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The concept of economic equilibrium under uncertainty is applied to a model of
insurance market where, in distinction to the classic Borch’s model of a reinsurance
market, risk exchanges are allowed between the insurer and each insured only, not
among insureds themselves. Conditions characterizing an equilibrium are found.
A variant of the conditions, based on the Pareto optimality notion and involving
risk aversion functions of the agents, is derived. An existence theorem is proved.
Computation of the market premiums and optimal indemnities is illustrated by an
example with exponential utility functions.
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1. Introduction. We investigate the problem of finding an equilibrium
for a model of an insurance market in which each potential policyholder
(insured) shares his initial risk with the insurer (paying a premium to the
insurer) without possibility of risk exchange with the other insureds.

The notion of Walrasian equilibrium borrowed from mathematical eco-
nomics has been applied to insurance models since Borch’s works (1960,
1962). This concept implies that contracts made in the market are Pareto-
optimal and, which is of importance, premiums of the contracts are deter-
mined by the market conditions as a whole, not only by covered risks. Borch’s
theorem on Pareto-optimal risk exchanges in the model of a reinsurance
market was extended to a constrained case in Gerber (1978), an overview
of applications of the Borch’s theorem can be found in Lemaire (1990). A
characterization of equilibrium in the reinsurance market was developed in
Buhlmann (1980, 1984) and later in Aase (1993, 2002) where risk alloca-
tion problems in financial markets were also studied. Actually, a particular

1



case of the model suggested in the paper, where risk is allocated between
insurer and the only insured (n = 1), has been studied in the frame of the
Borch’s model of reinsurance market by several authors, e.g., Lemaire (1990),
Aase (1993, 2002). The presented work is expected to be consistent with the
known results for the case n = 1.

Our setting differs from the classical Borch’s model of a reinsurance mar-
ket by the following: In the suggested model, each insured is independent of
the other insureds in the sense that he concludes a treaty on risk exchange
with the insurer only, isolated from the other insureds. In particular, the
agents cannot hand in all their initial risks to a pool and then distribute
shares of the summary risk back, as suggested by the optimal risk sharing
rules in the reinsurance market model. Such independence (or separation)
of insureds is justified by that we regard them as individual buyers of di-
rect insurance, not as (re)insurance companies that might trade risks among
themselves. It is worth noting that the model is not within the monopoly
theory, according to which the monopolist (insurer) maximizes his utility
constrained by that the insured’s utility equals indifference value. However,
the insured may just refuse the insurance contract, not losing anything of his
utility, while the related decrease in insurer’s utility is then quite percepti-
ble. In this sense, the monopoly solution is not stable. The variation of the
Borch’s model suggested in the paper is free of such a disadvantage (and, by
the way, is “more fair” for the insureds): in the equilibrium each agent has
his maximal utility under equilibrium prices and has no desire to change the
decision.

The main purpose of the paper is to give necessary and sufficient con-
ditions for determining an equilibrium and then to compare them with the
characterization of equilibrium in the classical model of a reinsurance market.
The equilibrium notion employed in the present work substantiates a choice
of a single contract among the family (generally uncountable) of Pareto-
optimal contracts. The paper uses results in Golubin (2005) on description
of Pareto optima in the insurance market.

The article is organized as follows. In section 2 the model of an insurance
market under investigation is presented. Section 3 gives a characterization
of an equilibrium in the market. Section 4 deals with Pareto-optimal con-
tracts and provides two variants of necessary and sufficient conditions for
Pareto optimality in the model. In section 5 we derive an equilibrium condi-
tion based on the Pareto optimality characterization and involving the risk
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aversion (tolerance) functions of the agents. We end the exposition with a
discussion (section 6) of the equilibrium existence problem.

2. The market model. We study a market consisting of n + 1 agents:
an insurer and a group of n insureds. The initial insureds’ risks (losses)
Xj, j = 1, . . . , n are nonnegative independent stochastic variables defined on
the same probability space (Ω,F , P ). The sigma-algebra of events F = σ(X)
is generated by the initial risks portfolio X = (X1, . . . , Xn). It means that
the uncertainty in the model is completely described by the initial risks Xj.

The distribution function of Xj is denoted by Fj(x)
def
= P{Xj ≤ x}.

The agents’ preferences are represented by their utility functions ui(x)
such that u′i(x) > 0 and u′′i (x) < 0 for all i = 0, . . . , n.

The insurer and an insured negotiate to conclude a treaty on risk ex-
change between them. We suppose that any coalitions within the group of
insureds are not allowed, so each insured stands as a separate decision maker
in bargaining with the insurer. A resulting risk exchange is identified with
a set of Borel-measurable functions I = (I1, . . . , In) called indemnity func-
tions or policies, defined on [0,∞), and satisfying the standard constraints
0 ≤ Ij(x) ≤ x for j = 1, . . . , n. This means that an indemnity payment
Ij(Xj) to the j-th insured is always nonnegative and not greater than the
loss size Xj. Like in the model of a reinsurance market studied in Borch
(1962) and Buhlmann (1980, 1984), we introduce a price functional that
assigns the premium H[Y ] for a risk Y of an insured as

H[Y ] = E [ΦY ]. (1)

Here Φ is a positive stochastic variable defined on (Ω,F , P ) and therefore
it can be represented as an appropriate Borel-measurable function (see, e.g.,
Tucker (1967)), Φ = φ(X1, . . . , Xn). The price of a constant risk must be the
same constant, so we assume E Φ = 1. Following Buhlmann, we will call Φ
a market price density. An explanation of the term is that one can interpret
H[Y ] as an expectation of Y with respect to a distorted probability measure,
EQY = E [ΦY ]. Here Φ is the Radon-Nikodym derivative of measure Q
with respect to the original measure P . The linearity of the price functional
allows for eliminating a kind of arbitrage possibilities: Let Y1 be a share of an
insured’s risk Xj and Y2 = Xj − Y1 be the rest of the risk. The insurer may,
first, insure the entire risk Y1+Y2 or, second, do it by parts: to insure the share
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Y1 and, immediately after that, Y2. If, say, H[Y1+Y2] < H[Y1]+H[Y2] then in
the second case the insurer raises the premium increment from nothing. Such
a situation should not be possible in any consistent model of the insurance
market. Thus the price functional H must be linear (with respect to risks of
each insured).

