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Using an idea going back to Madelung, we construct global in time solutions to the transport equation cor-
responding to the asymptotic solution of the Kolmogorov-Feller equation describing a system with diffusion,
potential and jump terms. To do that we use the construction of a generalized delta-shock solution of the conti-
nuity equation for a discontinuous velocity field. We also discuss corresponding problem of asymptotic solution
construction (Maslov tunnel asymptotics).
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1 Introduction

The goal of the present paper is to describe a new approach for constructing global in time solutions of parabolic
PDE with a small parameter. It is well-known that the construction of asymptotic solutions of linear equations
with a small parameter is based on the WKB method [18].

For parabolic equations, the global-in-time asymptotic solutions were first constructed by Maslov [15], [17].
His construction, called the tunnel canonical operator, is a modification of the canonical operator construction
also developed by him [15]. The latter resembles the construction of Fourier integral operators [12] and is based
on the use of integral representations, the only distinction is that the tunnel canonical operator is based on the use
of the integral transformation with heat kernel in contrast to the Fourier transformation. The asymptotic solutions
constructed in the framework of the theory of tunnel canonical operator have been justified by the author.

In the present paper, we propose another construction based on the use of characteristics but not of the integral
transformations. Thus, our construction is pointwise in contrast to the tunnel canonical operator.

The idea of this construction goes back to Madelung [14] who noted that the system of equations arising in
the WKB method (Hamilton-Jacobi equation + transport equation) can be reduced to the form of a system of gas
dynamics equations (in the one-dimensional case). Here the key point is the fact that the transport equation that
does not have a divergence form is transformed into the continuity equation.

∗ e-mail: albeverio@wieneriam.uni-bonn.de
∗∗ Corresponding author: e-mail: vgdanilov@mail.ru
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A technique for constructing the solution of the continuity equation in the discontinuous velocity field has been
developed in the last few years. And this permits constructing global asymptotic solutions for parabolic PDE with
a small parameter.

Moreover, the pointwise construction presented in the paper can be used to solve the Cauchy problems for
parabolic PDE backward in time. This is possible, because the Hamilton flow is invertible in time for stationary
Hamiltonians.

In the present paper, we consider a new approach to the construction of singular (i.e., containing the Dirac
δ-function as a summand) solutions to the continuity equation and to show how these solutions can be used to
construct the global in time solution of the Cauchy problem for Kolmogorov-Feller-type equations with diffusion,
potential and jump terms. The relation between the solutions of the continuity equation and the system consisting
of the Hamilton-Jacobi equation plus the transport equation has been well studied before in the case of a smooth
action functional.

The velocity field u is determined as the family of velocities of points on the projections of the trajectories
of the Hamiltonian system corresponding to the Hamilton-Jacobi equation. As it was mentioned by E. Madelung
[14], in this velocity field, the squared solution of the transport equation (denoted by ρ) satisfies the continuity
equation

ρt + (∇, uρ) + aρ = 0 (1.1)

with some additional term aρ, which is defined below (a is equal to 0 if the Hamiltonian is formally self-adjoint).
The main obstacle to the extension of this correspondence globally in time is the fact that in general the solution
of the Hamilton-Jacobi equation are smooth only locally in time. The loss of smoothness is equivalent to the
appearance of singularities of the velocity field mentioned above. Till recent times there was no method for
constructing formulas for solutions of the continuity equation for a discontinuous velocity field. It is clear that
the continuity equation has the divergent form and this very important property allows precisely to introduce the
concept of a global solution in spite of singularities in the velocity field. The divergent form as itself does not
play any role in Madelung’s approach but it is very important for our construction because we deal with singular
solutions.

In the present paper we generalize Madelung’s approach to the case in which the singular support of the
velocity field is a stratified manifold transversal to the velocity field trajectories. This holds, for example, in the
case where the space is one-dimensional under the condition that, for any t ∈ [0, T ], the velocity field singular
support is a discrete set without limit points.

In the present paper we briefly present the contents of [4] and the theory of Maslov’s tunnel canonical operator.
Although these constructions have been known for a rather long time, they still remain insufficiently known and
we are compelled to present them for the reader convenience.

It is interesting to note that the generalization of Madelung’s idea, first suggested for the Schrödinger equation,
turned to be possible for equations of another class.

Namely, let Λn be the Lagrangian manifold corresponding to the solution (see [15], [17], [18]) and let
π : Λn → R

n
x be the projection mapping.

All the points of π−1(x) ∈ Λn make contributions to the construction of an asymptotic oscillating solution (of
the type of the WKB-solution ϕ(x, t) exp(iS(x, t)/h)).

But if we consider nonoscillating solutions of the form

ϕ(x, t) exp(−S(x, t)/h),

just as for equations of heat conduction type with a small parameter h at the second-order derivative, see
Section 3 and [16], [17], then only the point from the set γ̄ ∈ π−1(x) at which

S(γ̄, t) = min
γ̄∈π−1 (x)

S(γ, t)

makes a contribution to the solution. Hence the points of the Lagrangian manifold making contributions to the
construction of a nonoscillating solution form a surface with (shock wave-type) jumps, which results in disconti-
nuities of ∇S and hence in discontinuities of the velocity field for the transport equation.
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The last equation does not have a divergent form in contrast to the continuity equation, which arises in the
Madelung construction. So it turned out that Madelung’s idea was initially adopted to the global constructions
involving generalized solutions to the continuity equation.

