Relating and Contrasting Plain and Prefix
Kolmogorov Complexity

Bruno Bauwens

Theory of Computing Systems

ISSN 1432-4350
Theory Comput Syst Th f
DOI 10.1007/500224-015-9636-2 eory 0

Computing Systems

Alan L. Selman
Editor-in-Chief

@ Springer
224 - ISSN 1432-4350
57(1) 1-286 (2015)

@ Springer

Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

Theory Comput Syst -
DOI 10.1007/500224-015-9636-2 CrossMark

Relating and Contrasting Plain and Prefix Kolmogorov
Complexity

Bruno Bauwens!

© Springer Science+Business Media New York 2015

Abstract In (Bauwens and Shen, J. Symb. Log. 79(2), 620-632, 2013) a short proof
is given that some strings have maximal plain Kolmogorov complexity but not max-
imal prefix-free complexity. We argue that the proof technique is useful to simplify
existing proofs and to solve open questions. We present a short proof of a result due
to Robert Solovay that relates plain and prefix complexity:

Kx) =Ckx)+CCkx)+ 0(CCC(x))
Cx) = K>x)—KK(x)+ O(KKK(x)),

(here CC(x) denotes C(C(x)), etc.). We show that there exist w such that
liminf C(w; ...w,) — C(n) is infinite and liminf K (w1 ...w,) — K(n) is finite,
i.e. the infinitely often C-trivial reals are not the same as the infinitely often K-
trivial reals, answering Question 1 in Barmpalias (Bull. Symb. Log. 19(3), 2013).
We answer a question from Bienvenu (Laurent Bienvenu, personal communication
2011): some 2-random sequence has a family of initial segments with bounded
plain deficiency (i.e. |x| — C(x) is bounded) and unbounded prefix deficiency (i.e.
|x] + K(|x]) — K(x) is unbounded). Finally, we show that there exists no mono-
tone relation between probability and expectation bounded randomness deficiency,
answering Question 1 in Bienvenu et al. (Proceedings of the Steklov Institute of
Mathematics, 274(1), 34-89, 2011).

Keywords Kolmogorov complexity - Martin-Lof randomness - 2-randomness -
Randomness deficiency - Infinitely often C and K -trivial sequences

P< Bruno Bauwens
BrBauwens @gmail.com

1" Faculty of Computer Science, National Research University Higher School of Economics (HSE),

Kochnovskiy Proezd 3, Moscow, 125319, Russia

Published online: 18 June 2015 €\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00224-015-9636-2-x&domain=pdf
mailto:BrBauwens@gmail.com

Theory Comput Syst

1 Introduction

Plain Kolmogorov complexity C(x) of a bitstring x was independently defined by
Ray Solomonoff [19] and later by Andrei Kolmogorov [10] as the minimal length of
a program that produces x on a Turing machine. Programs are strings of zeros and
ones written on a work tape; the beginning and end of the program is marked by blanc
symbols. During the execution, the Turing machine (which we call plain machine)
can scan the beginning and end of the program and use its length as additional infor-
mation during the computation. Kolmogorov complexity on such a machine is called
plain complexity (see [9, 13] for details).

A closely related notion of complexity was introduced by Leonid Levin [11, 12]
and Gregory Chaitin [6] and has many applications in the study of algorithmic ran-
domness. Imagine a Turing machine on which programs are presented on a separate
2-symbol input tape (without blanc symbols). During the execution more input is
scanned until the machine reaches a halting state, after which an output x is defined.
Programs on such a machine are also called self-delimiting. During the computa-
tion, the length of p is no longer available. Note that the set of programs on which
U halts is prefix-free. Kolmogorov complexity on such a machine is called prefix
complexity K (x).

The difference | K (x)—C (x)| of both complexity measures is O (log |x|), where | x|
denotes the length of x. For many applications this difference is not important. How-
ever, for applications in the theory of algorithmic randomness, often O (1)-precise
relations are used, and often one raises the question what happens when plain and
prefix complexity are exchanged in a result or a definition. The goal of the paper is
two-fold. First, we present a simple proof on a result that relates plain and prefix com-
plexity. Secondly, we refine a proof-technique (from [3]) to build strings where plain
and prefix complexity behave differently, and apply it to solve three open questions.

Several results are related to one of the oldest questions in algorithmic ran-
domness, raised by Robert Solovay [20] (see [7, page 263]). The maximal plain
complexity of a string of length n is n + O(1) and we say that a string has c-
maximal complexity if C(x) > |x| — c¢. Martin-Lof observed that for no ¢ and no
infinite sequence all initial segments x have c-maximal complexity. On the other
hand, the class of sequences for which some ¢ and infinitely many initial segments
x exist with C(x) > n — c has measure one. Similar observations hold for pre-
fix complexity, (where the maximal complexity is n + K(n) + O(1)). Solovay’s
question is whether the classes of sequences with infinitely often maximal plain and
prefix complexity are the same; in other words, is liminf,, |x| — C(x) finite iff
liminfy-, K (Jx]) 4 |x| — K (x) is finite?

To answer this question, Solovay investigated whether there was a monotone
relation between C(-) and K (-). He found that this was approximately the case by
showing

Kx) =Cx)+CCx)+ 0(CCC(x))
Cx) = K(x)—KK(x)+ OKKK(x)),

where complexity of a number 7 is the complexity of the n-bit string 00...0 and
where CC(x), K K (x), etc, be short for C(C(x)), K(K (x)), etc. The proof in [20] is

@ Springer

Theory Comput Syst

cumbersome and Joseph Miller [15] made some simplifications using symmetry of
information for prefix complexity. Here we use this technique to give an even simpler
proof. (Readers only interested in this result can directly go to Sections 2 and 3.)