The expected utilities of final capitals of the insurer and j-th insured are

J0[I]
def
= E u0(w0+

n∑
s=1

(Ps−Is(Xs))) and Jj[I]
def
= E uj(wj−Pj−Xj+Ij(Xj)),

j = 1, . . . , n. Here Pj = E [ΦIj(Xj)] is the premium paid by j-th insured
to the insurer, wi, i = 0, . . . , n, denote initial nonstochastic capitals of the
agents. In the sequel, all the expectations, e.g. the premiums E [ΦIj(Xj)]
and expected utilities, are assumed to be finite.

It is essential to note that E [ΦIj(Xj)] = E [ΨjIj(Xj)], where

Ψj = E [Φ|Xj] (2)

is the conditional expectation of Φ with respect to a sigma-algebra σ(Xj)
generated by Xj. Thus, to define all the premiums Pj = E [ΨjIj(Xj)] en-
tering the functionals Ji, it suffices to define, instead of Φ, the stochastic
variables Ψj, j = 1, . . . , n. By the construction, each Ψj is positive and such
that EΨj = 1. Since the conditional expectation is σ(Xj)-measurable, it
can also be represented as Ψj = ψj(Xj) a.s., where ψj(x) is some Borel-
measurable function. More exactly, ψj(Xj) is a result of taking expectation
of Φ = φ(X1, . . . , Xn) with respect to X1, . . . , Xj−1, Xj+1, . . . , Xn. In the
sequel we will call Ψj the j-th price density.

Define the notion of equilibrium in the insurance market as follows: Price
densities Ψ = (Ψ1, . . . ,Ψn) and policies I = (I1, . . . , In) constitute an equi-
librium if Ij, j = 1, . . . , n, solve the problems

max
I

Ji[I], i = 0, . . . , n. (3)

The problem of finding an equilibrium is then to determine from the agents’
preferences and distributions Fj(x) of the insureds’ risks: (a) the price func-
tions ψj(x); (b) the policies Ij(x) solving problems (3) in which the premiums
depend on policies as Pj = E [ψj(Xj)Ij(Xj)].
After obtaining the price densities Ψj = ψj(Xj), one may construct the mar-
ket price density as

Φ =
n∏
k=1

Ψk. (4)
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Indeed, taking into account (2), independence of all Ψk, and the fact that
any priced risk Y = Ij(Xj) depends on variable Xj only, we have that the
premium calculated via “initial” market price density, Pj = E [ΦY ], coincides

with Pj = E{
n∏
k=1

Ψk · Y } = E{
n∏
k 6=j

Ψk}E [ΨjY ] = E [ΨjY ].

Remark in conclusion that the only difference between the presented def-
inition of equilibrium and the equilibrium in the reinsurance market model
(see, e.g., Buhlmann (1984), Aase (1993)) follows the difference in defini-
tions of an admissible risk exchange: Maxima in (3) are taken over indem-
nities Ij(Xj) each depending on j-th risk only and satisfying the constraints
0 ≤ Ij(Xj) ≤ Xj a.s., j = 1, . . . , n. In the corresponding (n+1)-agent Borch’s
model, where the initial risks are (0, X1, . . . , Xn), all risk exchanges Zi that

satisfy market clearing condition
n∑
i=0

Zi =
n∑
j=1

Xi are admissible in maximiza-

tion. The market clearing condition is evidently met also in our setting,
where the n + 1 agents only trade among themselves. Like in Buhlmann
(1984), due to linearity of the price functional H[Y ] the price of the wealth
after exchange is equal to the price of the initial wealth (the budget con-
straints) for all the agents. So problems (3) are defined over a set of risk
exchanges which is narrower than that in the Borch’s model of a reinsurance
market.

3. Equilibrium characterization. The next theorem presents neces-
sary and sufficient conditions for determination of an equilibrium. For con-

venience, we will use designations A = w0 +
n∑
s=1

(Ps − Is(Xs)) and Bj =

wj − Pj − Xj + Ij(Xj) for the final capitals of the insurer and insureds re-
spectively.

Theorem 1 Collections Ψ = (Ψ1, . . . ,Ψn) of price densities and I = (I1, . . . , In)
of policies are an equilibrium if and only if

E [u′0(A)|Xj] = ΨjE u
′
0(A) a.s. (5)

u′j(Bj) = ΨjE u
′
j(Bj) a.s. for j = 1, . . . , n. (6)

Proof. Denote by I a maximizer in problems (3). Fix any (admissible)
indemnity rule L and consider the policies Ij(x) + λ4j(x), where λ ∈ [0, 1]
is a parameter and 4j(x) = Lj(x) − Ij(x), j = 1, . . . , n. By optimality of
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I, the point λ = 0 maximizes all the functions Ji(λ) = Ji[I + λ4] on the
interval [0, 1]. Due to concavity of Ji[L], the fulfillment of the inequalities

J ′i(λ)|λ=0 ≤ 0 (7)

for any indemnity rule L and for all i = 0, . . . , n is necessary and sufficient
for optimality in (3). After differentiating each Ji(λ), it can be easily seen
that (7) is equivalent to:

E {[−E [u′0(A)|Xj] + ψj(Xj)E u
′
0(A)]4j(Xj)} ≤ 0,

E
{
[u′j(Bj)− ψj(Xj)E u

′
j(Bj)]4j(Xj)

}
≤ 0

for all j = 1, . . . , n. This means that policies Ij solve (3) if and only if they
maximize the integrals

∞∫
0

[ψj(x)− qj(x)]Lj(x)dFj(x) subject to 0 ≤ Lj(x) ≤ x, (8)

∞∫
0

[rj(x)− ψj(x)]Lj(x)dFj(x) subject to 0 ≤ Lj(x) ≤ x, (9)

where we denote:

qj(x) = E [u′0(A)|Xj = x]/E u′0(A) and (10)

rj(x) = E [u′j(Bj)|Xj = x]/E u′j(Bj), j = 1, . . . , n. (11)

