9. Let G be a simplest graph containing an accordion of the first type induced by the
vertices x1, x2, . . . , xp, y1, y2, . . . , yp. Then

α(G) =

{
α(G \ {x1}) if p odd,

α(G \ {y1, y2, . . . , yp}) + p/2 if p even.

Proof. Consider the case of p odd. If there is a m.i.s. for G not containing x1 then α(G) = α(G \ {x1}).
If there is a m.i.s. IS in G containing x1 then

IS ∪ {y1} \ {x1}, or IS ∪ {y1, x2} \ {x1, y2},
or IS ∪ {y1, x2, y3} \ {x1, y2, x3}, . . . , or IS ∪ {y1, x2, y3, x4, . . . , yp} \ {x1, y2, x3, y4, . . . , xp}

is a m.i.s. for G. Therefore, in all possible cases,

α(G) = α(G \ {x1}).

Let p be even. Denote the graph G \ {y1, y2, . . . , yp} by G′. Obviously, there exists a m.i.s. IS
for G′ containing exactly one half of the vertices x1, x2, . . . , xp. This implies that there is a m.i.s.
for G containing exactly α(G′) + p/2 vertices (it is obtained by adding p/2 vertices from the set
{y1, y2, . . . , yp} nonadjacent to the vertices in {x1, x2, . . . , xp} ∩ IS). Therefore, α(G) ≥ α(G′) + p/2.
It is also not hard to validate the reverse inequality, which follows from the fact that any m.i.s. for G
contains at most one half of the vertices y1, y2, . . . , yp. Comparing both inequalities, we infer that

α(G) = α(G \ {y1, y2, . . . , yp}) + p/2.

Lemma 9 is proved.

Theorem 2. The IS problem for the graphs of the class P(3) ∩ Free({T2,2,2}) is polynomially
reduced to the IS problem the for graphs of the class P(3) ∩ Free({A10, A11, . . .}).

Proof. In proving Theorem 1, we have showed how to check in polynomial time whether a vertex x of
degree 3 in an arbitrary C-block in P(3) ∩ Free({T2,2,2}) is a vertex of degree 3 of some of its induced
apples Ak, k ≥ 10 (and find this apple if it exists). If there is no cycle adjoint to this apple and the graph
itself is simplest then there exists an accordion (of the first or second type) containing x. Clearly, this
accordion can be determined in polynomial time.

The reduction rules formulated in this and previous sections imply that Problem IS for the graphs in
P(3) ∩ Free({T2,2,2}) is reduced to the same problem for simplest graphs in

P(3) ∩ Free({A10, A11, . . .}).
At each reduction iteration, one of the following actions is implemented for one of the graphs:

(1) distinguishing C-blocks;
(2) removal of a vertex;
(3) check if the graph is isomorphic to a tire or a punctured tire;
(4) destruction of an accordion.
Every action is executed in polynomial time. At each iteration, we consider the quantity 7n3 + 3n2 +

n1 + n0, where ni is the total number of vertices of degree i in the current graphs. Show that the
application of operations (1)–(4) decreases this quantity. For (2), (3), and for the destruction of an
accordion of the first type in (4), this is obvious. It is easy to see that the destruction of an accordion
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by (P1) decreases this quantity by 8, and its destruction by (P2), by 28. Note that if G ∈ P(3) and
a vertex v belongs to more than one C-block in G then:

(a) either the degree of v is equal to 3 and v belongs to two C-blocks in G in each of which it has
degree at most 2;

(b) or the degree of v is equal to 3 and v belongs to three C-blocks in G in each of which it has
degree 1;

(c) or the degree of v is equal to 2 and v belongs to two C-blocks in G in each of which it has degree 1.
With these cases taken into account, it is easy to verify that then sum under consideration decreases

after distinguishing C-blocks. Thus, at any moment of the process, the weighted sum of the degrees of
the vertices does not exceed 7|V (G)|, which gives the upper bound 7|V (G)| for the number of iterations.
Therefore, the reduction is also polynomial.

