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Abstract We study a stability property of probability laws with respect to small vio-
lations of algorithmic randomness. Some sufficient condition of stability is presented
in terms of Schnorr tests of algorithmic randomness. Most probability laws, like
the strong law of large numbers, the law of iterated logarithm, and even Birkhoff’s
pointwise ergodic theorem for ergodic transformations, are stable in this sense. Nev-
ertheless, the phenomenon of instability occurs in ergodic theory. Firstly, the stability
property of Birkhoff’s ergodic theorem is non-uniform.Moreover, a computable non-
ergodic measure-preserving transformation can be constructed such that the ergodic
theorem is non-stable.

1 Introduction

In this paper we study a stability property of probability laws with respect to small
violations of randomness. By a probability law we mean any property �(ω) of infi-
nite binary sequences ω which holds almost surely. We define the notion of stability
of a probability law in terms of algorithmic theory of randomness. Within the frame-
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work of this theory, the probability laws are formulated in a “pointwise” form. It is
well known that the main laws of probability theory are valid not only almost surely
but for each individual Martin-Löf random sequence.

Some standard notions of algorithmic randomness are given in Section 2. We use
the definition of a random sequence in complexity terms. An infinite binary sequence
ω1ω2 . . . is Martin-Löf random with respect to the uniform (or 1/2-Bernoulli) mea-
sure if and only if Km(ωn) ≥ n−O(1) as n → ∞, where Km(ωn) is the monotonic
Kolmogorov complexity of a binary string ωn = ω1 . . . ωn and the constant O(1)
depends on ω but not on n.

The same property also holds if we replace the monotonic complexity Km(ωn)

with the prefix complexity KP(ωn). The difference is that the inequality Km(ωn) ≤
n+O(1) holds for monotonic complexity but this is not true for the prefix complexity.
The main results of this paper, Theorems 2 and 3, also hold for the prefix complexity.

A probability law �(ω) is said to be stable if an unbounded computable function
σ(n) exists such that �(ω) is true for each infinite sequence ω such that Km(ωn) ≥
n − σ(n) − O(1) as n → ∞. We assume that this function is non-decreasing and
refer to the function σ(n) as to a degree of stability.

A stability property under small violations of algorithmic randomness of the
main limit probability laws was discovered by Schnorr [16] and Vovk [20]. They
have shown that the law of large numbers for the uniform Bernoulli measure
holds for a binary sequence ω1ω2 . . . if Km(ωn) ≥ n − σ(n) − O(1), where
σ(n) is an arbitrary computable function such that σ(n) = o(n) as n →
∞, and the law of iterated logarithm holds if Km(ωn) ≥ n − σ(n) − O(1),
where σ(n) is an arbitrary computable function such that1 σ(n) = o(log log n).
V’yugin [22] has shown that the law of the length of the longest head-run
in an individual random sequence is stable with degree of stability σ(n) =
o(log log n). It was shown in these papers that the corresponding degrees of stability
are tight.

We present in Proposition 4 a sufficient condition of stability in terms of
Schnorr tests of randomness. We mention that if a computable rate of conver-
gence almost surely exists, then the corresponding probability law holds for any
Schnorr random sequence. In turn, the latter property implies a stability prop-
erty of this law. Using this sufficient condition, we prove that most probability
laws, like the strong law of large numbers and the law of iterated logarithm, are
stable under small violations of algorithmic randomness. Theorem 1 shows that
Birkhof’s ergodic theorem is also stable if the measure preserving transformation
is ergodic.

In Section 4 we show that the phenomenon of instability occurs in ergodic theory.
First, there are no universal stability bounds in ergodic theorems for ergodic transfor-
mations. The Birkhoff ergodic theorem is non-stable for some non-ergodic stationary
measure-preserving transformation.

We note that there is some analogy with the lack of universal convergence rate
or redundancy estimates in ergodic theory. A lack of universal convergence bounds

1In what follows all logarithms are on the base 2.
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is typical for asymptotic results of ergodic theory like the Birkhoff ergodic the-
orem – Krengel [12], or the Shannon–McMillan–Breiman theorem and universal
compressing schemes –Ryabko [15].

2 Preliminaries

Let {0, 1}∗ be the set of all finite binary sequences (strings) and � = {0, 1}∞ the set
of all infinite binary sequences. Denote by � the empty sequence. Let l(α) denote
the length of a sequence α (l(α) = ∞ for α ∈ �).

For any finite or infinite sequence ω = ω1ω2 . . . , we write ωn = ω1ω2 . . . ωn,
where n ≤ l(ω). Also, we write α ⊆ β if α = βn for some n. Two finite sequences α

and β are incomparable if α 	⊆ β and β 	⊆ α. A set A ⊆ {0, 1}∗ is prefix-free if any
two distinct sequences from A are incomparable.

The complexity of a string x ∈ {0, 1}∗ is equal to the length of the short-
est binary codeword p ∈ {0, 1}∗ from which the string x can be reconstructed:
Kψ(x) = min{l(p) : ψ(p) = x}. We suppose that min∅ = +∞.

By this definition the complexity of x depends on a computable (partial recur-
sive) function ψ , a method of decoding. Kolmogorov proved that the optimal
decoding algorithm ψ exists such that Kψ(x) ≤ Kψ ′(x) + O(1) holds for each
computable decoding function ψ ′ and for all strings x. We fix some optimal decod-
ing function ψ . The value K(x) = Kψ(x) is called the Kolmogorov complexity
of x.

If domains of decoding algorithms are prefix-free sets, the same construction gives
us the definition of prefix complexity KP(x).

Let R be the set of all real numbers and Q the set of all rational numbers.
A function f : {0, 1}∗ → R is said to be computable if there exists an algorithm

which, given a finite string x and a rational number ε > 0, computes a rational
approximation of a number f (x) with accuracy ε.

For a general reference on algorithmic randomness, see Li and Vitányi [13].
We confine our attention to the Cantor space � with the uniform Bernoulli
measure B1/2. Hoyrup and Rojas [9] proved that any computable probability
space is isomorphic to the Cantor space in both the computable and measure-
theoretic senses. Therefore, there is no loss of generality in restricting to
this case.

The topology on � is generated by binary intervals �x = {ω ∈ � : x ⊂ ω}, where
x is a finite binary sequence.

A probability measure P on � can be defined by the values P(x) = P(�x),
x ∈ {0, 1}∗. Also, P(�) = 1 and P(x) = P(x0) + P(x1) for all x. A measure P is
computable if the function x → P(x) is computable.

An important example of a computable probability measure is the uniform
Bernoulli measure B1/2, where B1/2(�x) = 2−l(x) for any finite binary sequence x.

An open subset U of � is said to be effectively open if it can be represented
as a union of a computable sequence of binary intervals: U = ⋃∞

i=1 �αi , where
αi = f (i) is a computable function. A sequence Un, n = 1, 2, . . . , of effectively
open sets is called effectively enumerable if each open set Un can be represented
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as Un = ⋃∞
i=1 �αn,i , where αn,i = f (n, i) is a computable function from

n and i.
A Martin-Löf test of randomness with respect to a computable measure P is an

effectively enumerable sequence Un, n = 1, 2, . . . , of effectively open sets such that
P(Un) ≤ 2−n for all n. If the real numbers P(Un) are uniformly computable, then
the test Un is called a Schnorr test of randomness.2

An infinite binary sequence ω passes the test Un, n = 1, 2, . . . , if ω 	∈ ⋂
Un. A

sequence ω is Martin-Löf randomwith respect to a computable measure P if it passes
each Martin-Löf test of randomness. The notion of a Schnorr random sequence is
defined analogously.