Solovay showed that the continuation of the first equation with terms up to
O(CCCC(x)) does not hold. He also showed that maximal prefix complexity
implies maximal plain complexity, but the reverse is not true: there exist infinitely
many n and x of length n such thatn — C(x) < O(1) and

K(n)+n—K(x)>1log?n— 01og® n). (1)

In [3] a simple proof (and generalizations) are presented. Here we further develop the
proof technique to solve several open questions.

Despite this negative result, Miller [14, 16] gave a positive answer to Solovay’s
question: the sequences that have infinitely many initial segments with maximal plain
and prefix complexity are the same. The proof is indirect: it shows that both classes
coincide with the class of 2-random sequences, i.e. Martin-Lof random sequences
relative to the halting problem (the equivalence of the first class with 2-randomness
was also shown in [17]). Miller raised the question whether an (elegant) direct proof
exists. In [2] simple proofs of these equivalences with 2-randomness are given, but
still no direct proof. It is also shown that

li£1|1:inf[|x| —CW)] = li£1|1:inf[K(|x|) + x| - Kx)]+0@1),

by showing both sides equal 2-randomness deficiency (see further). Laurent Bien-
venu asked whether for a 2-random sequence, the initial segments for which plain
and prefix-free complexity are maximal are the same; more precisely, for 2-random
w, does there exist ¢ and d such that for all n: n — C(wy...w,) < c implies
Kn) +n — K(wy...0,) < d? (For some ¢ and d the reverse implication is
always true.) We show that this is not the case: for every 3-random sequence (a
subset of the 2-random sequences) there are infinitely many initial segments x with
|x] — C(x) < O(1) for which (1) holds. This makes the existence of a simple direct
proof unlikely. We refer to Section 6 for the proof of this result.

In algorithmic information theory, many relations are known between highly ran-
dom sequences and highly compressible sequences [1, Section 3.5]. The second
application of our technique considers one such class called the infinitely often K -
trivial sequences: the sequences w for which there exist ¢ and infinitely many » such
that K(w; ...w,) < K(n) +c,i.e.

lim inf [K (@i ... @) — K(m)] < O(1)

This class contains the computably enumerable sequences and the (weakly) 1-generic
sequences. Similar observations hold for the infinitely often C-trivial sequences, i.e.
the sequences for which

liminf[C(@; ... @) = C(m)] < O(1).

Question 1 in [1] asks whether both classes coincide. We show that this is not the
case.

@ Springer

Theory Comput Syst

A last application of the proof technique concerns randomness deficiency for infi-
nite sequences. Suppose one million zeros are prepended to a random string. The
new string is still random, but one might argue that it is somehow “less random”.
Randomness deficiency quantifies the amount of structure in a random sequence
(see [13, Section 3.6.2] and [5]). Let u denote the uniform measure. Two closely
related notions of deficiency exist in the literature.

— A lower semicomputable! function f : {0, 1}*°* — R" (i.e. RT extended with
+00) is a probability bounded randomness test if for each k

plw: f(w) =k} <k, .

— A measurable function f : {0,1}* — R is an expectation bounded

randomness test if
f fw)ydw < 1.
{0,137

The first notion is inspired by the notion of confidence in statistical hypothe-
sis testing, while the second is closely related, but mathematically more convenient
to handle. There exists a lower semicomputable expectation bounded test fg that
exceeds any other such test g within a constant factor, i.e. for all g there exist ¢ such
that g < cfE. The logarithm of such a universal test is called expectation bounded
randomness deficiency dg. The deficiency depends on the choice of the universal
test, but this choice affects the deficiency by at most an additive constant. Similar
for probability bounded tests and probability bounded deficiency dp. Both deficien-
cies are related: dg = dp + O(logdp), and both deficiencies are finite iff the
sequence is Martin-Lof random. We argue that the relationship between plain and
prefix complexity is very similar to the relationship between dp and dg.

Question 1 in [5] asks whether there exists a monotone relation between probabil-
ity bounded deficiency and expectation bounded deficiency that holds within additive
O (1) terms. If this is not the case then there exist two families of sequences w; and
), such that

dp(w;i) — dp(a)l/») — 400
for increasing i, and
dg(w;) — dp(w}) — —o0, .
In Section 7, we translate the main proof technique to deficiencies and construct such
sequences. Hence, no monotone relation exists between the deficiencies.

The paper is organized as follows: first we discuss two old results which will be
used throughout the paper: Levin’s formula relating plain and prefix complexity and
Levin’s formula for symmetry of information. In the next section we present a sim-
ple proof for Solovay’s formulas relating C and K. All further results in the paper
demonstrate that C and K behave differently and the proofs have a common struc-
ture. In Section 4, we repeat the simplest such proof by showing that some strings

'A non-negative rational function f on {0, 1}*° is basic if f(w) is determined by a finite prefix of w.

A function f into R, is lower-semicomputable if there exists a uniformly computable series of (non-
negative) basic functions f; such that f =", f;.

@ Springer

Theory Comput Syst

have maximal plain but non-maximal prefix complexity. Afterwards, in Section 5,
we show that the class of infinitely often C and K trivial sequences are different.
In Section 6, we show that each 3-random sequence has infinitely many initial seg-
ments with maximal plain complexity but non-maximal prefix complexity. Finally,
in Section 7, we show that no monotone relationship exists between plain and pre-
fix randomness deficiency. Section 3, Sections 4, 5, 6, and Section 7 can be read
independently.