In Section 2, we describe the definition and construction of these types of solutions. The conclusion is that
these solutions can be constructed by means of characteristics. This allows us partly to change the direction of
time and to solve some inverse problems. We will discuss this problem in detail in subsequent papers.

2 Generalized solutions of the continuity equation

Here we follow the approach developed in [4], where the solution of the continuity equation is understood in the
sense of an integral identity, which, in turn, follows from the fact that relation (1.1) can be understood in the sense
of the distributional space D′(

R
n+1
x,t

)
. The first step in this way has been done in [9], see also [3], [6], [7] where

the approach based on smooth approximations of the solutions was used.
We specially note that the integral identities in [4] can be derived without using the construction of nonconser-

vative products [19], of the nonsmooth and generalized functions (or measure solutions [2], [11], [20]), and the
value of the velocity on the discontinuity lines (surfaces) is not given a priori but is calculated. In the case con-
sidered in [1], the integral identities exactly coincide in form with the identities derived using the construction of
a nonconservative product (measure solutions) in the situation described at the end of above introduction, which
we shall now make more precise.

First, we consider an n − 1-dimensional surface γt moving in R
n
x , which is determined by the equation

γt = {x; t = ψ(x)},

where ψ ∈ C1(Rn ), and ∇ψ �= 0 in the domain in R
n
x where we work.

This is equivalent to determining a surface by an equation of the form

S(x, t) = 0

(S ∈ C1 in both variables, S(x, t) = 0, ∇x,tS|S=0 �= 0) under the condition that

∂S

∂t
�= 0.

We remain that the situation with ∂S
∂ t = 0, can also be covered by making the change of variables x′

i = xi −cit
with appropriately chosen ci , i = 1, . . . n, solving the problem with the moving surface and then returning to the
original variables. Possible generalizations are considered later in this section.

Next, we assume that ζ belongs to C∞
0

(
R

n × R
1
+
)
. Then, by definition,

〈δ(t − ψ(x)), ζ(x, t)〉 =
∫

Rn

ζ(x, ψ(x)) dx,

where δ is the Dirac delta function and 〈, 〉 is the distributional pairing (with respect to the variable t ∈ R
1
+ and

x ∈ R
n ).

Let δ(t − ψ(x)) be applied to the test function η ∈ C∞
0 (Rn ), then

〈δ(t − ψ(x)), η(x)〉 =
∫

γt

η dωψ ,

where dω is the Leray form [10] on the surface {t = ψ(x)} such that −dψdωψ = dx1 . . . dxn .
One can show that (see [5], [10])

〈δ(t − ψ(x)), η(x)〉 =
∫

γt

η(x)
|∇ψ| dσ.

First, we assume that the solution ρ to Equation (1.1) has the form

ρ(x, t) = R(x, t) + e(x)δ(t − ψ(x)), (2.1)

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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where R(x, t) is a piecewise smooth function with possible discontinuity at {t = ψ(x)}:

R = R0(x, t) + H(t − ψ(x))R1(x, t),

e ∈ C(Rn ) and has a compact support, ψ ∈ C2 and ∇ψ �= 0 for x ∈ supp e, and H(z) is the Heaviside function.
It is clear that the term

e(x)δ′(t − ψ(x))

appears in (1.1) if we differentiate the distribution δ(t − ψ(x)) with respect to t. Hence it is necessary to have
in (1.1)

(∇, ρu) = −e(x)δ′(t − ψ) + smoother summands,

since ∇δ(t − ψ) = −∇ψδ′(t − ψ). Then we must have

ρu =
e∇ψ

|∇ψ|2 δ(t − ψ) + smoother summands.

Now we formulate an integral identity, defining a generalized solution to the continuity equation.
We set Γ = {(x, t); t = ψ(x)}; this is an n-dimensional surface in R

n × R
1
+ . Let

u(x, t) = u0(x, t) + H(t − ψ)u1(x, t),

where ψ is the same function as before, and u0 , u1 ∈ C
(
R

n × R
1
+
)
.

Let us consider Equation (1.1) in the sense of distributions. For all ζ(x, t) ∈ C∞
0

(
R

n × R
1
+
)
, ζ(x, 0) = 0, we

have
〈

∂ρ

∂t
+ (∇, ρu), ζ

〉
= −〈ρ, ζt〉 − 〈ρu,∇ζ〉.

Substituting the singular terms for ρ and ρu calculated above, we come to the following definition.

Definition 2.1 A function ρ(x, t) determined by relation (2.1) is called a generalized δ-shock wave type solu-
tion to (1.1) on the surface {t = ψ(x)} if the integral identity

∫ ∞

0

∫

Rn

(Rζt + (uR,∇ζ) + aRζ) dx dt +
∫

Γ

e

|∇ψ|
d

dn⊥
ζ(x, t) dx = 0 (2.2)

holds for all test functions ζ(x, t) ∈ C∞
0

(
R

n × R
1
+
)
, ζ(x, 0) = 0, d

dn⊥
=

(
∇ψ
|∇ψ | ,∇

)
+ |∇ψ| ∂

∂ t .