In what follows we mainly consider the notion of randomness with respect to the
uniform Bernoulli measure B1/2.

An equivalent definition of randomness can be obtained using Solovay tests of
randomness. A computable sequence {xn : n = 1, 2, . . . } of binary strings is called
a Solovay test of randomness with respect to the uniform measure if the series
∞∑

n=1
2−l(xn) converges.

An infinite sequence ω passes a Solovay test of randomness {xn : n = 1, 2, . . . } if
xn 	⊆ ω for almost all n.

The Martin-Löf and Solovay tests define the same class of random sequences.

Proposition 1 An infinite sequence ω = ω1ω2 . . . is Martin-Löf random if and only
if it passes each Solovay test of randomness.

Proof Assume that ω is not Martin-Löf random. Then a Martin-Löf test Un,
n = 1, 2, . . . , exists such that ω ∈ ⋂

Un. Define the Solovay test of random-
ness as follows. Since Un is effectively open and B1/2(Un) ≤ 2−n for all n, we
can effectively compute a prefix-free sequence of strings xn, n = 1, 2, . . . , such

that
⋃

n �xn = ∪nUn and the series
∞∑

n=1
2−l(xn) converges. Obviously, xn ⊂ ω for

infinitely many n.
On the other hand, assume that for some Solovay test xn, n = 1, 2, . . . , xn ⊂ ω

for infinitely many n. Let
∞∑

n=1
2−l(xn) < 2K , where m is a positive integer number.

Let Un be the set of all infinite ω such that |{m : xm ⊂ ω}| ≥ 2n+K . It is easy to
verify that Un is a Martin-Löf test of randomness and that ω ∈ ⋂

Un.

We also consider total Solovay tests of randomness, which leads to the same
definition of randomness as with Schnorr tests of randomness (see Downey and

Griffiths [4]). A series
∞∑
i=1

ri converges with a computable rate of convergence if a

2Uniform computability of P(Un) means that there is an algorithm which, given n and ε > 0, outputs a
rational approximation of P(Un) up to ε.
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computable function m(δ) exists such that |
∞∑

i=m(δ)

ri | ≤ δ for each positive rational

number δ. A Solovay test of randomness T = {xn : n = 1, 2, . . . } is said to be total

if the series
∞∑

n=1
2−l(xn) converges with a computable rate of convergence.

Proposition 2 An infinite sequence ω = ω1ω2 . . . is Schnorr random if and only if
it passes each total Solovay test of randomness.

The proof is similar to the proof of Proposition 1.
An equivalent definition of a Martin-Löf random sequence is obtained in terms of

algorithmic complexity (see Li and Vitanyi [13]).
In terms of prefix complexity the following definition is known. An infinite

sequence ω is Martin-Löf random with respect to a computable measure P if and
only if KP(ωn) ≥ − logP(ωn) + O(1).

An analogous definition can be obtained in terms of monotonic complexity. Let
us define the notion of a monotonic computable transformation of binary sequences.
A computable representation of such an operation is a set ψ̂ ⊆ {0, 1}∗ × {0, 1}∗
such that (i) the set ψ̂ is recursively enumerable; (ii) for any (x, y), (x ′, y ′) ∈ ψ̂ ,
if x ⊆ x ′, then y ⊆ y ′ or y ′ ⊆ y; (iii) if (x, y) ∈ ψ̂ , then (x, y ′) ∈ ψ̂ for all
y ′ ⊆ y.

The set ψ̂ defines a monotonic (with respect to ⊆) decoding function3 ψ(p) =
sup{x : ∃p′(p′ ⊆ p&(p′, x) ∈ ψ̂)}.

Any computable monotonic function ψ determines the corresponding measure
of complexity Kmψ(x) = min{l(p) : x ⊆ ψ(p)} = min{l(p) : (x, p) ∈ ψ̂}.
An invariance property also holds for monotonic measures of complexity: an opti-
mal computable operation ψ exists such that Kmψ(x) ≤ Kmψ ′(x) + O(1) for all
computable operations ψ ′ and for all finite binary sequences x.

An infinite sequence ω is Martin-Löf random with respect to a computable mea-
sure P if and only if Km(ωn) = − logP(ωn)+O(1). In particular, an infinite binary
sequence ω is Martin-Löf random (with respect to the uniform measure) if and only
if Km(ωn) = n + O(1).

A randomness criterium can also be formulated in terms of prefix com-
plexity: an infinite sequence ω is Martin-Löf random with respect to a com-
putable measure P if and only if KP(ωn) ≥ − logP(ωn) + O(1). Also,
Km(x) ≤ KP(x) + O(1) (see for details Li and Vitanyi [13]). The main
results of this paper, Theorems 2 and 3, also hold if we replace Km(x) with
KP(x).

The function dmP (ωn) = − logP(ωn) − Km(ωn) is called the universal defi-
ciency of randomness (with respect to a computable measure P ). For the uniform
measure, dm(ωn) = n − Km(ωn).

3Here by the supremum we mean a finite or an infinite sequence extending all comparable finite x.
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3 Algorithmically Stable Laws

Let �(ω) be an asymptotic probability law, i.e., a property of infinite binary
sequences which holds almost surely.

Kolmogorov’s algorithmic approach to probability theory offers a new paradigm
for logic of probability. We can formulate any probabilistic law in a pointwise form:
Km(ωn) ≥ n − O(1) =⇒ �(ω).4

In this paper we present a more deep analysis. We call a law �(ω) stable if there
exists an unbounded nondecreasing computable function α(n) such that Km(ωn) ≥
n−α(n)−O(1) =⇒ �(ω). The function α(n) is called the degree of stability of the
law �(ω).

3.1 Sufficient Condition of Stability

We present in this section some sufficient condition of stability of a probability law
and consider examples of such laws with different degrees of stability. We formulate
this sufficient condition in terms of Schnorr’s [16] definition of an algorithmic ran-
dom sequence. The choice of Schnorr’s definition is justified by an observation that
the vast majority of such laws hold for Schnorr random sequences.

An algorithmic effective version of almost sure convergence of functions fn of
type � → R+ was considered by V’yugin [21]. A sequence of functions fn effec-
tively converges to a function f almost surely if a computable function m(δ, ε) exists
such that

B1/2{ω : sup
n≥m(δ,ε)

|fn(ω) − f (ω)| > δ} < ε (1)

for all positive rational numbers δ and ε.
A function f : � → R is said to be computable if the sets {(r, ω) : r ∈ Q, ω ∈

�, r < f (ω)} and {(r, ω) : r ∈ Q, ω ∈ �, r > f (ω)} are effectively open in
the product topology5 on Q × �. A notion of a computable sequence of functions
fn : � → R, n = 1, 2, . . . , is defined analogously.

The following simple proposition was formulated in [21] for theMartin-Löf notion
of randomness. It holds also for Schnorr random sequences (see Galatolo et al. [10]).