2 Prerequisites

Two results are central in most of our proofs. The first is Levin’s symmetry of
information [8]: for all x, y

K(x)+ K(ylx, K(x)) = K(x,y).
The conditional variant is given by
K(x]z) + K(ylx, K(x|z),2) = K(x, y|2) .

The second result relates plain and prefix complexity for random strings. For all
n-bitx: C(x) = n+ O0(1) iff K (x|n) = n+ O(1). We will use a more general variant.

Lemma 1 (Folklore) For all j and x
lj—=Cx)I=0(j—K&I)HD
Proof The Lemma implies Levin’s formula
Cx) = Kx[C(x)+ O0(),

and in fact, it is equivalent to it: for any j it implies K(x|j) = C(x) up to terms
O(log|j — C(x)]), and by the triangle inequality:

lj = KG&DI=1/ = Cx)|+ O (log|j = C)) .

3 Relating Plain and Prefix Complexity
Recall that K K (x), CC(x), etc, are short for K (K (x)), C(C(x)), etc.
Theorem 1

K(x) = C(x) +CC(x) + O(CCC(x))
C(x) = K(x) — KK(x)+ O(KKK(x)). 2)

@ Springer

Theory Comput Syst

Proof Using symmetry of information we have
K(x) = K(x, K(x)) = KK(x) + K(x|K(x), KK(x)) + O(1).

The last term equals K (x|K(x) — KK(x)) + O(KKK (x)). Setting j = K(x) —
K K (x) the equality can be rewritten as

J=Kx|j)+ O (KKK(x)) .

Thus C(x) = j + O (KK K(x)) by Lemma 1, i.e. we have shown (2).
We obtain the first equation of the theorem from the second by showing that

CC(x) = KK(x) + O(KKK (x)) 3)
KKK(x) < O(CCC(x)). “4)

For (3), note thata = b — ¢+ O (d) implies C(a) = C(b) + O(K(c) +d). Applying
this to (2) we obtain

C(Cx)=C(Kx))+ O(K(KK(x))+ KKK (x)).
Substituting x < K (x) in (2) gives
C(K(x))=K(K(x))+ KK(K(x))+ OKKK(x)).

IA

Combining both equations implies (3).
It remains to show that (3) implies (4). Using K(a) < K(b) + K(b —a) + O(1):
K(KK(x)) < K(CC(x))+ K(KK(x)—CC(x))+ 0(1)
The first term on the right is bounded by 2C(CC(x)) 4+ O(1). For the second, note
that K (d) < O (logd) for any number d, hence
KKK(x) <2CCC(x) + O(log KKK (x)), 5)
ie. (4).

Remark 1 The proof implies that K(x) = C(x) + O(CC(x)) and KK(x) =
CC(x) + O(CCC(x)). Alexander Shen raised the question whether K K K (x) =
CCC(x)+ O(CCCC(x))? This does not hold. The proof is cumbersome and uses a
topological argument from [18], see Appendix A.2

4 Contrasting Maximal Plain and Prefix Complexity

To get used to the main proof technique for the remainder of this paper, we start by
showing the subsequent variant of Solovay’s theorem.

2 For later use in the appendix, note that the proof above also implies
CC(x), CK (x), KC (x), KK(x),

are all equal within error O (CCC(x)) and error O (K K K (x)). (Indeed, to relate K K (x) to KC (x), apply
K (-) to (2).) Moreover, for all U,V, W, X, Y, Z € {C, K} we have that UVW (x) < O (XYZ (x)).
Indeed, by applying C(a) = C(b) + O(log(a — b)) on the equalities above, we obtain that CYZ (x) =
CCC (x)+ O(log CCC(x)). In the same way one shows that KYZ (x) = KKK (x) 4+ O(log KKK (x)).
The result follows now from (5).

@ Springer

Theory Comput Syst

Theorem 2 (Solovay [20], Bauwens and Shen [3]) There exist infinitely many x such
that |x| — C(x) < O(1) and K (|x]) + |x| — K (x) = log® |x| — O(1).

The main technique is to combine the two results from Section 2 with a third
result: Peter Gacs’ quantification of incomputability of Kolmogorov complexity [8].
He showed that for all lengths, there are x such that K (K (x)|x) is close to log |x|
(and similar for plain complexity); if complexity were computable, then this would
be bounded by O(1). The following tight variant from [3] will be used:

Theorem 3 For some ¢ and all | there exists an n such that logn = 2!, K(n) >
(logn)/2 and K(K (n)|n) =1 —c.

Lemma 2 Ifn satisfies the conditions of Theorem 3, then
log®n =log K(n) 4+ 0(1) = K(K(n)|n) + O(1).

Proof Indeed, dropping additive O (1) terms, the left equality follows from
log® n < log((logn)/2) < log K (n) < log(2logn) < log®n.

It remains to show that K(K(n)ln) < log(z)n. Indeed, K (K (n)|n)
K(K(n)| log(z) n). and using log(z) n = log K(n) this follows from K (i|logi)
logi

IAIA

We informally explain why some strings have maximal plain complexity but non-
maximal prefix complexity. There exist plain machines U for which a string w exist
such that U(wx) = x for all x. If x has O(1)-maximal plain complexity, then wx
is an O (1)-shortest program for x. In a similar way, there exists a prefix machine V
such that for some w we have V (wx||x]) = x for all x; indeed, V just copies the
input from the program tape and uses the condition |x| to know when to stop this
operation.

If the length of x is not available in the condition, there might not exist such a
trivial program. To decide when to halt the copying procedure, the length of x must
somehow be represented in the program in self-delimited form. If the length of the
program is minimal (within an O (1) constant), this encryption of the length should
also be minimal. Mathematically, this corresponds to the following observations for
x of length n: K(x) = K(n,x), (here and below we omit O(1) terms); and by
symmetry of information

Kn,x) = K@)+ Kx|n, K(n)).