We have also the relation
∫

Rn

e

|∇ψ|
d

dn
ζ(x, ψ) dx =

∫

Γ

e

|∇ψ|
d

dn⊥
ζ(x, t) dx.

We note that the vector n⊥ is orthogonal to the vector (∇ψ,−1), which is the normal to the surface Γ, i.e.,
d

dn⊥
lies in the plane tangent to Γ.

We can give a geometric definition of the field d
dn⊥

. The trajectories of this vector field are curves lying on the
surface Γ, and they are orthogonal to all sections of this surface produced by the planes t = const. Furthermore,
it is clear that the expression 1

|∇ψ | is an absolute value of the normal velocity of a point on γt , i.e., on the cross-
section of Γ by the plane t = const, and the expression 1

|∇ψ | ·
∇ψ
|∇ψ |

def= 
Vn is the vector of normal velocity of a
point on γt . Thus, we have another representation:

∫

Γ

e

|∇ψ|
d

dn⊥
ζ(x, t) dx =

∫

Γ
e

(
(

Vn ,∇

)
+

∂

∂t

)
ζ(x, t) dx,
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where Vn = π∗(vn ), vn is the normal velocity of a point on γt , and π∗ is induced by the projection mapping
π : Γ → Rn

x .
It follows from the latter definition that the following relations must hold:

Rt + (∇, Ru) + aRζ = 0, for all points (x, t) �∈ Γ,

([R] − |∇ψ|[Run ]) +
(

d

dn

)∗
e

|∇ψ| = 0, for all points (x, t) ∈ Γ.
(2.3)

The last relation can be rewritten in the form

KE +
d

dn
E = [Run ]|∇ψ| − [R], (2.4)

where E = e/|∇ψ|, the factor K =
(
∇, ∇ψ

|∇ψ |

)
= div ν (ν is the normal on the surface {t = ψ(x)}) and, as is

known, is the mean curvature of the cross-section of the surface Γ by the plane t = const, d
dn =

(
∇ψ
|∇ψ | ,∇

)
.

Now we assume that there are two surfaces

Γi = {(x, t); t = ψi(x)}

in R
n × R

1
+ , i = 1, 2, whose intersection is a smooth surface

γ̂ = {(x, t); (t = ψ1) ∩ (t = ψ2)}

belonging to the third surface Γ(3) = {(x, t); t = ψ3(x)}. Further, we assume that the surface Γ(3) is a continua-

tion of the surfaces Γ(i) in the following sense. We let n
(i)
⊥ denote curves on the surfaces Γi and we assume that

each point
(
x̂, t̂

)
on the surface γ̂ is associated with a graph consisting of the trajectories n

(1)
⊥ and n

(2)
⊥ entering

(
x̂, t̂

)
and the trajectory n

(3)
⊥ leaving this point

(
i.e., the trajectories n

(i)
⊥ fiber the surface Γ(i)

)
. We also assume

that the surface (stratified manifold) Γ∪ = Γ(1) ∪ Γ(2) ∪ Γ(3) consists of points belonging to these graphs. Next,
we assume that u(x, t) is a piecewise smooth vector field whose trajectories enter Γ∪.

Definition 2.2 Let

u(x, t) = u0(x, t) +
3∑

i=1

H(t − ψi)u1i(x, t),

where ψ is the same function as before, and u0 , u1i ∈ C
(
R

n × R
1
+
)
. The function ρ(x, t) determined by the

relation

ρ(x, t) = R(x, t) +
3∑

i=1

ei(x)δ(t − ψi(x)),

where R(x, t) ∈ C1
(
R

n × R
1
+
)
\

{ ⋃
Γ(i)

t

}
, is called a generalized δ-shock wave type solution to (2.2) corre-

sponding to the stratified manifold Γ∪ if the integral identity

∫ ∞

0

∫

Rn

(Rζt + (uR,∇ζ) + aRζ) dx dt +
3∑

i=1

∫

Γ( i )

ei

|∇ψi |
d

dn
(i)
⊥

ζ(x, t) dx = 0 (2.5)

holds for all test functions ζ(x, t) ∈ C∞
0

(
R

n × R
1
+
)
, ζ(x, 0) = 0, d

dn
( i )
⊥

=
(

∇ψi

|∇ψi | ,∇
)

+ |∇ψi | ∂
∂ t .

As above this relation implies the first equation from (2.3) outside Γ∪, equations of the type of the second
equation in (2.3) on strata Γ(i) and the Kirchhoff type relation on γ̂:

(e1 + e2)|γ̂ = e3 |γ̂ . (2.6)

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Now we consider the case with codim Γ > 1. First, we note that the second integral in (2.2) can be written as
∫

Γ

e

|∇ψ|
d

dn⊥
ζ(x, t) dx =

∫

Γ
e

((
∇ψ

|∇ψ|2 ,∇
)

+
∂

∂t

)
ζ(x, t) dx.

We note that if the surface Γ is determined by the equation S(x, t) = 0 rather than by the simpler equation
{t = ψ(x)} presented at the beginning of this section, then


Vn = − St

|∇S| ·
∇S

|∇S| = − St

|∇S|2 ∇S

and, of course, the new vector field d
dn⊥

=
(

Vn ,∇

)
+ ∂

∂ t remains tangent to Γ.