Theorem 2 is proved.

4. THE MAIN RESULTS

Theorem 3. For each i > 2, Problem IS for the graphs of the class D(3) ∩ Free({T2,2,i}) is
polynomially reduced to the same problem for graphs in D(3) ∩ Free({T2,2,2}).

Proof. Let us first demonstrate that, for every connected graph G ∈ D(3) ∩ Free({T2,2,i}), either
G ∈ Free({T2,2,2}) or G has at most 3 · 2i+2 − 2 vertices.

Suppose that G contains an induced subgraph T2,2,2 such that deg(x) = 3 and x is adjacent to yk

and yk is adjacent to zk for each k ∈ 1, 3. Prove that G does not contain a vertex y situated at distance
i + 3 from x. Suppose the contrary and consider the shortest path from x to y:

P = (x1 = x, x2, x3, . . . , xi+4 = y).

Clearly, x2 ∈ {y1, y2, y3}. Without loss of generality, we may assume that x2 = y1. By the choice of P ,
each of the vertices y2 and y3 can be adjacent to none of the vertices xj with j > 3. For the same reasons,
none of the vertices z1, z2, z3 can be adjacent to xj for which j > 4. The two cases are possible: x3 �= z1
or x3 = z1.

Case 1: x3 �= z1. If z1 and x4 are adjacent then the vertices x, y1, z1, y2, z2, y3, z3, x4,x5, . . . , xi+1

generate a subgraph T2,2,i in G. Therefore, we may assume that (z1, x4) �∈ E(G). If none of the vertices
y2, y3, z2, and z3 is adjacent to x3 or x4 then G contains the subgraph T2,2,i induced by the vertices
x1, y2, y3, z2, z3, x2, x3, . . . , xi+1. If the vertices y2, y3, z2, and z3 include a vertex yk or zk adjacent
to x3 (k ∈ {2, 3}, such a vertex is unique) and none of them is adjacent to x4 then G contains the
subgraph T2,2,i induced by the vertices yk, zk, x2, x3, z1, x4, . . . , xi+3. If the vertices y2, y3, z2, and z3

include a vertex zk adjacent to x4 (by the choice of P , such a vertex can belong only to the set {z2, z3})
then x, y1, z1, y2, z2, y3, z3, x4, x5, . . . , xi+1 induce a subgraph T2,2,i.

Case 2: x3 = z1. If none of the vertices z2 and z3 is adjacent to x4 then G contains the subgraph T2,2,i

induced by x1, y2, z2, y3, z3, x2, x3, . . . , xi+1. If there is a vertex zk (k ∈ {2, 3}) adjacent to x4 (such
a vertex is unique) then yk, zk, x2, x3, x4, . . . , xi+4 induce a subgraph T2,2,i in G.

Thus, there is no vertex y. This means that if G contains an induced subgraph T2,2,2 than each of its
vertices is at distance at most i + 2 from x. Hence,

|V (G)| � 1 + 3 + 3 · 2 + · · · + 3 · 2i+1 = 3 · 2i+2 − 2.

Therefore, there are only finitely many connected graphs in D(3) ∩ Free({T2,2,i}) \ Free({T2,2,2}) for
each fixed i. This yields the reduction mentioned in the statement of the theorem.

Theorem 3 is proved.

The main result of the article is as follows:

Theorem 4. For each fixed i, the IS problem for graphs of the class P(3) ∩ Free({T2,2,i}) is
polynomially solvable.
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Proof. It follows from Theorems 2 and 3 that Problem IS for the graphs in P(3) ∩ Free({T2,2,i}) is
polynomially reduced to the same problem for graphs in P(3) ∩ Free({A10, A11, . . .}). In [4], it was
shown that, for each fixed k, the class P ∩ Free({Ak, Ak+1, . . .}) is IS-easy. Therefore, for each fixed i,
the class P(3) ∩ Free({T2,2,i}) is IS-easy, too.

Theorem 4 is proved.
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