Thus, any shortest program for x can be reorganized into a concatenation of two
self-delimiting programs: the first computes n and the second uses n and the length
of the first program to compute x. The prefix deficiency is K(n) + n — K(x) =
n — K(x|n, K(n)) and this is different from the plain deficiency which is close to

3 For the proof in the appendix note that this argument implies K (K (1)| log(z) n) = log(z) n. By Lemma 1
this implies C(K (n)) = log(z) n.

@ Springer

Theory Comput Syst

n — K(x|n) by Lemma 1. This explains why small prefix deficiency implies small
plain deficiency, but not vice versa. In particular the deficiencies can only be different
if K (K (n)|n) is non-negligible, and this might indeed happen because of Theorem 3.

For appropriate n the discussion explains how we construct x; it should contain
K (n) and then be filled up further with bits independent from » and K (n) until the
plain complexity is n. This is the approach in [3], here we take advantage of the fact
that the program with largest computation time of length at most n can also compute
K (n) from n. The proof below is even shorter than that of [3, Corolary 6].

Proof As discussed above, we choose n, the length of x, such that
K(Kn)n) =log®n+ 0(1). (6)

By Theorem 3 and Lemma 2, there exist infinitely many such n. Let x = B(n) be
the program of length at most n with maximal running time on a plain machine. We
drop O (1) terms. Note that C(B(n)) = n = |B(n)|. It remains to show K (B(n)) <
n+ Kn) — log(z) n and this follows from

K(B)|n, K(n)) <n—log® n,

(because of symmetry of information: K(B(n)) = K(n,Bn)) = Kmn) +
K (B(n)|n, K(n))). From n and B(n) we can compute K (n), thus n = C(B(n)) =
K (B(n)|n) also equals

K(K(n), B(n)|n) = K(K(n)|n) + K(B(n)|K (n), K(K(n)|n), n) .

Applying (6) twice implies n = log® n + K (B(n)|K (n), n).

Remark 2 As a corollary it follows that K(x) = C(x) + CC(x) + CCC(x) +

O(CCCC(x)) is false. To show it contradicts Theorem 2 note that CCCC(x) <

0 (log™® (n). Let x satisfy the conditions of the theorem and choose y of length 1 with

maximal plain and prefix complexity. Now K (x) — K (y) > log® n — 0 (log® n).
For similar reasons the following inequality is not an equality

K(x) = K(C(x))+ C(x),

see also Remark 5 below.

Remark 3 Miller generalized Solovay’s theorem [15]. The proof above also implies
this generalization.

Theorem 4 If a co-enumerable set (i.e. the complement can be algorithmically enu-
merated) of strings contains a string of each length, then it also contains infinitely

many strings x such that K (|x|) + |x| — K(x) > log(z) x| —O().

This theorem also implies that the set of strings with maximal prefix complexity
is not co-enumerable.

Proof Suppose n satisfies the conditions of Theorem 3. Let x be the lexicographi-
cally first string of length n in the set. We show that x can be computed from B(n+c)

@ Springer

Theory Comput Syst

for some constant ¢, and this suffices because we know from the proof above that
K(B(n+c¢) <n+K(n)— log(z) n+ 0(c).

Consider a list of all strings of length n and remove the strings outside the set
using an enumeration of its complement. The moment the last string was removed
can be computed with a program of length n 4+ O (1) on a plain machine (by the total
number of removed strings prepended with zeros to have an n-bit number). Thus, this
moment must be before B(n + ¢) for large c.

Remark 4 The proof above can be used to contrast computational depth with plain
and prefix complexity. In [4, Tentative* definition 1] the computational depth of a
string x with precision c is given by the minimal computation time of a plain program
for x of length at most C(x) + c:

depthc(x) =min{t : |p| < C(x) +cand U(p) = x in t steps} .

In a similar way, computational depth depthk (x) with prefix machines can be
defined.’> With this assumption it follows easily that there exists a computable f
such that depthl(,c+210g |x|(x) < f(depthc,c(x)) and that depthc,c+2]og|x|(x) <
f(depthk (x)) for x of large length. The subsequent proposition shows that with
higher precision, the equivalence is not possible. Let B B(n) be the maximal compu-
tation time of a program of length at most n on a plain machine (i.e. the computation
time of B(n)).

Proposition 1 There exist a ¢ and infinitely many x such that depthc .(x) is
bounded by a computable function of x (and in fact bounded by a constant for an
appropriate universal machine) and depth log® mfc(x) exceeds BB(|x| — c¢).

Proof Consider the proof of Theorem 2. Rather than choosing x to be B(n), we fix
some appropriate ¢ (see further), and choose x to be the lexicographically first n-bit
string such that C(x) > n — 2 and no self-delimiting program of length n + K (n) — ¢
outputs x in at most BB(n) steps. x exist because for large d there are at most
0 (2"~4) strings of length n with complexity n + K (n) — d (see [7, Theorem 3.7.6 p.
129], this also follows from the coding theorem). By construction C(x) > n — O(1)
thus a trivial program of x on a plain machine is shortest within O(1). Hence, the
depth of x is small on a plain machine. Because x can be computed from B(n),
the proof above guarantees that for infinitely many n we have K (x) < K(B(n)) +
O(1) < n+ K(n) —log® n 4+ O(1). Fix such an n. To have depth log® e (X) <
B B(n), we need a program for x that computes x in time less than BB(n) of length
n+Kmn) —log®n+ 01)+ (log®n —e) = n+ K@) + 0(1) — e. For large
e this contradicts the choice of x, and hence the depth is at least BB(n — O(1)).