Proposition 3 Let a computable sequence of functions fn effectively converge almost
surely to some function f . Then a Schnorr test of randomness T can be constructed
such that lim

n→∞ fn(ω) = f (ω) for each infinite sequence ω passing the test T .

Proof By (1) we have B1/2{ω : sup
n,n′≥m(δ/2,ε)

|fn(ω) − fn′(ω)| > δ} < ε for all

positive rational numbers δ and ε. Denote Wn,n′,δ = {ω : |fn(ω)−fn′(ω)| > δ}. This
set can be represented as the union

⋃
i �xi , where xi, i = 1, 2, . . . , is a computable

4An equivalent form is Km(ωn) = n + O(1) =⇒ �(ω).
5We consider a discrete topology on Q and a topology on � generated by the intervals �x , x ∈ {0, 1}∗.
The notion of an effectively open set is defined as Section 2.
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sequence of finite sequences. Define Vi = ⋃
n,n′≥m(1/i,2−i) Wn,n′,1/i for all i and

Ui = ⋃
j>i Vj . Then B1/2(Ui) ≤ 2−i for all i.

Note that the measure B1/2(Ui) can be computed with an arbitrary degree of
precision. Indeed, by (1), to compute P(Ui) with a given degree of precision ε >

0 it is sufficient to compute B1/2(
⋃

i ′≥j≥i

⋃
m′≥n,n′≥m(1/i,2−j ) Wn,n′,1/j ) for some

sufficiently large i ′ and m′. Therefore, T = {Ui} is a Schnorr test of randomness.
Assume that lim

n→∞ fn(ω) does not exist for some ω. Then a number i exists such

that |fn(ω) − fn′(ω)| > 1/i for infinitely many n and n′. For any j > i the numbers
n, n′ ≥ m(1/j, 2−j ) exist such that ω ∈ Wn,n′,1/j ⊆ Vj . Hence, the sequence ω is
rejected by the Schnorr test T .

In the following proposition some sufficient condition of stability of a probability
law is given in terms of total Solovay tests randomness. This proposition also follows
from the proof of Proposition 13 of Bienvenu and Merkle [2].

Proposition 4 For any total Solovay test of randomness T , a computable unbounded
function σ(n) exists such that for any infinite sequence ω, if Km(ωn) ≥ n − σ(n) −
O(1), then the sequence ω passes the test T .

Proof Let T = {xn : n = 1, 2, . . . }. Denote ls = l(xs). Since
∞∑

s=1
2−ls < ∞

with a uniform computable rate of convergence m(ε), an unbounded nondecreasing

computable function ν(n) exists such that
∞∑

s=1
2−ls+ν(ls) < ∞. We can define ν(n) =

i, where i is such that m(2−2i ) ≤ n < m(2−2(i+1)). Then

∞∑

s=1

2−ls+ν(ls) =
∞∑

i=1

2i
∑

m(2−2i )≤ls<m(2−2(i+1))

2−ls ≤
∞∑

i=1

2−i ≤ 1.

By the generalized Kraft inequality (see Li and Vitanyi [13]), we can define the
corresponding prefix-free code such that Km(xm) ≤ l(xm) − ν(l(xm)) + O(1).
Assume xm ⊆ ω for infinitely many m. For any such m, ωn = xm, where
n = l(xm).

Let σ(n) be a unbounded nondecreasing computable function such that σ(n) =
o(ν(n)) as n → ∞. Let also ω be an infinite binary sequence such that Km(ωn) ≥
n − σ(n) − O(1) for all n. For n = l(xm),

σ(n) ≥ n − Km(ωn) ≥ n − l(xm) + ν(l(xm)) − O(1) ≥ ν(n) − O(1)

for infinitely many n. On the other hand, σ(n) = o(ν(n)) as n → ∞. This
contradiction proves the theorem.

By Proposition 4 the stability property holds for main probability laws like the
strong law of large numbers and the law of iterated logarithm.

By a computable sequence of total Solovay tests of randomness we mean a
computable double-indexed sequence of finite binary strings Tk = {xk,n : n =
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1, 2, . . . }, k = 1, 2, . . . , such that the series
∞∑

n=1
2−l(xk,n) converges with a uniformly

(with respect to k) computable rate of convergence. This means that there exists a

computable function m(δ, k) such that
∞∑

i=m(δ,k)

2−l(xk,i) ≤ δ for each k and each

rational6 δ.
In applications, it is often convenient to use computable sequences of tests. One

can easily modify Proposition 4 for computable sequences of tests.

Proposition 5 For any computable sequence of Solovay total tests of randomness
Tk, k = 1, 2, . . . , a computable unbounded function σ(n) exists such that for any
infinite sequence ω, if Km(ωn) ≥ n − σ(n) − O(1), then the sequence ω passes all
tests Tk .

The proof is analogous to the proof of Proposition 4.
It is well known that the Schnorr randomness satisfies the strong law of large

numbers and the law of iterated logarithm. Now we show details of how Proposition
5 can be applied to these laws.

Hoeffding’s [8] inequality for the uniform probability distribution

B1/2

{

ω ∈ � :
∣
∣
∣
∣
∣

1

n

n∑

i=1

ωi − 1

2

∣
∣
∣
∣
∣
≥ ε

}

≤ 2e−2nε2 (2)

serves as a tool for constructing total Solovay tests of randomness.
Let εk be a computable sequence of positive rational numbers such that εk → 0

as k → ∞. For any k, let
⋃

n{x : l(x) = n&| 1
n

n∑

i=1
xi − 1

2 | ≥ εk} = {xk,m :
m = 1, 2, . . . }}. This is a total Solovay test of randomness, since by (2) we have
∞∑

m=1
2−l(xk,m) ≤

∞∑
n=1

2e−2nε2k < ∞ with a computable rate of convergence.

The strong law of large numbers lim
n→∞

1
n

n∑

i=1
ωi = 1

2 holds for an infinite sequence

ω = ω1ω2 . . . if and only if it passes the test {xk,m : m = 1, 2, . . . } for each k.
By Proposition 4 an unbounded nondecreasing computable function σ(n) exists such
that if Km(ωn) ≥ n−σ(n)−O(1) as n → ∞, then the strong law of large numbers
holds for this ω.

We can find a specific form of this function σ(n) using the proof of Propo-

sition 4. By inequality (2) we have the bound
∞∑

n=1
2−l(xk,n) <

∞∑
n=1

2e−2nε2k <

∞ for the corresponding total Solovay test of randomness Tk = {xk,n}. Also,

6We can combine all tests of a computable sequence Tk, k = 1, 2, . . . , into a single total test T = {xk,n :
k = 1, 2, . . . , n = m(2−k, k),m(2−k, k) + 1, . . . } such that if any ω passes the test T , then it passes the

test Tk for each k. T is a test, since
∞∑

k=1

∞∑

n=m(2−k ,k)

2−l(xk,n) ≤
∞∑

k=1
2−k ≤ 1.
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∞∑
n=1

2e−2nε2k+ν(n) < ∞ for any function ν(n) such that ν(n) = o(n) as n → ∞. The

remaining part of the proof coincides with the proof of Proposition 4. Hence, any
function σ(n) = o(n) can serve as a degree of stability for the strong law of large
numbers.