A characterization of solutions to this kind of optimization problems is given
by a result known as the Neyman-Pearson lemma (see e.g. Lehmann (1959),
and Golubin (2006) for an application to insurance problems). According to
it, an admissible policy Ij(x) is optimal in (8) if and only if Ij(x) = 0 on
x : ψj(x)− qj(x) < 0 and Ij(x) = x on x : ψj(x)− qj(x) > 0 up to a set in
[0,∞) of zero Fj-measure. Applying the Neyman-Pearson lemma to problem
(9) also, we have

Ij(x) =

{
0, for x : rj(x) ≤ ψj(x) ≤ qj(x) and rj(x) < qj(x)
x, for x : rj(x) ≥ ψj(x) ≥ qj(x) and rj(x) > qj(x)

(12)

up to a set of zero Fj-measure. Remark that since EΨj = 1, from (10)-(11)
we get

∞∫
0

[ψj(x)− qj(x)]dFj(x) = 0 =

∞∫
0

[rj(x)− ψj(x)]dFj(x). (13)
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Note also that the definitions (10)-(11) of rj and qj along with definitions of
the capitals Bj and A (in the latter, recall, all Is(Xs), s 6= j, are independent
of Xj) allow for representing the functions as qj(x) = sj(−Ij(x)) and rj(x) =
vj(−x+ Ij(x)), where sj(·) and vj(·) are some decreasing functions.

Now prove that (12) implies ψj(x) ≡ qj(x) and ψj(x) ≡ rj(x) almost
everywhere with respect to Fj-measure. Suppose at first that as x increases
from 0 we have rj(x) ≤ ψj(x) ≤ qj(x) and rj(x) < qj(x) (for definiteness,
let rj(x) < ψj(x) ≤ qj(x)). Then, by (12), Ij(x) remains equal to 0, while
qj(x) = sj(−Ij(x)) is constant and rj(x) = vj(−x + Ij(x)) is increasing.
Such a pattern cannot be valid for all x (with respect to Fj-measure) as
(13) would be violated. Note in this connection that (12) excludes situations
when ψj(x) < min{rj(x), qj(x)} or ψj(x) > max{rj(x), qj(x)} as impossible
for optimal Ij. Hence there must be encountered a set of arguments x where

rj(x) ≥ ψj(x) ≥ qj(x) and rj(x) > qj(x). (14)

When x reaches the set, Ij(x) switches from 0 to x. This change of Ij(x) im-
plies a decrease of rj(x) and an increase of qj(x), which means a contradiction
with attaining (14).

Suppose rj(x) ≥ ψj(x) ≥ qj(x) and rj(x) > qj(x) as x increases from
0. Similar to the reasonings above, we find in this case that at first Ij(x)
remains equal to x. After switching Ij(x) to zero when inequalities rj(x) ≤
ψj(x) ≤ qj(x) and rj(x) < qj(x) become valid, there must be a decrease of
qj(x) and an increase of rj(x). This contradicts the latter inequalities.

Following these reasonings, we come to that the only feasible case is
ψj(x) ≡ qj(x) and ψj(x) ≡ rj(x) up to a set of zero Fj-measure. From the
definitions (10)-(11) of qj(x) and rj(x) we get (5)-(6).

Clearly, if (5)-(6) hold then inequalities (7) are satisfied, converting into
equalities. Hence, I is optimal in (3). 2

Compare Theorem 1 and a characterization of equilibrium in the Borch’s
model of a reinsurance market (see Buhlmann (1980, 1984)):
u′i(wi − Zi) = ΦE u′i(wi − Zi) a.s., where Zi is the “after exchange” risk
of i-th agent in equilibrium. These optimality equations correspond in our
case to n pairs of equations (5)-(6) — recall that 2n functions ψj(x), Ij(x),
j = 1, . . . , n, are to be found in our setting. Also, the market price density
Φ in the Borch’s model is a function Φ = Φ(XM) of total initial risk XM =
X1 + . . .+Xn (as well as the optimal risk exchanges Zi), while in (5)-(6) the
j-th price density Ψj = ψj(Xj) depends on the j-th insured’s risk Xj only.

7



Examine a degenerated case of risk-neutral insurer, i.e., u0(x) = x. Since
u′0(x) ≡ 1, from (5) we have Ψj = 1 a.s. By (6), Ij(x) = x for all j and,
thus, in equilibrium the only optimal policy is full coverage of the losses, the
premiums E [ΨjIj(Xj)] coincide with the actuarial values EXj.

Remark 1.
Upon obtaining the equilibrium price functions ψj(x) j = 1, . . . , n, one can,

in view of (4), put the market price density Φ =
n∏
j=1

ψj(Xj). Another and,

perhaps, more natural way is to put

Φ = u′0(A)/E u′0(A),

with the equilibrium indemnities Ij(Xj) substituted into the final capital A.
Indeed, from (5) it follows E [{u′0(A)/E u′0(A)}|Xj] = ψj(Xj) a.s. for all j.

4. Pareto optimality. Consider a risk exchange in the insurance market
in which now the premium Pj paid by the j-th insured is not defined by
the price density and indemnity function as in the previous sections, but
is regarded as an independent variable chosen jointly with a policy 0 ≤
Ij(x) ≤ x. An insurance contract is identified with a pair (P, I), where
P = (P1, . . . , Pn) is a vector of premiums paid by the n insureds, and I =
(I1, . . . , In) is a vector-function of policies.

Like the notation in section 2, we introduce the insurer’s expected utility

(of his final capital) J0[P, I]
def
= E u0(w0 +

n∑
s=1

(Ps− Is(Xs))) and the insured’s

expected utility Jj[P, I]
def
= E uj(wj−Pj−Xj+Ij(Xj)), j = 1, . . . , n. By def-

inition, a contract (P̂ , Î) is called Pareto-optimal if there is no other contract
(P, I) such that Ji[P, I] ≥ Ji[P̂ , Î] for i = 0, . . . , n, and at least one of the
inequalities is strict. That is, under the contract any agent cannot improve
his utility without worsening the utility of at least one other agent.