4 Although it was called “tentative” definition, this version is simpler than the others and is more often
used in literature.

5 We assume in all these definitions that the machine U is universal in the sense that for each other machine
V there exist w such that U (wp) = V(p) each time V (p) is defined and that simulating V by U in this
way increases the computation time by a computable function.

@ Springer

Theory Comput Syst

Remark 5 There exist infinitely many x such that K (K (x)|x, C(x)) > log(z) n—
O(1). Indeed, let n be as in Theorem 3. Let x be a string of length n having maximal
prefix (and hence plain) complexity such that K (K (n)|x, n) > K(K (n)|n) — O(1).
This implies

K (K (x)|x, C(x)) = K(n + K(n)|x,n) = K(K(n)|x,n) > K(K (n)|n) >log?® n

up to O(1) terms.
On the other hand K (C(x)|x, K (x)) must be very small and it is an open question
whether it is bounded by a constant. In particular this would imply that the inequality

K(x) = K(C(x)) + K (x|C(x), K(C(x)))

is an equality, which is also an open question.

S Infinitely Often C and K Trivial Sequences

In the previous section we explained why a minimal self-delimiting program for a
string can contain more information than a minimal plain program. This suggest that
the classes of infinitely often C and K trivial sequences might be different. The
following theorem illustrates this.

Theorem 5 There exists a sequence w for which K (w1 ...wy) — K(N) < O(1) for
infinitely many N, and for which C(w; ...wn) — C(N) tends to infinity.

Proof Recall that B(n) is a program of length at most n with maximal running
time on a plain machine. @ consists of zeros, except at small neighborhoods before
indexes 2" for all large n, and in these neighborhoods strings w, = B(n + log® n)
are placed, see Fig. 1; more precisely wan_y,| ... wn = lw, (the prepended one in
1wy, allows us to identify the beginning of w;,).

We show that C(w; . ..wx)—C(N) > log® N —0(1) for all N, which obviously
tends to infinity. Fix any N and let be such that 2" < N < 2!, The initial segment
1 ...y computes wy, thus C(w; ...oy) = C(w,) > n +10g(2) n (here and below
we omit terms O (1)). On the other hand we have C(N) < log N = n, hence

Ci...on) = C(N) = (n+1og®n) —n =1log?n =log® N .

It remains to construct ¢ and infinitely many N such that K (w; ... wy) < K(N)+
c. The idea is to choose for infinitely many n some N such that 2" < N < 2"+! —
|w, 41| and such that some shortest program for N can compute w, with O(1) of
information; thus it can also compute wy, wo, ..., w,—1 and w; ...wy with O(1)
bits of information.

1wn71 1wn 1wn+1

2n—1 2n 2n+1

Fig. 1 Construction of in the proof of Theorem 5

@ Springer

Theory Comput Syst

As one might guess, we choose n such that K (K (n)|n) = log(z) n. Let us compute
K(wy,|n, K(n)) in a similar way as before. We drop O (1) terms:
n+1log®n = C(wyp) = K(wpln) = K(K(n), wnln)
K (K (n)|n) + K(wn|K (n), K(K (n)|n), n)
= log® n + K (w,|K (n), n).

Thus K (wy, |n, K(n)) = n.

Let N be the integer whose binary expansion equals the first n—2 bits of a program
witnessing this equation (i.e. a program of length at most n + O(1) computing w,
from n and K (n)) prepended with the string “10”. Prepending “10” guarantees that
M < N < 2ntl |wy, 41| for large n. By construction, if n and K (n) are given, N
can compute w, with O (1) bits of information. Thus it also computes wy, ..., w,—1
and w1 ... wy. On the other hand, every shortest program for N can also compute n
and K (n) with O(1) bits of information. Indeed,

K(N) = K(N,n) = K(n) + K(N|n, K(n));

thus on a universal prefix machine, there exists a O (1)-shortest program for N that is
the concatenation of two self-delimiting programs and the length of the first is K (n).
Together:

K(N)=Kn,K(n), Ny=K(wi,...,w,,n, K(n), N) > K(wy...onN).

6 Contrasting Plain and Prefix Complexity in 3-random Sequences

Theorem 6 For every 3-random sequence w there are a ¢ and infinitely many j such
that j — C(w; ...w;) < cand K(j) + j — K(w; ... ;) > log?® j —c.

We conjecture that the result holds for all 2-random sequences. It is possible to
present the proof in a game structure, but both the game and the strategy are quite
complicated. We give a proof that has the same core structure as the other proofs
above. In the proof we use two lemmas. The first roughly states that randomness
deficiency of a string is bounded by the deficiency of an initial segment.

Lemma 3 Let j = |x| andn = |xy|
J—K&lj) =n—Kxylj,n)+ 0(1)
Proof We omit O(1) terms. Observe that K (xy|j, n) = K(x, y|j, n), and this is
= K(x[j,n)+ K(ylj.,n) < Kx[j)+n—j,
because K (y||y|) < |y| for all strings y and |y| = n — j is computable from the

condition. The inequality of the lemma follows after rearranging.

@ Springer

Theory Comput Syst

Let a and b be two strings of the same length. Let X O R(a, b) denote the bitwise
XOR operator on these strings. The following lemma states that if a is incom-
pressible, and b is incompressible given a, then also b is incompressible relative to
XOR(a, b). In fact, we will use a generalization which states that if an extension bw
is incompressible given a, then this extension is incompressible given X OR(a, b).

Lemma 4 Let a and b be strings of equal length £, let w be any string, let n = |bw],
and let i be any number. If
K@|t,n,i)>¢—c and K@bwl|a,n,i)>n—c,

then
K®Bw|XOR(a,b),n,i)>n—0(c).