An analogous construction can be developed for the law of iterated logarithm:

lim sup
n→∞

∣
∣
∣
∣

n∑

i=1
ωi − n

2

∣
∣
∣
∣

√
1
2n ln ln n

= 1. (3)

Here we consider here only the inequality ≤ in (3).7 This inequality is violated if and

only if a rational number δ > 1 exists such that Sn − n
2 > δ

√
1
2n ln ln n for infinitely

many n, where Sn =
n∑

i=1
ωi .

For any rational number δ such that δ > 1 and for mn = �δn�, let8

Uδ,n =
{
ω ∈ � : ∃k(mn ≤ k ≤ mn+1&Sk − k/2 > δ

√
(1/2)mn ln lnmn

}
.

Using the inequality B1/2{ max
1≤k≤m

Sk > a} ≤ 2B1/2{Sm > a}, we obtain

B1/2(Uδ,n) ≤ 2B1/2

({
ω ∈ � : Smn+1 − mn+1/2 > δ

√
(1/2)mn ln lnmn

})
≤

≤ ce−δ ln lnmn ≈ 1

nδ
, (4)

where c > 0. We have used in (4) the Hoeffding inequality.
We can effectively construct a prefix-free set Ũδ,n of finite sequences such that for

each ω ∈ Uδ,n a number m exists such that ωm ∈ Ũδ,n.
The sequence

⋃
n Ũδ,n = {xδ,k : k = 1, 2, . . . } is a total Solovay test of ran-

domness, since the series
∑

n

2−l(xδ,n) = ∑

n

B1/2(Uδ,n) ≤ ∑

n

1
nδ converges (with a

computable rate of convergence) for any δ > 1.
By definition, the law of iterated logarithm (3) holds for ω = ω1ω2 . . . if and only

if it passes the test {xδ,k : k = 1, 2, . . . } for each δ > 1.
By Proposition 4 an unbounded nondecreasing computable function σ(m) exists

such that the inequality ≤ in (3) holds for any ω satisfying Km(ωm) ≥ m − σ(m) −
O(1) as m → ∞.

We can also find a specific form of the degree of stability for the law of iterated
logarithm. Let α(m) be an unbounded nondecreasing computable function such that
α(m) = o(ln lnm) as m → ∞. Then the series

∑

n

e−δ ln lnmn+α(mn) ≈ ∑

n

o(lnn)

nδ

converges for any δ > 1. The proof of Proposition 4 shows that any computable

7The converse inequality is studied in Vovk [20].
8For any real number r , �r� denotes the least positive integer number m such that m ≥ r .
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unbounded function σ(n) = o(log log n) can serve as a measure of stability of the
law of iterated logarithm.

3.2 Stability of Birkhoff’s Theorem in the Ergodic Case

Recall some basic notions of ergodic theory. An arbitrary measurable mapping
of a probability space into itself is called a transformation. A transformation
T : � → � preserves a measure P on � if P(T −1(A)) = T (A) for all
measurable subsets A of the space. A subset A is said to be invariant with
respect to T if T −1A = A up to a set of measure 0. A transformation T

is called ergodic if each subset A invariant with respect to T has measure
0 or 1.

A transformation T of the set � is computable if a computable representation

ψ̂ exists such that (i)-(iii) hold and T (ω) = sup
{
y : x ⊆ ω&(x, y) ∈ ψ̂)

}
for all

infinite ω ∈ �.
Denote T 0ω = ω, T i+1ω = T (T iω). Any point ω ∈ � generates an infinite

trajectory ω, T ω, T 2ω, . . . .
Using Bishop’s [3] analysis, V’yugin [21], [23] presented an algorithmic version

of Birkhoff’s pointwise ergodic theorem:
Let T be a computable measure-preserving transformation and f a computable

real-valued bounded function defined on the set of binary sequences. Then for any
infinite binary sequence ω the following implication is valid:

Km(ωn) ≥ n − O(1) =⇒ lim
n→∞

1

n

n−1∑

i=0

f (T iω) = f̂ (ω) (5)

for some f̂ (ω) (= E(f ) for ergodic T ).
Later this result was extended for non-computable f and generalized for more

general metric spaces. For a further development see Nandakumar [14], Galatolo et
al. [11], and Gacs et al. [5].

Let f ∈ L1 be computable and assume that supω |f (ω)| < ∞; By ‖f ‖ denote the
norm in L1 (or in L2). Let P be a computable measure and T a computable ergodic
transformation preserving the measure P .

Define the sequence of ergodic averages A
f
n , n = 1, 2, . . . , where A

f
n (ω) =

1
n

n−1∑

k=0
f (T kω).

Galatolo at al. [10] and Avigad et al. [1] showed that the ergodic aver-
ages {Af

n } effectively converge to a computable real number c = ∫
f (ω)dP

almost surely as n → ∞. Then the stability property of the ergodic theo-
rem in the case where the transformation T is ergodic is a consequence of
this result and Propositions 3 and 4. We present this result for completeness of
exposition.
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Proposition 6 Let T be a computable measure preserving ergodic transformation.

Then the sequence of ergodic averages
{
A

f
n

}
effectively converges almost surely as

n → ∞.

Proof We suppose without loss of generality that
∫

f dP = 0.9 The sequence ‖Af
n ‖

is computable and converges to 0 by the ergodic theorems.
The maximal ergodic theorem says that P {ω : sup

n
|Af

n (ω)| > δ} ≤ 1
δ
‖f ‖ for any

ergodic transformation T preserving the measure P .
Given ε, δ > 0, compute a p = p(δε) such that ‖Af

p‖ ≤ δε/2. By the maximal

ergodic theorem for g = A
f
p we have P {ω : sup

n
|Ag

n(ω)| > δ/2} ≤ 2
δ
‖Af

p‖ ≤ ε.

Now we check that Ag
n is not too far from A

f
n . Expanding A

g
n, one can check that

A
g
n(ω) = 1

n

n−1∑

k=0

g(T kω) = 1

np

p−1∑

k=0

n−1∑

s=0

f (T k+sω) = 1

np

(

p

n−1∑

k=0

f (T kω)

)

+

+ 1

np

⎛

⎝
p−1∑

k=1

(p − k)f (T k+nω) −
p−1∑

k=1

(p − k)f (T kω)

⎞

⎠ .

This implies that sup
ω

|Ag
n(ω) − A

f
n (ω)| ≤ 2

np

p−1∑

k=1
(p − k) sup

ω
|f (ω)| =

p−1
n

sup
ω

|f (ω)| ≤ δ/2 for all n ≥ m(δ, ε) = 2(p(δε)−1) sup
ω

|f (ω)|/δ. If |Af
n (ω)| >

δ for some n ≥ m(δ, ε) then |Ag
n(ω)| > δ/2. Hence, P {ω : sup

n≥m(δ,ε)

|Af
n (ω)| > δ} ≤

ε. The proposition is proved.

Propositions 3, 4, and 6 imply a stable version of the ergodic theorem for the case
where the transformation T is ergodic and P = B1/2.