A method for obtaining a Pareto-optimal solution can be found in Gerber
(1978) (see also Borch (1960) and Aase (2002)) and consists in maximization
of a weighted sum of the agents’ utilities: Fix a vector k = (k0, . . . , kn) such
that k > 0 component-wise and

∑n
0 ki = 1, then maximize the functional

n∑
i=0

kiJi[P, I] over the set of insurance contracts (P, I).

Show that in our case this procedure generates the set of all Pareto-
optimal contracts. As is known (see, e.g., Gerber (1978) and Aase (2002)), if
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(P̂ , Î) is a Pareto-optimal solution then, due to concavity of all the functionals
Ji, there exists a vector k ≥ 0,

∑n
0 ki = 1 such that (P̂ , Î) is a maximizer in

the problem above. Suppose k0 = 0, then there is kj > 0 for some j > 0.

Since Jj[P̂ , Î] = E uj(wj − P̂j − Xj + Îj(Xj)), we can choose Pj < P̂j that
gives a greater value of the weighted sum of the utilities, which leads to a
contradiction with optimality of (P̂ , Î). Suppose kj = 0 for some j > 0. As

k0 > 0 and J0[P̂ , Î] = E u0(w0 +
n∑
s=1

(P̂s − Îs(Xs))), we can choose a contract

with Pj > P̂j at which the weighted sum has a greater value so that we come
to a contradiction.

For convenience we set δj = kj/k0 and rewrite the maximization problem
above as

maximize J [P, I] ≡ J0[P, I] +
n∑
j=1

δjJj[P, I], (15)

where δj > 0, and maximization is taken over P ∈ Rn and I = (I1, . . . , In) :
0 ≤ Ij(x) ≤ x for j = 1, . . . , n. As we have shown, the n-parameter family

{(P̂ δ, Îδ)}δ>0 of maximizers in (15) consists of all Pareto-optimal contracts.
The problem of finding Pareto optimality conditions via solving (15) was

studied in Golubin (2005). Below we reformulate the relevant theorems from
the paper; it turns out that the theorems’ statements are preserved, while the
assumptions can now be weakened with respect to admitting the insureds’
risks distributions Fj with arbitrary supports1, not only with interval-shaped
supports. The latter is achieved by employing the Neyman-Pearson lemma,
instead of using the directional derivatives technique only.

The next theorem gives a characterization of the Pareto-optimal contract
(P̂ , Î) = (P̂ δ, Îδ) (below we will omit the superscript δ for convenience) in
the form of necessary and sufficient conditions for optimality in (15). Denote,
respectively, by

A = w0 +
n∑
s=1

(P̂s − Îs(Xs)) and Bj = wj − P̂j −Xj + Îj(Xj) (16)

the final capitals of the insurer and j-th insured under a contract (P̂ , Î).

1The support supp Fj of a probability distribution Fj is the least closed set S ⊆ R such
that P{Xj ∈ S} = 1. For example, the support of a Poisson distribution is {0, 1, . . .} and
the support of an exponential distribution is [0,∞).
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Theorem 2 A contract (P̂ , Î) solves (15) – i.e., it is Pareto-optimal – if and
only if

E [u′0(A)|Xj] = δju
′
j(Bj) a.s. j = 1, . . . , n. (17)

Proof. Let (P̂ , Î) be a maximizer in (15). Denote 4P = P − P̂ , where P is
an arbitrary vector in Rn, and let 4(x) = (41(x), . . . ,4n(x)) be a vector-
function with 4j = Ij − Îj, where Ij is an arbitrary policy, j = 1, . . . , n. For

λ ∈ [0, 1] define Pλ = P̂ + λ4P and Iλ = Î + λ4, and consider a function

J(λ)
def
= J [Pλ, Iλ] (see (15)). Optimality of Î means that λ = 0 maximizes

J(λ) on the interval [0, 1]. Due to concavity of all the functionals Ji, this is
equivalent to J ′(0) ≤ 0 for any P and indemnity rule I, or

n∑
s=1

4PsE (u′0(A)− δsu
′
s(Bs))−

n∑
s=1

E {[u′0(A)− δsu
′
s(Bs)]4s(Xs)} ≤ 0. (18)

Setting 4j(x) ≡ 0 for all j, by (18) we have

E(u′0(A)− δju
′
j(Bj)) = 0 (19)

for j = 1, . . . , n as (18) holds for any choice of 4P . Then fixing any j
and setting 4s(x) ≡ 0 for all s 6= j, we obtain that (18) is equivalent to

E
{
(δju

′
j(Bj)− u′0(A))4j(Xj)

}
≤ 0, j = 1, . . . , n. In other words, Îj is a

solution to the problem

maximize

∞∫
0

V̂j(x)Ij(x)dFj(x) subject to 0 ≤ Ij(x) ≤ x, (20)

where V̂j(x)
def
= E

[
δju

′
j(Bj)− u′0(A)|Xj = x

]
. Analogous to the Theorem 1’s

proof, by the Neyman-Pearson lemma we have that a policy Îj solves (20) if
and only if

Îj(x) =

{
0, if V̂j(x) < 0

x, if V̂j(x) > 0
up to a set of zero Fj-measure.

First examine the case V̂j(0) < 0. When x increases from x = 0, the function

V̂ (x) increases under Îj(x) = 0 (see the definition of V̂ (x) along with (16)).
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By (19), there must be a point at which Îj(x) switches to x as V̂j(x) becomes

positive. However, under this policy V̂j(x) is a decreasing function as follows
from concavity of u0(·). Thus, we have a contradiction with the positiveness
of V̂j(x).

Suppose that V̂j(0) > 0. Similar to the arguments above, at first Îj(x) is

equal to x with a decreasing function V̂j(x) > 0. Then, after switching Îj(x)

to zero when V̂j(x) becomes negative, the function V̂j(x) becomes increasing

and we come to a contradiction. Thus, optimality of Îj in (20) (and, hence,

in the initial problem (15)) means V̂j(x) ≡ 0 almost everywhere with respect
to Fj-measure, that is, E [u′0(A)|Xj]− δju

′
j(Bj) = 0 a.s. for all j = 1, . . . , n.