Therefore, in this more general case, using this new vector 
Vn , we can again rewrite the integral identity from
Definition 2.1 as

∫ ∞

0

∫

Rn

(
Rζt + (uR,∇ζ) + aRζ

)
dx dt +

∫

Γ
e

(
(

Vn ,∇

)
+

∂

∂t

)
ζ(x, t) dx = 0. (2.7)

This form of integral identity can easily be generalized to the case in which Γ is a smooth surface in R
n+1 of

codimension > 1.
In this case, instead of 
Vn , we can use a vector 
v that is transversal to Γ and such that the field (
v,∇) + ∂

∂ t
is tangent to Γ. We note that the vector 
v is uniquely determined by this condition, which can be treated as “the
calculation of the velocity value on the discontinuity” from the viewpoint of [11] and [20].

Moreover, in this case, the expression for ρ does not contain the Heaviside function, and it is assumed that the
trajectories of the field u are smooth, nonsingular outside Γ, and transversal to Γ at each point of Γ. In this case,
the function ρ has the form

ρ(x, t) = R(x, t) + e(x)δ(Γ),

where R ∈ C1(Rn+1 \ Γ), e ∈ C1(Γ), and the function δ(Γ) is determined by

〈δ(Γ), ζ(x, t)〉 =
∫

Γ
ζω,

where ω is the Leray form on Γ. If Γ = {S1(x, t) = 0 ∩ · · · ∩ Sk (x, t) = 0}, k ∈ [1, n], then ω is determined by
the relation, see [10], p. 274,

dt dx1 · · · · · d xn = dS1 · · · · · dSkω.

In this case, we assume that the functions Sk are sufficiently smooth
(
for example, C2

(
R

n × R
1
+
))

and their
differentials on Γ are linearly independent.

Moreover, we can assume that the inequality

J =
D(S1 , . . . , Sn )

D(t, x1 , . . . , xn−1)
�= 0

holds. This inequality is an analog of St �= 0 at the beginning of this section and allows us to write ω in the form

ω = J−1dxk · · · · · dxn .

The integral identity, an analog of (2.7), has the form
∫ ∞

0

∫

Rn

(
Rζt + (uR,∇ζ) + aRζ

)
dx dt +

∫

Γ
e

(
(v,∇) +

∂

∂t

)
ζ(x, t)ω = 0.

Integrating the latter relation by parts, we obtain equations for determining the functions e and R similarly to
(2.4).
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432 S. Albeverio and V. Danilov: Construction of global-in-time solutions

Now we assume that the singular support of the velocity field is the stratified manifold
⋃

Γi with smooth strata
Γt of codimensions ni ≥ 1.

We also assume that the velocity field trajectories are transversal to
⋃

Γ and are entering trajectories.
Then the general solution of Equation (1.1) has the form

ρ(x, t) = R(x, t) +
∑

eiδ(Γi),

where R(x, t) is a function smooth outside
⋃

Γi , ei are functions defined on the strata Γi , and the sum is taken
over all strata Γi .

The integral identities determining such a generalized solution have the form

∫ ∞

0

∫

Rn

(
Rζt + (uR,∇ζ) + aRζ

)
dx dt +

∑

i

∫

Γ i

ei

[(
(vi,∇) +

∂

∂t

)
ζ(x, t)

]
ωi = 0. (2.8)

This implies that, outside
⋃

Γi , the function R satisfies the continuity equation

Rt + (∇, uR) + aR = 0,

and, on the strata Γj for nj = 1, equations of the form (2.4) hold, which contain the values of R brought to Γt

along the trajectories. For nl = n − k, k > 1, on the strata Γl , we have the equations

∂

∂t
elμl + (∇, vlelμl) = Flμl , (2.9)

where μl is the density of the measure ωl with respect to the measure on Γl which is left-invariant with respect to
the field ∂

∂ t + 〈vl ,∇〉, and Fl is defined by the following construction. Denote a ε-neighborhood of Γl by Γε
l and

denote its boundary by ∂Γε
l . Let us consider the integral appearing after integration by parts:

∫

∂Γε
l

ζρunlω
ε
l ,

where unl is the normal component of the velocity u on ∂Γε
l , ωε

l is the Leray measure on ∂Γε
l , ζ is a test function.

Passing to the limit as ε → 0 we obtain

lim
ε→0

∫

∂Γε
l

ζρunlω
ε
l =

∫

Γ l

ζ Flωl .

It is well-known that outside
⋃

Γi the function R(x, t) can be calculated using the famous Cauchy formula

R(x.t) = ρ0(x, t)
∣
∣
∣
∣

Dx

Dx0

∣
∣
∣
∣

−1

exp
(
−

∫ t

0
a dt′

)
(2.10)

where ρ0 ia a constant along the trajectories of the field u outside
⋃

Γi ,
∣
∣ Dx
Dx0

∣
∣ is the jacobian of the mapping

corresponding to the shift along the trajectories of u and the integral under exponent is calculating along the
trajectories of the field u.