Proof Inthe lemma all complexities are conditional to i. The proof of the conditional
form follows the unconditional one, presented here. We first consider the case where
w is the empty string, the proof for non-empty w follows the same structure and will
be presented afterwards. We need to show that for all ¢, £, a, b such that |a| = |b| =
£, K(all) > € —cand K(b|la) = £ — c we have

K((b|XOR(a,b)) =L+ O(c). @)

Indeed,
K(a,blt) = K(alt) + K(b|a, £, K(al|t))+ O(1).

By assumption K (a|f) > € — ¢, thus K (a|¢) = €+ O(c) and the last term simplifies
to K(bl|a, £) + O(c) and this equals £ + O(c). Hence K (a, b|¢) = 2¢ + O(c). Let
xor = XOR(a, b). Because a = XO R(b, xor) we have up to additive terms O (c):

20 = K(a,b|l) < K(xor,b|l) < K(xor|f) + K (b|xor, £) < £+ K(b|xor),

and this implies (7).
We modify the equations above for the case where w is not empty. Let n = |bw|
and recall that |a| = £. We start with

K(a,b,w|l,n) = K(@a|t,n)+ Kb, w|a, K(@a|l,n),n) >L+n— 0().

Note that because £ = |b| we have K (bw, ...|¢,...) = Kb, w,...|{,...). The
left-hand side also equals

K(xor,b, w|t,n) < K(xor|l,n) + K (b, w|xor, ,n) <+ K(b, w|xor, n),
hence K (b, w|xor,n) > n — O(c).
In the proof, we also use the characterization of 2-random sequences with plain

complexity. This theorem was proven independently by J. Miller in [14] and by A.
Nies, F. Stephan, and S. Terwijn in [17].

Theorem 7 A sequence w is 2-random if and only if there exists a ¢ and infinitely
many n such that C(wy ...w,) > n —c.

@ Springer

Theory Comput Syst

The proof of the theorem relativizes to the halting problem (0, i.e., a sequence is 3-
random if and only if there are a ¢ and infinitely many » such that CH (w; ... w,) >
n—=«c.

Proof of Theorem 6 Let w be 3-random. By Lemma 1, it suffices to construct
infinitely many j such that

K(wy...0jj) =z j—0(0) @)

and K (w1 ...wj|j, K(j)) < j— log® j + O(1). (Indeed, the last inequality implies
K(...) < j+ K@) — log(z)j 4+ O(1) for the same reasons as in the proof of
Theorem 2.) The second inequality follows from

K(w1... .00 ;1j, K(j)) = O(1).)

Overview of the proof. The idea is to encrypt wg... Wiog® in j, using
an encryption key that can be computed from K (j). To construct j, we first
fix n, and then define i (which will be close to j information-wise) such that
K (i) contains maximal information relative to i. Next, let the “encryption” g be
XOR (w1 ...w10gk (i), (K(i))); i.e., the binary representation of K (i) is used as the
encryption key. j will be defined as an encoding of both i and g. Finally, we show that
the construction implies that K (i) and K (j) can be computed from each other with
O (1) bits of information. This implies that from j and K (j) we can compute K (i)
and the encryption g with O (1) bits of information, and hence also oy ... iog & (i)-
At the same time, the construction must imply that n,i, g, j do not contain any
information about w.

Requirements for r, i and g. We choose infinitely many triples (n, i, ¢) and start
with formulating five requirements from which (8) and (9) follow. Let (-, -) be a
computable bijective pairing function from numbers and strings to numbers. For later
use we assume that log(k, x) = logk + O(|x|) for all £ and x.

Equation 8 with j = (i, g), follows from Lemma 3 and

(@) K(wi...wuli,qg,n)>n—0(),
) (i, q) < n forlarge n.

Equation 9 follows from:

(A) K(wy...00gk@K@G),q) <0Q1),

(B) logK (i) =1log?{(i,q) + O(1),
(C) K(i,q)=K(@i)+1log K@)+ O(1).

Indeed, for all z, (C) implies K (z|i, ¢, K(i)) = K(z|j, K(j)) + O(1).
Construction of »n and i. Fix an n such that CH(w; ...w,;) > n — c, using the
relativized version of Theorem 7. By Lemma 1:

KH(wy...wyln) >n—0(1). (10)

From now on we only use complexities that are conditional to n. For notational sim-
plicity we drop n from the condition, thus K (a) = K (a|n), K(alb) = K(a|b, n),
etc.

@ Springer

Theory Comput Syst

Let i be the largest number such that

@) K(K@)Ii) = log(z) i —cand K (i) > (logi)/2, where c is the constant from
Theorem 3.
@ii) (i, x) < n for all x of length at most 1 + log(z) i.

Such i exists because also the conditional version of Theorem 3 holds. In fact, for
increasing choices of n, we find infinitely many such i. By Lemma 2, the first
condition implies
log K (i) = log® i + O(1). (11)
Note that i and K (i) can be computed from 0’ and n, hence (10) implies
K(wy...oli, K(@)) >n—0(). (12)

Construction of g. g is given by the bitwise XOR-function of K (i) in binary, and
the initial segment of @ with the same length:

qg=XOR (a)l e Wlog K (i) (K(i))) .

Because XOR(a, XOR(a, b)) = b this implies (A).

Recall that all complexities implicitly have n in the condition and that
K(K@)|i) = log(z)i + O(1). Together with (12), this can be applied to Lemma 4
(with I = log K (i) = log®i + 0(1), bw = w;...w, and a = (K(i))) and we
conclude that K (wy ... wyli, g, n) > n — O(1), i.e. condition (a).