2

To continue the analysis, recall that the absolute risk aversion function
of an agent is r(x) = −u′′(x)

u′(x)
and the reciprocal of it, ρ(x) = 1/r(x), is the

risk tolerance function. Consider (17) under given Xj = x and formally
differentiate the equation with respect to x. Expressing then δj from (17),
we get a differential equation

Î ′j(x) = ρ0j(x)/[ρ0j(x) + ρj(Bj(x))] (21)

with initial condition Îj(0) = 0, j = 1, . . . , n, where Bj(x) = wj − P̂j −
x + Îj(x) is the final insured’s capital Bj under Xj = x (see (16)) and

ρ0j(x)
def
= −E [u′0(A)|Xj = x]/E [u′′0(A)|Xj = x]. The introduced function

ρ0j(x) is the ratio of the two expectations conditioned by Xj = x, but not
the expectation of the risk tolerance ρ0(A) = −u′0(A)/u′′0(A) under Xj = x.
The form of ρ0j(x) is thus generally affected by the risk distributions Fs,
s 6= j. In the sequel it will be referred to as a risk tolerance ratio of the
insurer with respect to j-th insured.

Corollary 1 A contract (P̂ , Î) is Pareto-optimal if and only if

E [u′0(A)|Xj = 0] = δju
′
j(wj − P̂j) for some δj > 0 and (22)

Î ′j(Xj) =
ρ0j(Xj)

ρ0j(Xj) + ρj(Bj)
a.s. (23)

with initial conditions Îj(0) = 0, j = 1, . . . , n.

The proof is given in Appendix.
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Remark 2.
In order to completely define an indemnity Ij(Xj), it suffices to define the
function Ij(x) on the support suppFj of distribution Fj only, not on the
whole interval [0,∞). In this connection, the optimality of a solution to
equations (22)-(23) stated in Corollary 1 is understood in the same sense as
in Wyler (1990), where Pareto-optimal exchanges in the Borch’s model were
characterized:
(i) if premiums P̂j and functions Îj(x) satisfy (22) and solve (21) on [0,∞)

(or at least on [0, Tj] if Tj
def
= sup{suppFj} < ∞) then (P̂ , Î) is optimal in

(15); (ii) if (P̂ , Î) is optimal then there are functions Īj(x) satisfying (22) and

(21) on [0,∞) (or on [0, Tj]) such that Īj(x) ≡ Îj(x) on suppFj, j = 1, . . . , n.
Roughly, this means that one can solve system of equations (21) on, say,
[0,∞) without regard to the shapes of suppFj, j = 1, . . . , n.

5. Equilibrium in terms of risk aversion. Returning to the equilibrium
concept, remark that an equilibrium (Ψ, I) — according to the definition —
gives the individually rational contract (P, I), where the premium vector
P = E [ΨI(X)] component-wise. By individual rationality we mean that the
contract does not lessen the initial utilities, Ji[P, I] ≥ Ji[0, 0], i = 0, . . . , n.
Here the agents’s initial utilities before making a contract are: J0[0, 0] =
u0(w0) for the insurer, and Jj[0, 0] = E uj(wj − Xj), j = 1, . . . , n, for the

insureds. Since J0[P, I] = E u0(w0 +
n∑
s=1

(Ps − Is(Xs))) ≥ J0[0, 0] = u0(w0) in

equilibrium, by Jensen’s inequality and monotonicity of u0(x) we have

n∑
j=1

E [ΦIj(Xj)] ≥
n∑
j=1

E Ij(Xj)

— the summary premium exceeds the actuarial value of the summary risk
taken by insurer.

In connection between Pareto optimality and equilibrium, it is worthwhile
to note that from conditions (5)-(6) in Theorem 1 it follows that (17) in The-
orem 2 is satisfied under a contract (P̂ , Î) equal to the equilibrium contract
(P, I) if we set δj = E u′0(A)/E u′j(Bj) for j = 1, . . . , n, i.e., the equilibrium
contract is necessarily a Pareto optimum.

The next theorem shows how necessary and sufficient conditions for equi-
librium in terms of risk aversion (tolerance) functions are obtained from

12



Theorem 1 and Pareto optimality conditions in Corollary 1. As before,
Bj(x) = wj − Pj − x+ Ij(x) stands for the j-th insured’s final capital under
Xj = x.

Theorem 3 Collections Ψ = (Ψ1, . . . ,Ψn) and I = (I1, . . . , In) constitute
an equilibrium in the market if and only if

Ψj =
exp

∫Xj

0 [ρ0j(t) + ρj(Bj(t))]
−1dt

E {exp
∫Xj

0 [ρ0j(t) + ρj(Bj(t))]−1dt}
a.s., (24)

and policies Ij satisfy

I ′j(x) =
ρ0j(x)

ρ0j(x) + ρj(Bj(x))
(25)

with initial conditions Ij(0) = 0 and premiums Pj equal to E [ΨjIj(Xj)],
j = 1, . . . , n.

Proof. 1. Suppose (Ψ, I) to be an equilibrium. Then, by Theorem 1, (5)
and (6) hold. Hence condition (17) in Theorem 2 is satisfied under Îj = Ij,

P̂j = E [ΨjIj(Xj)], and δj = E u′0(A)/E u′j(Bj). Then from Corollary 1 we
get that the policies Ij satisfy (25).

To prove (24), for given Xj = x we can write (5) as

E u′0(Aj(x)) = ψj(x)E u
′
0(A), (26)

where Aj(x) is a stochastic-valued function Aj(x) = w0 +H[Ij(Xj)]−Ij(x)+
n∑
s 6=j
{H[Is(Xs)] − Is(Xs)}. Formal differentiating (26) with respect to x and

then dividing ψ′j(x) by ψj(x) expressed from (26) give

ψ′j(x)/ψj(x) = −I ′j(x)E u′′0(Aj(x))/E u′0(Aj(x)). (27)

Inserting the expression for I ′j(x) given by (23), we obtain a differential equa-
tion

ψ′j(x)/ψj(x) = 1/[ρ0j(x) + ρj(Bj(x))].