Theorem 1 Let f be a computable observable and T a computable ergodic trans-
formation preserving the uniform measure B1/2. Then a computable unbounded
nondecreasing function σ(n) exists such that for any infinite sequence ω the con-

dition Km(ωn) ≥ n − σ(n) − O(1) implies that the limit lim
n→∞

1
n

n−1∑

k=0
f (T kω)

exists.

Propositions 3, 4, and 6 imply also that in the case where the transfor-
mation T is ergodic, the Birkhof ergodic theorem holds for any Schnorr ran-
dom sequence. Moreover, a total Solovay test T exists such that if an infi-
nite sequence ω passes T , then A

f
n (ω) converges as n → ∞. This result

9Replace f with f − ∫
f (ω)dP .
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should probably be attributed to Galatolo et al. [11] (see also Franklin and
Towsner [6]).

4 Instability in Ergodic Theory

The phenomenon of instability occurs in ergodic theory. In this section we present a
property of uniform instability of the ergodic theorem and absolute instability for a
non-ergodic measure-preserving transformation.

4.1 Instability Results

The degree of stability σ(n) from Theorem 1 may depend on the observable f and
transformation T . Theorem 2 below shows that there is no uniform degree of stability
σ(n) for the ergodic theorem.

The phenomenon of instability of the ergodic theorem was first discovered
by V’yugin [24]. Compared with a “symbolic dynamics type” result from [24],
this result is “measure free”; it is formulated in terms of transformations and the
Kolmogorov complexity.

Theorem 2 Let σ(n) be a nondecreasing unbounded computable function. Then
there exist a computable ergodic measure-preserving transformation T and an infi-
nite sequence ω ∈ � such that the inequality Km(ωn) ≥ n − σ(n) holds for all n

and the limit

lim
n→∞

1

n

n−1∑

i=0

f (T iω) (6)

does not exist for some computable indicator function f .

Gacs et al. [5] showed that for every infinite sequence ω which is not Schnorr
random, a measure preserving ergodic transformation T exists such that the
limit (6) does not exist (i.e., the ergodic theorem does not hold). This result
and Theorem 1 show that Theorem 2 is equivalent to the following statement:
for every nondecreasing unbounded computable function σ(n) there is some
infinite sequence ω such that Km(ωn) ≥ n − σ(n) but ω is not Schnorr
random.

In the next theorem a uniform (with respect to σ(n)) result is presented. In this
case, we will lose the ergodic property of a transformation T .

Theorem 3 A computable measure-preserving transformation T can be con-
structed such that for any nondecreasing unbounded computable function
σ(n) an infinite sequence ω exists such that Km(ωn) ≥ n − σ(n) holds
for all n and the limit (6) does not exist for some computable indicator
function f .
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A constructive version of the ergodic theorem by V’yugin [21] shows that
this sequence ω is not Martin-Löf random. A closely related result was obtained
by Franklin and Towsner [6]. Using the cutting and stacking method, they
showed that for every infinite sequence ω which is not Martin-Löf random,
a measure preserving transformation T exists such that the limit (6) does not
exist.

A construction of the transformation T is given in Section 4.3; the proof of Theo-
rem 2 is given in Section 4.4. In Section 4.2 we consider the main technical concept,
the method of cutting and stacking.

4.2 Method of Cutting and Stacking

In this section we consider the main notions and properties of cutting and stacking
method (see Shields [17, 18]).

A column is a sequence E = (L1, . . . , Lh) of pairwise disjoint intervals of
the unit interval [0, 1] of equal width. We refer to L1 as to the base and to
Lh as to the top of the column; Ê = ⋃h

i=1 Li is the support of the column;
w(E) = λ(L1) is the width of the column; h is the height of the column;
λ(Ê) = λ(

⋃h
i=1 Li) is the measure of the column, where λ is the uniform measure

on [0, 1].
Any column defines a transformation T which linearly transforms Lj to

Lj+1, namely, T (x) = x + c for all x ∈ Lj , where c is the correspond-
ing constant and 1 ≤ j ≤ h. This transformation T is not defined outside
all intervals of the column and at all points of the top interval Lh of this
column.

Denote T 0ω = ω, T i+1ω = T (T iω). For any 1 ≤ j < h, an arbitrary point
ω ∈ Lj generates a finite trajectory ω, T ω, . . . , T h−jω.

By a partition of the unit interval [0, 1] we mean any pair π = (π0, π1) of disjoint
subsets of this interval such that π0 ∪ π1 = [0, 1]. In what follows we suppose that
some partition π = (π0, π1) is given.

A partition π = (π0, π1) is compatible with a column E if for each j there exists
a number i such that Lj ⊆ πi . This number i is called the name of the interval Lj ,
and the corresponding sequence of names of all intervals of the column is called the
name of the column E.

For any point ω ∈ Lj , where 1 ≤ j < h, by the E–name of the trajectory
ω, T ω, . . . , T h−jω we mean a sequence of names of intervals Lj , . . . , Lh from the
column E. The length of this sequence is h − j + 1.

A gadget ϒ is a finite collection of columns with disjoint supports. The width
of the gadget w(ϒ) is the sum of the widths of its columns. The support of
the gadget ϒ is the union ϒ̂ of the supports of all its columns. We suppose
that the partition π = (π0, π1) is compatible with each column of the gadget
ϒ .

The union of gadgets ϒi with disjoint supports is the gadget ϒ = ⋃
ϒi whose

columns are the columns of all the ϒi . A transformation T = T (ϒ) is associ-
ated with a gadget ϒ if it is the union of transformations defined on all columns
of ϒ .
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Any point of the support ϒ̂ of a gadget ϒ generates a finite trajectory. By the ϒ-
name of this trajectory we mean its E-name, where E is the column of ϒ to which
this trajectory corresponds. A gadget ϒ extends a column � if the support of ϒ

extends the support of � and the transformation T (ϒ) extends the transformation
T (�).

Since all points of the interval Lj of the column generate trajectories with the
same names, we refer to the name of any such trajectory as to the name generated by
the interval Lj .

The cutting and stacking operations that are commonly used will now be defined.
The distribution of a gadget ϒ with columns E1, . . . , En is a vector of probabilities

(
w(E1)

w(ϒ)
, . . . ,

w(En)

w(ϒ)

)

. (7)

A gadget ϒ is a copy of a gadget � if they have the same distributions and the
corresponding columns have the same partition names.

A gadget ϒ can be cut into M copies of itself ϒm, m = 1, . . . , M , according to
a given probability vector (γ1, . . . , γM) of type (7) by cutting each column Ei =
(Li,j : 1 ≤ j ≤ h(Ei)) (and its intervals) into disjoint subcolumns Ei,m = (Li,j,m :
1 ≤ j ≤ h(Ei)) such that w(Ei,m) = w(Li,j,m) = γmw(Li,j ).

The gadget ϒm = {Ei,m : 1 ≤ i ≤ L} is called the copy of the gadget ϒ of
width γm. The action of the gadget transformation T is not affected by the copying
operation.

Another operation is stacking of gadgets onto gadgets. First we consider stacking
of columns onto columns and stacking of gadgets onto columns.

Let E1 = (L1,j : 1 ≤ j ≤ h(E1)) and E2 = (L2,j : 1 ≤ j ≤ h(E2)) be two
columns of equal width whose supports are disjoint. A new column E1 ∗ E2 = (Lj :
1 ≤ j ≤ h(E1) + h(E2)) is defined as Lj = L1,j for all 1 ≤ j ≤ h(E1) and
Lj = L2,j−h(E1) for all h(E1) < j ≤ h(E1) + h(E2).