For large n, we have large i, and hence |¢g| = log K(i) < log(2logi) = 1 +
log(z) i. By choice of i (the second condition) this implies (b). We assumed that the
pairing function satisfies log(i, ¢) = logi + O(lg|) = logi + 0(10g(2)i). Thus
log® (i, q) =1og® i + O(1). By (11) this implies (B).

It remains to show (C). Note that

K(i,q) = K@) + K (qli, K@) .

The last term equals K (@ . .. @iog k (i)|i, K (i)). By (12) and Lemma 3 this is at least
log K (i) + O(1), and in fact it is equal to this, because K (z| |z|) < |z| for all z.
7 Contrasting Expectation and Probabilistically Bounded Deficiency

Recall from the introduction that there exist two different notions of randomness
deficiency for a sequence w. We start by showing that the two notions are related.

Proposition 2
dp(w) = sup{k : dg(wlk) = k} + 0(1) ¢

6 Conditional probability bounded deficiency is defined in the natural way: it is the logarithm of a multi-
plicatively maximal function f(-|k) that is lower semicomputable uniformly in &, such that for each k the
function is a probability bounded test.

@ Springer

Theory Comput Syst

This characterization is closely related to a characterization of plain complexity in
terms of prefix complexity (see [13, Lemma 3.1.1 p. 203]):

C(x) = min{k : K(x|k) <k} + O(1).

Many results relating and contrasting prefix and plain complexity on one side, can be
translated to results about expectation and probability bounded deficiency. (In these
results dg () corresponds to K (-) and dp(-) to C(-)).

Proof For the >-direction we need to show that the exponent of the supremum
defines a lower-semicomputable probability bounded test. dg is lower semicom-
putable, thus also the supremum is lower semicomputable, and it remains to show
that the measure where it exceeds £ is bounded by O(27%). By definition we have
f 2de(@lk)dey < 1 for all k, thus the measure of w such that dg (wlk) > k is at most
2% 1If the supremum exceeds £ for some w, then dg (w|k) > k for some k > £. The
total measure for which this can happen is at most 2~¢ +27¢1 + ... < 0(27%).

For the <-direction note that every probability bounded test f defines a family
of expectation bounded tests g(-|k) such that g(w|k) = 2k iff fw) > 2% Indeed
the condition implies [f(w|k)dw < 2k .27k = 1. Obviously, if f is lower semi-
computable, the tests g(-|k) are lower semicomputable uniformly in k. If f is the
universal test corresponding to dp, then dp(w) > k implies f(w) > 2k which
implies g(w|k) > 2% thus dg(wlk) > k — O(1).

The question was raised in [5, Question 1] whether the two deficiencies are related
by a monotone function, or does there exist two families of sequences w' and '®
such that

da(@") —da(@") — o0
for £ — oo and
dp(@%) — dp(0't) > —0.
We show this is indeed the case.

Theorem 8 There exist families of sequences w® and '* such that

ldp(@') —dp@®)] < O(1)
dp(@') —dg(@') > ¢—0().

The positive answer to the question above follows by prepending £/2 zeros to w'¢
for all £. This decreases the complexities in the definition of dp (") and dg (') by
£/2 + O(log £) and hence increases these deficiencies by the same amount; and this
is enough for the question.

Before presenting the proof, we show two lemmas that play the same role as sym-
metry of information and Levin’s result relating plain and prefix complexity (i.e.
Lemma 1).

@ Springer

Theory Comput Syst

Lemma 5 (Symmetry of deficiency) For all w and all x that belong to a prefix-free
computably enumerable set of strings, we have

dp(xw) = |x| — K(x) + dg(olx, K(x)) + O(1),

here xw denotes concatenation of x and w. The O(1)-term depends on the choice of
the computably enumerable set.

The proof uses a characterization of expectation bounded deficiency in terms of
prefix Kolmogorov complexity (see for example [5, Proposition 2.22]):

Theorem 9 dr(w|z) = sup, {n — K(w1 ... w,]2)} + O(1)

Proof of Lemma 5 Let x be a member of the prefix-free computably enumerable set.
From xy we can compute x by enumerating the prefix-free set until an initial segment
of xy appears and this segment must be x. Symmetry of information implies

K(xy)=K(x,y)+0(1)=K(x)+ K(ylx, Kx))+ 0(),
i.e.
lxy| — K(xy) = x| = K(x) + |y| — K(y|x, K(x)).

If we take on both sides the supremum of y over all prefixes of w, we almost obtain
the equation of the lemma; the problem is that in the definition of df (xw) we also
need to consider prefixes z of x. It remains to verify that

lz] = K(2) < |x| = K(x) + O(1)

for all prefixes z of x. In general this is false, but for x in a prefix-free enumerable
set it holds. For any z and x, let P(x|z) = 2~ I+l §f x is an extension of z that
belongs to the prefix-free set, otherwise let P(x|z) = 0. Note that) . P(x|z) < 1
and P(x|z) is lower-semicomputable, hence the coding theorem implies
K(x|z) < —log P(x|z)+O(1) < |x|—|z|4+ O(1). Symmetry of information implies

K(x) < K(x,2) = K(z) + K(x]z) + O(1) < K(2) + |x| = [z] + O(1),

and this implies the equation above.
The analogue of Lemma 1 for deficiencies of sequences is

Lemma 6 Forall j and o
lj —de(@|)l =0 |j —dp(w)] .