This formula implies that the limit as ε → 0 of the above integral exists.
We note that it follows from the above that the function R is determined independently of the values of vi on

the strata under the condition that the field trajectories enter
⋃

Γi .
In conclusion, we consider the case where the coefficient a has a singular support on

⋃
Γi , i.e.,

a = f(u).

In this case, we set

aρ = ǎρ +
∑

f(vi)eiδ(Γi),
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where ǎ = f(u) outside
⋃

Γi . We note that such a choice of the definition of the term aρ is not unique in this
case. But, first, it is consistent with the common concept of measure solutions (see [2], [11]) and, second, it is of
no importance for the construction of the solution outside

⋃
Γi for the case in which the trajectories u enter

⋃
Γi .

In this case, identity (2.8) takes the form
∫ ∞

0

∫

Rn

(
Rζt + (uR,∇ζ) + f(u)Rζ

)
dx dt +

∑

i

∫

Γ i

ei

[(
(vi,∇) +

∂

∂t
+ f(vi)

)
ζ(x, t)

]
ωi = 0, (2.11)

and Equation (1.7) can be rewritten in the form

∂

∂t
(elμl) + (∇, vlelμl) + f(vl) = Flμl . (2.12)

All the afore said gives the following statement.

Theorem 2.3 Let that the following conditions be satisfied for t ∈ [0, T ], T > 0:

(1)
⋃

Γi is a stratifies manifold with smooth strata Γi ;

(2) the trajectories of the field u are smooth outside
⋃

Γi , enter
⋃

Γi and do not intersect outside
⋃

Γi ;

(3) Equations (2.12) are solvable on the strata Γi ;

(4) the Kirchhoff laws are satisfied on the intersections of strata Γi .

Then there exists a general solution to the continuity Equation (1.1) with a = f(u) in the sense of the integral
identity (2.11).

3 The Maslov tunnel asymptotics

We recall that the asymptotic solutions of a general Cauchy problem for an equation with pure imaginary char-
acteristics was first constructed by Maslov [15]. In the present paper, we consider only the following Cauchy
problem

−h
∂u

∂t
+ P

⎛

⎝2
x,−h

1
∂

∂x

⎞

⎠ u = 0, u(x, t, h)|t=0 = e−S0 (x)/hϕ0(x), (3.1)

where P (x, ξ) is the (smooth) symbol of the Kolmogorov–Feller operator [5], S0 ≥ 0 is a smooth function,
ϕ0 ∈ C∞

0 , h → +0 is a small parameter characterizing the frequency and the amplitude of jumps of the Markov
stochastic process having transition probability given by P (x, ξ). To be more precise, we can have in the mind
the following form of P (x, ξ):

P (x, ξ) = (A(x)ξ, ξ) + V (x) +
∫

Rn

(
ei(ξ ,ν ) − 1

)
μ(x, dν),

where A(x) is positive definite smooth matrix, V (x) is a smooth function and its second derivatives are assumed
to be uniformly bounded, and μ(x, dν) is a family of bounded measures smooth with respect to x in the sense
that the functions x �→ μ(x,B) are smooth for all measurable sets B. The symbol P (x, ξ) can also depend on t,
we will be more precise later on.

Locally in t, an asymptotic solution of problem (3.1) can be constructed according to the scheme of the WKB
method, see [15]: the solution is constructed in the form

u = e−S (x,t)/h
∞∑

i=0

(ϕi(x, t)hi

in the sense of asymptotic series. In this case, for the functions S(x, t) and ϕ0(x, t) we obtain the following
problems:

∂S

∂t
+ P

(
x,

∂S

∂x

)
= 0, S(x, t)|t=0 = S0(x), (3.2)
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∂ϕ0

∂t
+

(
∇ξP

(
x,

∂S

∂x

)
,∇ϕ0

)
+

1
2

∑

ij

∂2P

∂ξi∂ξj

∂2S

∂xi∂xj
ϕ0 = 0, (3.3)

ϕ0(x, t)|t=0 = ϕ0(x).

As is known, the solution of problem (3.2) is constructed using the solutions of the Hamiltonian system as-
sumed to exist and to be smooth

ẋ = ∇ξP (x, p), x|t=0 = x0 ,

ṗ = −∇xP (x, p), p|t=0 = ∇S0(x0).
(3.4)

This solution is smooth on the support of ϕ0(x, t) for all t such that the Jacobian
∣
∣Dx/Dx0

∣
∣ �= 0 for x0 ∈

suppϕ0(x). We let gt
H denote the translation mapping along the trajectories of the Hamiltonian system (3.4).

We recall that the plot

Λn
0 = {x = x0 , p = ∇S0(x0)}

is the initial Lagrangian manifold corresponding to Equation (3.2), and Λn
t = gt

hΛn
0 is the Lagrangian manifold

corresponding to Equation (3.2) at time t. Let π : Λn
t → R

n
x be the projection of Λn

t on R
n
x , which is assumed to

be proper. For this property to hold, it is sufficient to assume that the trajectories of the system (3.4) do not go to
infinity during a finite time.