Taking into account the norming condition
∫∞
0 ψj(x)dFj(x) = 1, a unique

solution to this equation is

ψ̄j(x) =
exp

∫ x
0 [ρ0j(t) + ρj(Bj(t))]

−1dt

E {exp
∫Xj

0 [ρ0j(t) + ρj(Bj(t))]−1dt}
. (28)

13



In the same way as in the Corollary 1’s proof, it is shown that the equilibrium
density function ψj(x) we start from coincides with ψ̄j(x) up to a set of zero
Fj-measure. Hence, expression (24) for Ψj = ψj(Xj) is valid.

2. Let (25) hold with Pj = E [ΨjIj(Xj)], and Ψj is given by (24), j =
1, . . . , n. Define a function ψj(x) by the right-hand side of (28). As was
shown in the first part of the proof, ψj(x) satisfies equation (27) and, hence,
coincides with E u′0(Aj(x)) up to a multiplier. This along with the norming
condition E ψj(Xj) = 1 yields

ψj(x) = E u′0(Aj(x))/E u
′
0(A). (29)

On the other hand, defining δj by equations E [u′0(A)|Xj = 0] = δju
′
j(wj−Pj),

we have from (25) and Corollary 1 that the policies Ij and premiums Pj
constitute a Pareto-optimal contract. Then Theorem 2 gives

E u′0(Aj(x)) = δju
′
j(Bj(x)), whence δj = E u′0(A)/E u′j(Bj). (30)

Coupling (29) and (30), we have E [u′0(A)|Xj] = ΨjE u
′
0(A) and u′j(Bj) =

ΨjE u
′
j(Bj) a.s. for j = 1, . . . , n. According to Theorem 1, it means that

(Ψ, I) is an equilibrium. 2

Theorem 3 states in particular that the policies in equilibrium (if exists)
solve equations (25) (see also Remark 2) and, hence, they satisfy 0 < I ′j(x) <
1. Since Ij(0) = 0, any Ij is a coinsurance policy with no deductible. This
is, of course, a direct consequence of the coinsurance form of Pareto-optimal
policies as given by (23) in Corollary 1.

The market price density for the reinsurance market model (see Buhlmann
(1984)) is a function of total risk XM

Φ =

XM∫
0

1/ρ(x)dx/E [

XM∫
0

1/ρ(x)dx] with the “total risk tolerance”

ρ(x) =
∑
i
ρi(wi − Zi(x)) involving the risk tolerance functions ρi of all the

agents. In distinction to it, expression (24) for the j-th agent’s price density
reflects, in general, the presence of the other n − 1 insureds in the mar-
ket by dependence of the risk tolerance ratio ρ0j(x) = −E [u′0(A)|Xj =
x]/E [u′′0(A)|Xj = x] on distributions of Xs for all s 6= j. Note that in
the case n = 1 (one insured only) this dependence disappears, and relations
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(24)-(25) becomes the same as equilibrium characterization in the Borch’s
model. For example, (25) converts into the differential equation presented in
Aase (2002)
I ′(x) = r1(w1−P−x+I(x))/ {r0(w0 + P − I(x)) + r1(w1 − P − x+ I(x))} .

Example 1.
Consider the problem of finding an equilibrium in the case of exponential
utility functions of the agents, ui(x) = c−1

i (1 − exp(−cix)), i = 0, . . . , n.
Without loss of generality we can assume the initial capitals wi = 0, because
in this case wi can be excluded from both sides of optimality equations (5)-
(6).

We start with determining the Pareto-optimal contracts (P̂ , Î). As shown
in Golubin (2005), equation (23) gives, as ρ0j(x) ≡ c−1

0 and ρj(x) ≡ c−1
j , that

Îj(x) =
cj

c0 + cj
x, j = 1, . . . , n,

are the only Pareto-optimal indemnity rule. Equation (22) results in

P̂j =
1

cj

{
− ln δj − aj + d[

n∑
s=1

c−1
s (ln δs + as) + a/c0]

}
, (31)

where we introduce d as defined by d−1 = c−1
0 + . . . c−1

n , and a =
n∑
s=1

as

with as = ln{E exp[Xsc0cs/(c0 + cs)]} <∞ by assumption. Thus the set of
Pareto-optimal contracts {(P̂ δ, Îδ)}δ>0 consists of a single indemnity rule Î
and a range of premium vectors P̂ = P̂ δ defined in (31). Summing P̂j gives
the summary premium

n∑
j=1

P̂j =
d

c0

n∑
j=1

c−1
j (− ln δj +

n∑
s 6=j

as). (32)

From (31) it is seen that the premium P̂j depends on the distributions of the
insureds losses Xs through the quantities as. This dependence has a curious
form: a coefficient at aj in (31) is c−1

j [−1+(c−1
0 +c−1

j )d] < 0, while for all s 6= j
the coefficients at as are positive. It looks like a “premium paradox” — if the
j-th insured’s risk is worsened by adding a positive constant, X ′

j = Xj + b,
then the Pareto-optimal premium he pays decreases as a′j > aj. The sum-
mary premium (see (32)) becomes greater, which is explained by increases
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in premiums P̂s of all other insureds as follows from (31) if we consider the
expressions for P̂s. An explanation of the effect seems the following. If the
risk Xj is worsened (i.e. increased with probability one), a “fair arbitrator”
should worsen (i.e. decrease) the insured’s weight δj so that to make the j-th
insured pay more.

The equilibrium notion singles out a contract from the set of Pareto op-
tima, playing in some sense the role of the “fair arbitrator”. Expression (24)
gives the j-th price density

Ψj = exp[Xjc0cj/(c0 + cj)]/E exp[Xjc0cj/(c0 + cj)], (33)

from (25) we have the policy Ij(x) = xcj/(c0 + cj), j = 1, . . . , n. According
to Theorem 3, the pair (Ψ, I) is an equilibrium. The premium paid by j-th
insured is

Pj = E [ΨjIj] = E [exp(c0Ij)Ij] /E [exp(c0Ij)] ,

where we denote Ij = Ij(Xj). Prices given by expressions of this kind are
often related to the Esscher principle in actuarial mathematics. Buhlmann
(1980) used the Esscher principle in pricing a risk newcoming into a reinsur-
ance market. A discussion of some its properties can be found in Goovaerts
et al. (1984). Particularly, the price value increases vs an increase in the
coefficient c0 and, hence, always dominates the actuarial value E Ij.