Let a gadget ϒ and a column E have the same width, and assume that their
supports are disjoint. A new gadget E ∗ ϒ is defined as follows. Cut E into sub-
columns Ei according to the distribution of the gadget ϒ such that w(Ei) =
w(Ui), where Ui is the ith column of the gadget ϒ . Stack Ui on the top of
Ei to get a new column Ei ∗ Ui . A new gadget consists of the columns
(Ei ∗ Ui).

Let ϒ and � be two gadgets of the same width and with disjoint supports. A
gadget ϒ ∗ � is defined as follows. Let the columns of ϒ are {Ei}. Cut � into
copies �i such that w(�i) = w(Ei) for all i. After that, for each i stack the
gadget �i onto column Ei , i.e., consider the gadget Ei ∗ �i . The new gadget
is the union of gadgets Ei ∗ �i for all i. The number of columns of the gadget
ϒ ∗ � is the product of the number of columns of ϒ and the number of columns
of �.

The M-fold independent cutting and stacking of a single gadget ϒ is defined by
cutting ϒ into M copies ϒi , i = 1, . . . , M , of equal width and successive indepen-
dent cutting and stacking to obtain ϒ∗(M) = ϒ1 ∗ · · · ∗ ϒM . A sequence of gadgets
{ϒm} is complete if
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• lim
m→∞ w(ϒm) = 0;

• lim
m→∞ λ(ϒ̂m) = 1;

• ϒm+1 extends ϒm for all m.

Any complete sequence of gadgets {ϒs} determines a transformation T = T {ϒs}
which is defined almost surely.

By the definition, T preserves the measure λ. Shields [17] gives the following
sufficient conditions for a process T to be ergodic. Let a gadget ϒ be constructed by
cutting and stacking from a gadget �. Let E be a column from ϒ and D a column
from �. Then the set Ê

⋂
D̂ is the union of subcolumns from D of width w(E)

which were used to construct E.
Let 0 < ε < 1. A gadget � is (1 − ε)-well-distributed in ϒ if

∑

D∈�

∑

E∈ϒ

|λ(Ê
⋂

D̂) − λ(Ê)λ(D̂)| < ε. (8)

We will use the following two lemmas.

Lemma 1 ([17], Corollary 1), ([18], Theorem A.1). Let {ϒn} be a complete
sequence of gadgets and assume that for each n the gadget {ϒn} is (1 − εn)-well-
distributed in {ϒn+1}, where εn → 0. Then {ϒn} defines an ergodic process.

Lemma 2 ([18], Lemma 2.2). For any ε > 0 and any gadget ϒ there is a number
M such that for each m ≥ M the gadget ϒ is (1 − ε)-well-distributed in the gadget
ϒ∗(m) constructed from ϒ by m-fold independent cutting and stacking.

We refer the reader to Shields [17] for the proof.
Several examples of stationary and ergodic transformation constructed using the

cutting and stacking method are given in Shields [17, 18].

4.3 Construction

Let r > 0 be a sufficiently small rational number. Define a partition π = (π0, π1)

of the unit interval [0, 1], where π0 = [0, 0.5) ⋃
(0.5+ r, 1) and π1 = [0.5, 0.5+ r].

Let σ(n) be a computable unbounded nondecreasing function. A computable
sequence of positive integer numbers exists such that 0 < h−2 < h−1 < h0 < h1 <

. . . and σ(hi−1) − σ(hi−2) > i − log r + 8 for all i = 0, 1, . . . .
The gadgets �s , �s , where s = 0, 1, . . . , will be defined by mathematical

induction on the number of steps. The gadget �0 is defined by cutting the interval
[0.5 − r, 0.5 + r] into equal parts and stacking them. Let �0 be a gadget defined by
cutting the intervals [0, 0.5− r) and (0.5+ r, 1] into equal subintervals and stacking
them. The purpose of this definition is to construct initial gadgets of width ≤ 2−h0

with supports satisfying λ(�̂0) = 2r and λ(�̂0) = 1 − 2r .
The sequence of gadgets {�s}, s = 0, 1, . . . , will define an approximation of

the uniform Bernoulli measure concentrated on the names of their trajectories. The
sequence of gadgets {�s}, s = 0, 1, . . . , will define a measure with sufficiently
small entropy. The gadget �s−1 will be extended at each step of the construction
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by a half of the gadget �s−1. After that, the independent cutting and stacking pro-
cess will be applied to this extended gadget to obtain the gadget �s . This process
eventually defines infinite trajectories starting from points of [0, 1]. The sequence
of gadgets {�s}, s = 0, 1, . . . , will be complete and will define a transforma-
tion T . Lemmas 1 and 2 from Section 4.2 ensure the transformation T to be
ergodic.

Construction Let at step s − 1 (s > 0) gadgets �s−1 and �s−1 be defined. Cut
the gadget �s−1 into two copies �′ and �′′ of equal width (i.e., cut each col-
umn into two subcolumns of equal width) and join �s−1

⋃
�′′ in to one gadget.

Find a sufficiently large number Rs and do Rs -fold independent cutting and stack-
ing of the gadget �s−1

⋃
�′′ and also of the gadget �′ to obtain new gadgets

�s and �s of width ≤ 2−hs such that the gadget �s−1
⋃

�′′ is (1 − 1/s)–
well–distributed in the gadget �s . The needed number Rs exists by Lemma 2
(Section 4.2).

By the construction, the endpoints of all subintervals of [0, 1] used in this con-
struction are rational numbers, and so the construction is algorithmically effective.

Properties of the construction Define a transformation T = T {�s}. Since the
sequence of the gadgets {�s} is complete (i.e. λ(�̂s) → 1 and w(�s) → 0 as
s → ∞), T is defined almost surely.

The transformation T is ergodic by Lemma 1, since the sequence of gadgets �s is
complete. Furthermore, the gadget �s−1

⋃
�′′ and the gadget �s−1 are (1 − 1/s)-

well distributed in �s for any s. By the construction, λ(�̂i) = 2−i+1r and λ(�̂i) =
1 − 2−i+1r for all i = 0, 1, . . . .

We need to interpret the transformation T as a transformation of infinite binary
sequences. To do this, we identify real numbers from [0, 1] with their infinite
binary representations. This correspondence is one-to-one except for the countable
set of infinite sequences corresponding to dyadic rational numbers: for example,
0.0111... = 0.10000.... Such sequences can be ignored, since their set is countable.

From the point of view of this interpretation, the Bernoulli measure B1/2
and the uniform measure λ are identical, and the transformation T con-
structed above preserves the uniform Bernoulli measure and is defined almost
surely.