The point α ∈ Λn
t is said to be essential if

Ŝ(α, t) = min
β∈π−1 (α)

Ŝ(β, t)

and nonessential otherwise. Here Ŝ is the action on Λn
t determined by the formula

Ŝ(β, t) =
∫ t

0
p dx − H dt,

where the integral is calculated along the trajectories of the system (3.4) the projection of its origin being x0 = β.
As is known that

S(x, t) = Ŝ
(
π−1x, t

)

at regular points where the projection π is bijective.
The global in time asymptotic solution of problem (3.1) is given by the Maslov tunnel canonical operator.
To define this operator, following [15], [16] we introduce the set of essential points

⋃
γit ⊂ Λn

t . This set is
closed because the projection π is proper, i.e., that for all x the set of p such that (x, p) ∈ Λn

t , π(x, p) = x is
finite.

Suppose that the open domains Uj ⊂ Λn
t form a locally finite covering of the set

⋃
γit . If the set Uj consists

of regular points, then we set

uj = e−Sj (x,t)/hϕ0j (x, t) (3.5)

where

ϕ0j (x, t) = ψ0j (x, t)
∣
∣
∣
∣
Dx0

Dx

∣
∣
∣
∣

1/2

,

ψ0j (x, t) being the solution of the equation

∂ψ0j

∂t
+ (Pξ (x,∇Sj ),∇ψ0j ) −

1
2

tr
∂2P

∂x∂ξ
(x,∇Sj )ψ0j = 0, (3.6)

which exists and is smooth whenever
∣
∣Dx/Dx0

∣
∣ �= 0. The solution uj in the domain containing essential (non-

regular) points (at which dπ is degenerate) is given in the following way: the canonical change of variables is
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performed so that the nonregular points become regular, then we determine a fragment of the solution in new coor-
dinates by formula (3.5) and return to the old variables, applying the “quantum” inverse canonical transformation
to the solution obtained in the new coordinates.

The Hamiltonian determining this canonical transformation has the form

Hσ =
1
2

n∑

i=1

σkp2
k ,

where σ1 , . . . , σn = const > 0.
The canonical transformation to the new variables is given by the translation by the time −1 along the trajec-

tories of the Hamiltonian Hσ . One can prove (see [15], [16]) that the family of sets σ for which the change of
variables takes a nonregular point into a regular is not empty.

Next, the solution near the essential point is determined by the relation

uj = e
1
h Ĥσ ũj , (3.7)

where ũj is given by formula (3.5) in the new variables and

Ĥσ =
1
2

n∑

k=1

σk

(
−h

∂

∂xk

)2

.

On the intersections of singular charts (containing singular points) and nonsingular charts (without singular
points), we must match Sj and ψ0j . This can be done by applying the Laplace method to the integral whose
kernel is a fundamental solution for the operator −h ∂

∂t + Ĥσ . This integral appears if we write the right-hand
side of (3.7) in detail. In this case, since the solution is real, the Maslov index which is well-known [15] to appear
in hyperbolic problems does not appear. The complete representation of the solution of problem (3.1) is obtained
by summing functions of the type (3.5) and (3.7) over all the domains Uj , for more detail, see [15], [16]. Here we
only say the corresponding sum is (locally) finite because we assumed that the projection π is proper.

The asymptotics thus constructed is justified, i.e., the proximity between the exact and asymptotic solutions
of the Cauchy problem (3.1) is proved [5], [15]. More precisely it is proved that at the points of the set π(

⋃
γit)

where the projection π is bijective the following estimate holds:

u(x, t, h) − uj = O(h).

In the preceding section we noted that the values of the solution of the continuity equation at nonregular points
are independent of the values of the solution on the singularity support (of course, the inverse influence takes
place) by the condition that the velocity field trajectories enters the singular support.

In the case of the canonical operator whose construction has briefly been described above, the relation between
the solutions at essential and nonessential point is also unilateral, namely, the essential points are “bypassed”
using (3.7), but the values of the functions uj on the singularity support do not determine the values at the regular
points.

It is clear that the values of the functions Sj and ψ0j at regular points are defined by characteristics via
the initial data. The trajectories of the Hamiltonian system also come to points on Λn

t such that the projection
mapping at these points is singular. At these points, we cannot define ψ0j by characteristics directly and we
must use an auxiliary construction (see (2.7)) which allows us to determine the values of an asymptotic solution
at the projections of singular points onto x-space. In this auxiliary construction, the values of Sj and ψ0j in a
neighborhood of the singular points on Λn

t are used to determine the values of uj at the projections of singular
points. Thus, there is a similarity between this and the preceding sections: we define the values of an asymptotic
solution by characteristics outside its singular support and then define the values of the asymptotic solution at the
singular points using the already defined values at regular points in our auxiliary construction.

Now we note that the function S(x, t) is such that

S(x, t)|Uj
= Sj

(
π−1(α), t

)
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is globally determined and continuous at points of the domain π(
⋃

γit) ⊂ R
n
x . We denote this set by

⋃
Γi

and assume that this is a stratified manifold with smooth strata Γit of different codimensions. We note that, for
example, if the inequality ∇(Si(x, t)−Sj (x, t)) �= 0 holds while we pass from one branch Λn

t ∩
⋃

γit to another,
then the set π{

(
S̃i − S̃j

)
= 0} generates a smooth stratum of codimension 1. In the one-dimensional case, all

strata are points or curves on the (x, t)-plane (under the above assumptions about the singularities being discrete).
Now we consider the equation for ψ2

0j . We denote this function by ρ and then obtain

∂ρ

∂t
+ (∇, uρ) + aρ = 0, (3.8)

where u(x, t) = ∇ξP (x,∇S) and a = − tr ∂ 2 P
∂x∂ξ (x,∇S).