Returning to the “premium paradox”, it is seen from (33) that for the
worsened risk X ′

j = Xj + b we have that Ψj does not change and then the
new premium P ′

j = E [ΨjIj(X
′
j)] quite naturally becomes greater than Pj.

Finally, we can also determine the market price density by use of (4)
which yields

Φ =
n∏
j=1

Ψj = exp

[
c0

n∑
1

Xjcj/(c0 + cj)

]
/E exp

[
c0

n∑
1

Xjcj/(c0 + cj)

]
.

If the insureds have identical risk aversion parameters, c1 = . . . = cn, the
market price density can be rewritten as

Φ =
exp

[
c0c1
c0+c1

XM

]
E exp

[
c0c1
c0+c1

XM

] , where XM =
n∑
j=1

Xj.

Compare the insurer’s situation (his indemnity and premium received)
with that in the Borch’s model of reinsurance market where treaties among
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insureds are allowed. In both cases the initial risk portfolio of the (n + 1)
agents is (0, X1, . . . , Xn) with independent components. In our notation, the
equilibrium risk exchange in the reinsurance market described, e.g., in Aase
(2002) results in the i-th agent’s risk c−1

i dXM and the premium (i.e. the side
payment he pays) E [exp(dXM)(Xi − c−1

i dXM)]/E exp(dXM), i = 0, . . . , n.
Thus the insurer, i.e., the agent having number i = 0 takes indemnity Ỹ =
c−1
0 dXM and receives the payment S̃ = E [c−1

0 dXM exp(dXM)]/E exp(dXM) =
E [Ỹ exp(c0Ỹ )]/E exp(c0Ỹ ).
In our setting, the insurer’s indemnity

Y =
n∑
j=1

cj
c0 + cj

Xj > Ỹ a.s.

The latter inequality follows from that cj/(c0 + cj) = c−1
0 /(c−1

j + c−1
0 ) >

c−1
0 /

∑n
0 c

−1
i . The summary premium the insurer gets is S = E [ΦY ] =

E [Y exp(c0Y )]/E exp(c0Y ). To compare S̃ and S, we express them in the
forms

S̃ = c−1
0

n∑
1

E [dXj exp(dXj)]/E exp(dXj) and

S = c−1
0

n∑
1

E [mjXj exp(mjXj)]/E exp(mjXj),

where mj = c0cj(c0 + cj)
−1 > d. According to the above-mentioned mono-

tonicity property of the Esscher principle, E [Xj exp(dXj)]/E exp(dXj) <
E [Xj exp(mjXj)]/E exp(mjXj) for each j as d < mj and, hence, S̃ < S.
We can conclude that in the reinsurance model, where insureds can exchange
their risks among themselves, the insurer is more discrete in the sense that
in equilibrium he takes a less indemnity (with probability one), receiving a
less premium.

6. Existence of equilibrium. In Example 1 we have found in an explicit
form the only pair (Ψ, I) that satisfies Theorem 3 and, thus, is a unique
equilibrium. For a general case it is desirable to have a set of conditions
that guarantee the existence of an equilibrium. The problem of equilibrium
existence in the reinsurance market model was studied by Buhlmann (1984)
and Aase (1993). In the latter paper, based on results in Mas-Colell (1986),

17



a set of relatively weak sufficient conditions for the existence was obtained.
Buhlmann investigated the same problem in the case of bounded risks by
using a parametrization of Pareto-optimal risk exchanges through their initial
receipts (or, in other words, side payments).

In this section we focus on finite-dimensional case, supposing in addition
to the assumptions in section 2 that each risk Xj is a discrete stochastic vari-
able with the finite set of possible values xj = (xj1, . . . , xjSj

). An indemnity
function Ij(x) is identified with a vector Ij ∈ RSj satisfying 0 ≤ Ij ≤ xj
component-wise. The premium Pj = E [ΨjIj(Xj)] is thus a scalar product
with respect to the probabilistic measure,

Pj =< ψj, Ij >=
Sj∑
k=1

ψjkIjkP{Xj = xjk},

where the vector ψj = (ψj1, . . . , ψjSj
) corresponds to j-th price density func-

tion ψj(x) and satisfies the inequality ψj ≥ 0 and the norming condition
< ψj,1 >= 1.

In order to establish the equilibrium existence, we employ Theorem 1 and
prove in our case the solvability of equations (5)-(6) that can be written as

rj[Ψ, I,Xj]−Ψj = 0 a.s. (34)

Ψj − qj[Ψ, I,Xj] = 0 a.s. (35)

where, following the notation of Theorem 1, rj[Ψ, I, x] = E [u′j(Bj)|Xj =
x]/E u′j(Bj) and qj[Ψ, I, x] = E [u′0(A)|Xj = x]/E u′0(A), A and Bj stand for
the final capitals of the insurer and insureds respectively, j = 1, . . . , n. The
next lemma allows for reducing the question on solvability of (34)-(35) (with
respect to (Ψ, I)) to solvability of definite inequalities.

Lemma 1 Let an admissible (Ψ∗, I∗) be such that

E {[rj[Ψ∗, I∗, Xj]−Ψ∗
j ][Ψj −Ψ∗

j ]} ≤ 0 (36)

E {[Ψ∗
j − qj[Ψ

∗, I∗, Xj]][Ij(Xj)− I∗j (Xj)]} ≤ 0 (37)

for any admissible Ψj and Ij(Xj), j = 1, . . . , n. Then (Ψ∗, I∗) solves (34)-
(35).