4.4 Proof of Theorem 2

For technical convenience, in the proof of Theorem 2 we replace the deficiency
of randomness dm(x) with a nonnegative supermartingale (see Schiryaev [19]).
A function M : {0, 1}∗ → R is called a supermartingale if M(�) ≤ 1 and
M(x) ≥ 1

2 (M(x0) + M(x1)) for all x. Also, we require M(x) ≥ 0 for all
x. A more general property holds: M(x) ≥ ∑

y∈B

M(xy)2−l(y) for any prefix-free

set B .
Recall the proof of that the deficiency of randomness is bounded by the logarithm

of some supermartingale: dm(x) ≤ logM(x) for all x.
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Let ψ be the optimal function which defines the monotone complexity Km(x).
Define Q(x) = B1/2(

⋃{�p : x ⊆ ψ(p)}). It is easy to verify that Q(�) ≤ 1
and Q(x) ≥ Q(x0) + Q(x1) for all x. Then the function M(x) = 2l(x)Q(x) is a
supermartingale and M(x) ≥ 2l(x)−Km(x) for all x.

Denote d(x) = logM(x). Using the following lemma, we will construct an infi-
nite binary sequence such that the randomness deficiency of its initial segments grows
arbitrarily slowly.

Lemma 3 For any set of binary strings A and for any string x, a string y ∈ A exists
such that d(xyn) ≤ d(x) − logB1/2(Ã) + 1 for all n such that 1 ≤ n ≤ l(y), where
Ã = ⋃{�y : y ∈ A}.

Proof Define A1 =
{
y ∈ A : ∃j (1 ≤ j ≤ l(y)&M(xyj ) > 2M(x)/B1/2(Ã))

}
.

For any y ∈ A1, let yp be the initial segment of y of the minimal length such that
M(xyp) > 2M(x)/B1/2(Ã). The set {yp : y ∈ A1} is prefix-free. Then we have

1 ≥
∑

y∈A1

M(xyp)

M(x)
2−l(yp) ≥ 2

B1/2(Ã)

∑

y∈A1

2−l(yp) ≥ 2B1/2(Ã1)

B1/2(Ã)
.

From this we obtain B1/2(Ã1) ≤ 1
2B1/2(Ã) and B1/2(Ã \ Ã1) > 1

2B1/2(Ã).
For any y ∈ A \ A1, we have M(xyj) ≤ 2M(x)/B1/2(Ã) for all x such that

l(x) ≤ j ≤ (y).

We will use the construction of Section 4.3 to show that an infinite binary sequence
ω exists such that d(ωn) ≤ σ(n) for all n and the limit (6) does not exist for the name
χ(ω)χ(T ω)χ(T 2ω) . . . of its trajectory, where χ(ω) = i if ω ∈ πi , i = 0, 1. More
precisely, we prove that

lim sup
n→∞

1

n

n−1∑

i=0

χ(T iω) ≥ 1/16, (9)

lim inf
n→∞

1

n

n−1∑

i=0

χ(T iω) ≤ 2r, (10)

where r is sufficiently small.
By induction on the number of steps we will define the sequence ω as a union of

an increasing sequence of initial segments

ω(0) ⊂ · · · ⊂ ω(k) ⊂ . . . . (11)

We will also define an auxiliary sequence of integer numbers s(−1) = s(0) = 0 <

s(1) < . . . .
Using Lemma 3, define ω(0) such that d(ω(0)j ) ≤ 2 for all j ≤ l(ω(0)).
Let us consider dyadic intervals of the form [m2−n, (m+ 1)2−n), where 0 ≤ m <

2n. Any such interval corresponds to some finite sequence x = x1 . . . xn and the
corresponding binary interval �x = {ω ∈ � : x ⊂ ω} in �.

Author's personal copy



420 Theory Comput Syst (2016) 58:403–423

Induction hypothesis Suppose that a binary sequence ω(0) ⊂ · · · ⊂ ω(k − 1) of
strings and a sequence of integer numbers s(−1) = s(0) = 0 < s(1) < · · · <

s(k − 1) are already defined.
Suppose also that the dyadic interval corresponding to the string ω(k−1) is a sub-

set of one of the intervals of the gadget �s(k−1). By the construction, w(�s(k−1)) ≤
2−hs(k−1) . Then l(ω(k − 1)) ≥ hs(k−1).

We also suppose that d(ω(k −1)) ≤ σ(hs(k−2))−4 if k is odd and d(ω(k −1)) ≤
σ(hs(k−2)) if k is even.

Consider an odd k. Denote a = ω(k − 1) and let Ia be the dyadic interval corre-
sponding to a. Any point of Ia generates the �s -trajectory. By the ergodic theorem,
for a.e. points of Ia , the frequency of visiting the element π1 of the partition converges
to r as s → ∞.

Let s be sufficiently large such that s > s(k−1) and the total measure of all points
of Ia generating �s -trajectories with frequency ≤ 2r of visiting the element π1 is at
least (1/2)2−l(a).

The intersection of intervals from �s with Ia can be represented as a union of
pairwise disjoint intervals [r1, r2]. It is easy to see that any such interval [r1, r2]
contains a dyadic subinterval of length at least 1

4 (r2 − r1) corresponding to a binary
string b. Let Ca be a set of such strings b. The Bernoulli measure of Ca is at least
(1/8)2−l(a).

Fix some such s and define s(k) = s.
By Lemma 3 a sequence b ∈ Ca exists such that d(bj ) ≤ d(a)+4 for each l(a) ≤

j ≤ l(b). Define ω(k) = b. By the induction hypothesis, d(a) ≤ σ(hs(k−2)) − 4
and l(a) ≥ hs(k−1). Then d(bj ) ≤ σ(hs(k−2)) < σ(hs(k−1)) ≤ σ(l(a)) ≤ σ(j)

for all l(a) ≤ j ≤ l(b). Also, since w(�s) ≤ 2−hs , we have l(b) ≥ hs(k).
Therefore, the induction hypothesis and condition (10) are valid for the next step of
induction.

Let k be even. Put b = ω(k − 1) and s(k) = s(k − 1) + 1. Let s = s(k) and �s be
the gadget generated by the Rs -fold independent cutting and stacking of the gadget
�s−1

⋃
�′′.

Let E = (L1, . . . , Lk) be a column of the gadget �′′ defined at step s and let
E∗ = (L1, . . . , L�k/2�) be its lower half.

Divide all intervals of the gadget �′′ into two equal parts: an upper half
and lower half. Any interval of the lower half of �′′ generates a trajectory of
length ≥ M/2, where M is the height of the gadget �′′. The uniform mea-
sure of the support of the lower half is ≥ 1

2λ(�̂′′). By the construction, for
all sufficiently large s, the measure of all points from this set, whose �′′-
trajectories have length ≥ M/2 and frequency of ones ≥ 1/4, is at least
1
4λ(�̂′′).

By the construction,

γ =
λ

(
�̂′′

)

λ
(
�̂s−1

) =
λ

(
�̂s−1

)

2λ
(
�̂s−1

) = 2−s+1r

1 − 2−s+2r
>

> 2−s+1r ≥ 2−(σ (hs−1)−σ(hs−2)−9). (12)
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Let Ib be the dyadic interval corresponding to the string b. By the construction,
Ib is a subset of some interval of �s−1. Consider a subset of Ib such that �s-
trajectories starting from points of these intervals pass through the corresponding
upper subcolumns of the gadget �′′ and have frequencies of ones at least 1/4 in
substrings defined by �′′. Since the gadgets �s−1 and �′′ have the same heights
M , some initial segment of the trajectory starting from such a point has length at
most 2M and its name has at least M/4 ones. Hence, the frequency of ones in the
name of any such initial segment is at least 1

8 . The total measure of this subset of
Ib is at least γ

4 2
−l(b). The intersection of this subset with intervals of the gadget

�s can be represented as a union of pairwise disjoint intervals [r1, r2]. Any such
interval contains a dyadic subinterval of length at least 1

4 (r2 − r1) corresponding
to a binary string extending b. The measure of these dyadic subintervals is at least
γ
162

−l(b). The set Db of the corresponding binary strings has the same Bernoulli
measure.