If the condition

Hessξ P (x, ξ) > 0

is satisfied, then it follows from the implicit function theorem that ∇S(x, t) = F (x, u(x, t)), where F (x, u) is a
smooth function and

a = f(x, u),

where f(x, z) is again a smooth function.
Thus, we have proved the following theorem.

Theorem 3.1 Suppose that the following conditions are satisfied for t ∈ [0, T ], T > 0:

(1) There exists a smooth solution of the Hamiltonian system (3.4).

(2) The singularities of the velocity field u = ∇ξP (x,∇S) form a stratified manifold with smooth strata and
Hessξ P (x, ξ) > 0.

(3) There exists a generalized solution ρ of the Cauchy problem for Equation (3.8) in the sense of the integral
identity (2.9).

Then at the points of π(
⋃

γit) where the projection π is bijective, the asymptotic solution of the Cauchy
problem (3.1) has the form

u = exp(−S(x, t)/h)
(√

ρ + O(h)
)
.

This theorem is a global in time analog of the corresponding Madelung observation [14] about local solutions
of Schroedinger type equations.

4 Particular cases

The theorem stated in the previous section requires that some assumptions are satisfied. The most restrictive is the
item 3 in Theorem 3, that is the existence of the global generalized solution to the continuity equation. Under the
above made assumptions it is possible to construct this solution using characteristics, but only in the case where
the structure of the singular support of u is not changing in time-all sections of the stratified manifold introduced
above by planes t = const smoothly depend on t. A more complicate situation arises when the singularities of the
velocity field change their structure. In this case the problem of the construction of a global in time generalized
solution to the continuity equation has not been solved yet. The obstacle is that in this case usually one has no
global in time expression for the velocity field u. In turn this does not allow to apply formula (2.10) to construct
global solution to the continuity equation. In the multy-dimensional case as far as we know there is only one
result concerning to shock wave generation [3] which allows to construct global in time approximations of the
shock wave formation process. But this is slight different from the construction that we needs here. In the one
dimensional case the situation is better and we have all needed formulas.

We begin with the spatially homogeneous case. Here the problem is equivalent to the one of constructing a
formula for a global solution to conservation law equation

∂v

∂t
+

∂P (v, t)
∂x

= 0. (4.1)
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Here P
(
−h ∂

∂x , t
)

is the same operator as in (3.1) but assumed to be independent of x with the symbol P (ξ, t)
and v = ∂S/∂x. The velocity field u in this case is Pξ (v, t). In [6] a construction of the global solution to the
continuity equation where the velocity field is given by the solution of Equation (4.1) was given. Because the set
of singular points is discrete by our assumptions, without loss of generality one can consider the case were only
one point of singularity appears. Denote the corresponding (smooth) initial condition by u0 , the instant where the
singularity appears by t∗ and the point of singularity by x∗.

The first step of construction suggested in [6], [7] is that we change u0 in a small neighborhood of origin x∗
0 of

the trajectory coming to x∗ when t = t∗. We denote this new part of initial data u1(x0) for
x0 ∈ (x∗

0 − β, x∗
0 + β), β → 0 and assume

εβ−1 −→ 0, ε −→ 0. (4.2)

We define the function u1 = u1(x0 , t) as a solution of implicit equation

P ′
ξ (u1 , t) = −K(t)x0 + b(t). (4.3)

The latter equation is solvable under the condition Hessξ P (x, ξ) > 0, formulated above.
The functions K(t) and b(t) are defined from the condition of continuity of the characteristics flow, i.e.,

u1(x∗
0 − β, t) = u0(x∗

0 − β, t), u1(x∗
0 + β, t) = u0(x∗

0 + β, t).

It is easy to check that this choice of u1 provides that the Jacobian
∣
∣Dx/Dx0

∣
∣ is identically equal to 0 for t = t∗

and x0 ∈ (x∗
0 − β, x∗

0 + β). Here we remove from usual topological concept of general position considering the
situation of identical equality that can be destroyed by small perturbation. But this construction follows from
the algebraic concept and allows to present the solution of (4.1) in the form of linear combination of Heaviside
functions (see [6]).

The second step of our construction of an approximation is a modification of the definition of characteristics.
We set

ẋ = (1 − B)P ′
ξ (u1(x0 , t), t) + Bc, x0 ∈ (x∗

0 − β, x∗
0 + β), (4.4)

and

ẋ = P ′
ξ (u0 , t),

where x0 does not belong to (x∗
0 − β, x∗

0 + β),

c =
P (v(x(x∗

0 + β, t), t)) − P (v(x(x∗
0 − β, t), t))

v(x(x∗
0 + β, t), t) − v(x(x∗

0 − β, t), t)
.

The initial data for (4.4) are as follows:

x
∣
∣
t=0 = x0 + Aε, ε > 0.