The proof is given in Appendix.
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Now we prove the existence of a solution (Ψ∗, I∗) to (36)-(37). For this
purpose we represent the inequalities in the form of a finite-dimensional vari-
ational inequality problem (see Harker and Pang (1990) for a review of this
kind of problems). Since in the considered finite-dimensional case the expec-
tations can be rewritten as the scalar products with the use of the above-
introduced vectors ψj ∈ RSj and Ij ∈ RSj , (36)-(37) take the form

< gj(ψ
∗, I∗), ψj − ψ∗j >≤ 0 (38)

< fj(ψ
∗, I∗), Ij − I∗j >≤ 0 (39)

for j = 1, . . . , n, where the Sj-dimensional vector-functions gj and fj corre-
spond to the functions in the left-hand sides of (36) and (37) respectively.
The set of admissible (ψ, I) is

M = K×L def
= {ψ ∈

n∏
j=1

RSj : ψj ≥ 0, < ψj,1 >= 1, j = 1, . . . , n}×{I ∈
n∏
j=1

RSj : 0 ≤ Ij ≤ xj, j = 1, . . . , n}.

The fact that M is the full Cartesian product of the individual sets {ψj} and
{Ij} makes the system (38)-(39) of 2n inequalities equivalent to the summary
inequality

n∑
j=1

< gj(ψ
∗, I∗), ψj−ψ∗j > +

n∑
j=1

< fj(ψ
∗, I∗), Ij−I∗j >≤ 0 for all (ψ, I) ∈M.

The latter is related to the variational inequality problems and, by Theorem
3.1 in Harker and Pang (1990, p. 170), this inequality has a solution (ψ∗, I∗)
since all the functions gj(ψ, I) and fj(ψ, I) are continuous on the compact
convex set M . Thus, according to Lemma 1, the system (34)-(35) is solvable
and, by Theorem 1, an equilibrium exists in the insurance market model.

Remark 3.
Concerning a generalization of the equilibrium existence theorem to the
infinite-dimensional case, the following directions seem worth attention: Un-
der an assumption of boundedness of insureds’ risks, Xj ≤ C a.s., one might
try to use weak compactness of a set of bounded stochastic variables instead
of the compactness property assumed in the above-mentioned theorem on
solvability of variational inequality in Harker and Pang (1990, p. 170). An-
other way is to adjust the L2-theory technique used in Aase (1993) to the
case of the insurance market model.
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Appendix

The proof of Corollary 1.
The way of the proof we use partially follows the reasonings in Wyler (1990,
pp. 25-27). Assume, without loss of generality (see Remark 2), that the
domains of all ρ0j(x) and ρj(Bj(x)) in (23) are [0,∞).

(i) Let P̂ and Î(x) satisfy (22) and solve (21) on [0,∞). Define differen-

tiable functions on [0,∞): gj(x) = E u′0(Aj(x))−δju′j(Bj(x)), whereAj(x)
def
=

w0+P̂j−Îj(x)+
n∑
s 6=j

(P̂s−Îs(Xs)) and Bj(x)
def
= wj−P̂j−x+Îj(x), j = 1, . . . , n.

The derivative of gj(x) is g′j(x) = −E u′′0(Aj(x))Î ′j(x)−δju′′j (Bj(x))[Î
′
j(x)−1].

Inserting the expression for Î ′j(x) given by (21), we obtain

g′j(x) = gj(x)/[ρ0j(x) + ρj(Bj(x))] and, hence,

gj(x) = Cj exp

 x∫
0

[ρ0j(t) + ρj(Bj(t))]
−1dt

 .
From (22) we get gj(0) = 0, therefore Cj = 0 and gj(x) ≡ 0 for all x ∈ [0,∞)
and j = 1, . . . , n. Because condition (17) in Theorem 2 evidently holds,
(P̂ , Î) is optimal in (15).

(ii) Let (P̂ , Î) be a solution to (15). Choose any j and fix P̂ and Îs for
s 6= j. Considering (21) as an equation on [0,∞), by a standard theorem on
differential equations we have that (21) has a unique solution Īj(x). As was
shown in part (i), Īj(x) solves equation (17) on [0,∞):

E u′0(Aj(x)) = δju
′
j(Bj(x)). (40)

The only solution of this equation (see the definitions of Aj(x) and Bj(x)

presented above) can be written as Īj(x) = f−1
j (wj − P̂j − x), where f−1

j is
the inverse of the function

fj(z) = (u′j)
−1

(
E u′0(w0 − z + P̂j +

n∑
s 6=j

(P̂s − Îs(Xs)))/δj

)
− z.

Note that f−1
j exists because u′0(·) and u′j(·) are decreasing functions. On the

other hand, the optimality of (P̂ , Î) means, by Theorem 2, that Îj(x) solves
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(40) for x ∈ suppFj. Uniqueness of the solution to (40) gives Īj(x) ≡ Îj(x)
on suppFj. Repeating these arguments for each j = 1, . . . , n completes the
proof. 2

The proof of Lemma 1.
(i) Let (36) be satisfied, which means that ψ∗j (x) is a maximizer in the

problem

max
ψj

∞∫
0

Gj(x)ψj(x)dFj(x),

where we denote Gj(x) = rj[Ψ
∗, I∗, x] − ψ∗j (x). Then all positive values of

ψ∗j (x) correspond to the set A∗ of arguments x at which Gj(x) attains its
maximum on suppFj.

Suppose the contrary to the lemma’s statement: Gj(x) 6≡ 0 on suppFj.
By construction,

∫∞
0 Gj(x)dFj(x) = 0 hence Gj(x) must change the sign

and, in particular, its maximal value attained on A∗ is positive. How-
ever, rj[Ψ

∗, I∗, x] > 0 for all x and ψ∗j (x) = 0 for all x /∈ A∗ so that
Gj(x) = rj[Ψ

∗, I∗, x] − ψ∗j (x) > 0 everywhere with respect to Fj-measure.
The obtained contradiction proves the required result: Gj(x) = 0 for all
x ∈ suppFj.

(ii) Let (37) be satisfied, that is, I∗j maximizes the integral

∞∫
0

(ψ∗j (x)− qj[Ψ
∗, I∗, x])Ij(x)dFj(x) subject to 0 ≤ Ij(x) ≤ x.

This problem coincides up to the notation with problem (8) considered in
Theorem 1. Then, repeating the arguments in the Theorem 1’s proof and
observing that rj[Ψ

∗, I∗, x] ≡ ψ∗j (x) on suppFj, we get equality (35). 2
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