By Lemma 3 some c ∈ Db exists such that d(cj ) ≤ d(b) + 1 − log γ
16 ≤

d(b) + (σ (hs−1) − σ(hs−2) − 9) + 5 ≤ σ(hs−1) − 4 for all j such that l(b) ≤
j ≤ l(c). Here we have used the induction hypothesis, the inequality d(b) ≤
σ(hs(k−2)) ≤ σ(hs−2), and inequality (12). Besides, l(b) ≥ hs−1. Therefore,
d(cj ) < σ(hs−1) ≤ σ(l(b)) ≤ σ(j) for all j such that l(b) ≤ j ≤ l(c). Define
ω(k) = c.

It is easy to see that the induction hypothesis is valid for this k.
The infinite sequence ω is defined by a sequence of its initial segments (11). We

have proved that d(ωj ) ≤ σ(j) for all j .
By the construction, there are infinitely many initial segments of the trajectory

of the sequence ω with frequency of ones ≥ 1/8 in their names. Also, there are
infinitely many initial segments of this trajectory with frequency of ones ≤ 2r .
Hence, condition (9) holds.

The proof of Theorem 3 is more complicated. Consider a sequence of pairwise
disjoint subintervals Ji of the unit interval [0, 1] of lengths 2−i , i = 1, 2, . . . , and
a uniform computable sequence σi(n) of all partial recursive functions (candidates
for a degree of instability). For any i, we apply the construction of Section 4.3 to
the subinterval Ji and to a function σi(n) in order to define a computable ergodic
measure-preserving transformation Ti on Ji for each i. The needed transformation is
defined as a union of all these transformations Ti . We omit details of this construction.

4.5 Instability of Universal Compression Schemes

Note that an infinite sequence ω is Martin-Löf random with respect to a computable
measure P if and only if Km(ωn) = − logP(ωn) + O(1) as n → ∞.

A recent result of Hochman [7] implies an algorithmic version of the Shannon–
McMillan–Breiman theorem for Martin-Löf random sequences: for any computable
stationary ergodic measure P with entropy H , Km(ωn) ≥ − logP(ωn) − O(1) as
n → ∞ implies

lim
n→∞

Km(ωn)

n
= lim

n→∞
− logP(ωn)

n
= H. (13)
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Clearly, the same property holds for plain and prefix Kolmogorov complexities and
for a sequence ω Martin-Löf random with respect to the uniform measure.

The construction given in Section 4.3 can be applied to show the instability of rela-
tion (13): for any computable function σ(n) as in Theorem 2 and for any sufficiently
small ε > 0 a computable stationary ergodic measure P with entropy 0 < H ≤ ε

and an infinite binary sequence ω exist such that Km(ωn) ≥ − logP(ωn)−σ(n) for
all n and

lim sup
n→∞

Km(ωn)

n
≥ 1

4
,

lim inf
n→∞

Km(ωn)

n
≤ ε.

By a prefix-free code we mean a computable sequence of one-to-one functions {φn}
from {0, 1}n to a prefix-free set of finite sequences. In this case a decoding method
φ̂n also exists such that φ̂n(φn(α)) = α for each α of length n.

A code {φn} is called a universal coding scheme with respect to the class of all
stationary ergodic sources if for any computable stationary ergodic measure P (with
entropy H )

lim
n→∞

l(φn(ω
n))

n
= H almost surely.

The Lempel–Ziv coding scheme is an example of such a universal coding scheme.
We have also an instability property for any universal coding scheme: for any

computable function σ(n) as in Theorem 2 and for any sufficiently small ε > 0 a
computable stationary ergodic measure P with entropy 0 < H ≤ ε exists such that
for each universal code {φn} an infinite binary sequence ω exists such thatKm(ωn) ≥
− logP(ωn) − σ(n) for all n and

lim sup
n→∞

l(φn(ω
n))

n
≥ 1

4
,

lim inf
n→∞

l(φn(ωn))

n
≤ ε.

The proof of these statements is based on the construction of Section 4.3. For further
details we refer the reader to V’yugin [25].
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13. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag,

New York (1997)
14. Nandakumar, S.: An effective ergodic theorem and some applications. In: Proceeding STOC’08,

pp. 39–44 (2008)
15. Ryabko, B.: Twice universal coding. Probl. Inform. Transm. 20, 173–178
16. Schnorr, C.P.: A unified approach to the definition of random sequences. Mathematical Systems

Theory 5, 246–258 (1971)
17. Shields, P.C.: Cutting and stacking: a method for constructing stationary processes. IEEE Trans.

Inform. Theory 37(6), 1605–1617 (1991)
18. Shields, P.C.: Two divergence-rate counterexamples. J. Theoret. Probability 6, 521–545 (1993)
19. Shiryaev, A.N.: Probability, Berlin, Springer (1980)
20. Vovk, V.G.: The law of the iterated logarithm for random Kolmogorov, or chaotic sequences. SIAM

Theory Probab. Applic. 32, 413–425 (1987)
21. V’yugin, V.V.: Effective Convergence in Probability and an Ergodic Theorem for Individual Random

Sequences. Theory Probab. Appl. 42(1), 39–50 (1998)
22. V’yugin, V.V.: On the longest head-run in an individual random sequence. Theory Probab. Appl.

42(3), 541–546 (1998)
23. V’yugin, V.V.: Ergodic theorems for individual random sequences. Theor. Comput. Sci. 207(4), 343–

361 (1998)
24. V’yugin, V.V.: Non-robustness property of the individual ergodic theorem. Probl. Inf. Transm. 37(2),

27–39 (2001)
25. V’yugin, V.V.: Problems of robustness for universal coding schemes. Probl. Inform. Transm. 39(1),

32–46 (2003)
26. V’yugin, V.V.: On Instability of the Ergodic Limit Theorems with Respect to Small Violations of

Algorithmic Randomness. In: Proceedings of the IEEE International Symposium on Information
Theory (ISIT 2011), St. Petersburg, Russia, August (2011) ISBN 978–1–4577–0594–6 1614–1618
(2011)

Author's personal copy

http://arxiv.org/abs/1206.2682v1
http://dx.doi.org/10.4204/EPTCS.24.6

	On Stability of Probability Laws with Respect to Small Violations of Algorithmic Randomness
	Abstract
	Introduction
	Preliminaries
	Algorithmically Stable Laws
	Sufficient Condition of Stability
	Stability of Birkhoff's Theorem in the Ergodic Case

	Instability in Ergodic Theory
	Instability Results
	Method of Cutting and Stacking
	Construction
	Construction
	Properties of the construction


	Proof of Theorem 2
	Induction hypothesis

	Instability of Universal Compression Schemes

	Acknowledgments
	References