The function B in (4.4) has the form B = B((t − t∗)/ε) and B(z) is smooth, monotone and increasing from 0
to 1 for z ∈ (−∞,∞). Similarly to [6], [7] one can prove that there exist an A = const such that the Jacobian∣
∣Dx/Dx0

∣
∣ calculated using the above introduced characteristics is not equal to zero, but it is of order O(ε) when

t ≥ t∗ + O(β) when x0 ∈ (x∗
0 − β, x∗

0 + β). Using the velocity field generated by ẋ we can construct global in
time (smooth) solution of the continuity equation in the form (2.10). After that, passing to the limit as ε → 0 we
will obtain the generalized solution of the continuity equation in the sense of definition from Section 2 just like it
was done in [7].

Spatially inhomogeneous one dimensional case. We will follow the scheme introduced above. The case
under consideration can be treated in the same way as the previous one with modifications. Firstly, we will
assume that the symbol P = P (x, ξ) does not depend on t. In this case this assumption (which means that the
mapping gt

P is invertible w.r.t.. time) will be used to construct the insertion to initial data. In the previous case we
did it using the implicit function theorem, see (4.3).
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Let Λ1
0 be a smooth nonsingular (w.r.t. the projection π) curve in the (x, p) space, which is a Lagrangian

manifold corresponding to initial data for our problem. We consider the Lagrangian manifold Λ1
t∗ = gt∗

P Λ1
0 and

assume that there is only one point singular with respect to the projection onto x-axis and its projection is x∗. Let
β be the same as above. Let us set t∗1 = t∗ + β. Because of the assumption that P ′′

ξξ is positive, we have that for
t = t∗1 the Lagrangian manifold Λ1

t∗1
has two parts which contain essential points and these parts form a shock

wave type curve with the jump at the point x∗
1 where Sleft(x∗

1 , t
∗
1) = Sright(x∗

1 , t
∗
1). We connect these parts by

a vertical line and thus obtain a new Lagrangian manifold, which is a piecewise smooth continuous curve with
two angle points (ends of the vertical part, the distance between them of order β). We denote this manifold by
Λ̂1

t∗1
and apply the mapping g−t1

P for sufficiently small t1 to this manifold. This mapping obviously exists and is

a diffeomorpfism because our Hamiltonian P does not depend on t. We consider the obtained manifold g−t1
P Λ̂1

t∗1

as the new Lagrangian manifold corresponding to our problem for t = t∗1 − t1changing the manifold Λ1
t∗1 −t1

by g−t1
P Λ̂1

t∗1
. As it was said above the latter manifold is piecewise smooth curve with two angle points and all

points of the curve outside of the part between these angle points are regular. Moreover there exist a sufficiently
small t1 such that the part of the curve between these angle points contains only regular points-these statements
are a consequence of the positivity of P ′′, its stationarity and the possibility to choose t1 small enough (and
independent on ε).

Denote the projections of the mentioned above angle points on the manifold g−t1
P Λ̂1

t∗1
to the x-axis by a1 < a2 .

We note that
∣
∣a1 − a2

∣
∣ is of order β.

Like in the previous example we introduce the new characteristics system

ẋ = (1 − B)P ′
ξ (x(x0 , t), p(x0 , t)) + Bc,

ṗ = −(1 − B)P ′
x(x(x0 , t), p(x0 , t), x0 ∈ (a1 , a2),

(4.5)

and

ẋ = P ′
ξ (x, p), ṗ = −P ′

x(x, p) (4.6)

when x0 does not belong to (a1 , a2). We have set

c =
P (v(x(a2 , t), p(a2 , t))) − P (x(a1 , t), p(a1 , t))

p(x(a2 , t), t) − p(x(a1 , t), t)
. (4.7)

The initial data for (4.5), (4.6) are as follows:

x
∣
∣
t=0 = x0 + Aε,

p
∣
∣
t=0 = p0(x0),

where (x0 , p0(x0)) = g−t1
P Λ̂1

t∗1
. The expression on the right-hand side of (4.7) is the direct analog of the well-

known Rankine-Hugoniot expression for the velocity of the shock propagation. In the case under consideration it
is the velocity of the point x̌ on x-axis, where Sleft(x̌, t) = Sright(x̌, t).

By the assumption we have only one singular point if we are considering the family of manifolds Λ1
t , t ∈ [0, t∗].

We also have by construction that the Jacobian J = Dx/Dx0 calculated using the solutions of the system (4.5)
is not equal to zero. More precisely we have

lim
ε→0

J = H(t∗ − t)J0 ,

where J0 is the Jacobian calculated using the solutions of (4.5) for B = 0 (J0 = 0 when t = t∗ by construction)
and

J ≥ H(t∗ − t)J0 + Cε,

where C = const > 0. This statement directly follows from (4.5) if we take the properties of the function B
into account. This means that the velocity field, generated by the projections of the solution of the system (4.5),
(4.6) onto the x-axis has nonintersecting trajectories for ε > 0. Thus we can use it to construct solutions of the
continuity equation. It remains to note that just like in [7] it is easy to check that the limits of these solutions will
satisfy to the integral identities introduced in Section 2 as the definition of generalized solutions to continuity
equation.
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