Proof For fixed random w, the map t — dg (w|t) maps points at distance d to points
at distance O(logd). Hence, the map has a unique fixed point ¢ within precision
0(),ie. deg(w|t) =t + O(1) for some ¢. This implies that 7 is O(1)-close to the
minimal s such that dg(w|s) > s, i.e. dp(w). Our observation implies that dg (w|t +
d) =t+0(logd), thus for j =t+d wehave j —dg(w|j) = j—dp(®w)+ O(og(j—
dp(w))), and this implies the lemma.

@ Springer

Theory Comput Syst

Proof of Theorem 8 For each ¢ we choose a k such that log(z)k < ¢ and
K (K (k)|k) > logk — c where c is the constant from Theorem 3. By Lemma 2

e=10g®k+ 0(1) =logK (k) + 0(1). (13)
‘We choose w such that
dp(wlk, K(k)) < 1.

Let 0F1w be the sequence that starts with k zeros, followed by a one and followed
by w. Let 0¥1(K (k))w be 01 followed by K (k) in binary, followed by w. The
theorem follows from the values of the expectation and probability bounded defi-
ciencies of these strings, given in the table below (recall that £ = log(z) k+ O(1)):

o dg(a) dp(a)
0" low k — K(k) + O(1) k + O(1)
OF1(K (k) w k — K(k) +£ + 0(1) k+ O(1)

It remains to prove that the values in the table are correct.
The values of dg(-) in the first column are obtained from Lemma 5. In the first
case, the prefix-free set is the set of strings 01 for all m, thus

dg(0F1w) = k — K (k) + de (wlk, K (k) + O(1).

In the second case, the prefix-free set is the set of all strings 0”1z for all m and all z
of length log'® m. Recall that K (k, K (k)) = K (k) + O(1), thus

de (O 1(K (k))w) = k +1og® k — K (k) + dg(wlk, K (k) + O(1).

Recall that] = log(z) k + O(1). This finishes the proof for the values of dg(-) in the
first column.

To evaluate dp (-) we use Lemma 6. Hence, let us compute dg (0*1wlk). Again we
use Lemma 5:

dp(0F1lwlk) = k — K(0F11k) + dg (| K (0F11k), k) + O(1) = k + de(wlk) + O(1).

This implies dp (0¥1w) = k+0O(1). For the second case, note that K (0¥1(K (k))|k) =
K(K(k)|k) + O(1) = logk + O(1) by choice of k. With similar reasoning we
determine dp (01 (K (k))w):

de (0" 1(K (k) wlk) = (k +10g® k) — K (K (k)|k) 4+ dg(w|K (k), k) + O(1) .
This equals k + O(1) by (13).
Acknowledgments This research was supported by a grant from Université de Lorraine. The author
thanks Paul Vitanyi and Alexander (Sasha) Shen for useful discussion on Sections 3 and 7. I thank Mathieu

Hoyrup for encouragement to write down these results (and for arranging funding). Finally, I thank the
anonymous reviewer for his nice comments.

@ Springer

Theory Comput Syst

Appendix A: KKK (x) = CCC(x) + O(CCCC(x)) does not hold

Proposition 3 There exist infinitely many x such that CCCC (x) < O(log(S) [x])
and
|ICCC(x) — KKK (x)| = 2og™ |x]).

We use our main technique to contrast C(-) and K (-) to disprove that K K K (x) =
CCC(x) + O(CCCC (x)). However, we will use the variant presented in the proof
of [3, Corollary 6]. It is combined with a topological argument which was inspired
by [18]. We start with a definition and a lemma.

Definition 1 A set S of numbers is c-dense in a superset A if for each a € A there is
an s € S such that |a — s| < c.

Lemma 7 If S is c-dense in an interval of size k, then the set
{K(k):keS}

is O (log c)-dense in some interval of size §2(logk — logc).

Proof of Proposition 3 Let T be the set defined by the lemma. Note that the function
K (-) maps points at distance d to points at distance O(logd), hence T is O (log c)-
dense in [min 7', max 7). It remains to show that the maximum of this set differs from
its minimum by at least log k — O (log c + log2 k). Let r be the minimal number in the
interval of size k (in which S is dense) that ends with log k — 2 zeros. By assumption
r is at ¢ distance of an element in S. On the other side, if the log k — 2 last zeros of r
are changed, the corresponding number remains always in the interval of size k, and
for one such change the complexity of » must increase by at least logk — O (log? k).
(Otherwise, to many short descriptions exist of such modified » and we could use
this to obtain a shorter description for r.) This element is c-close to an element in S,
thus the difference of the minimum and the maximum of K (k) over § is at least
logk — O(logc + log® k).

Proof of Proposition 3 For infinitely many n we construct strings x; of length n such
that

1. The values K (x;) are dense in an interval of size .Q(log(z) n), while all values
C(x) are contained in an interval of size O(log3 n).

2. The values K K K (x;) are dense in an interval of size at least .Q(log(4) n), while
all values CCC (x;) are contained in an interval of size 0(log5 n.

2. CCCC (x;) < 0(log® n).

2 and 3 imply Proposition 3. By Lemma 7 we can already observe that 1 implies 2,
thus it remains to show 1 and 3.

We start the construction by identifying two strings y and z of length n such that
K@) — K(z) > log(z)n and C(y) = C(z) = n (here and below we omit O(1)
terms). More specifically our construction implies K (y) = K(n) +n — log(z) n and
K (z) = K(n)+n. We use the construction of [3, Corollary 6] (which slightly differs

@ Springer

Theory Comput Syst

from the proof of Theorem 2). Let us repeat this construction. As usual, let n be such
that K (K (n)|n) > log(z) n. For the proof of item 3, note that n exists for all values
of log® n, and we choose such values that satisfy

C(log® n) < 0(log® n) (14)

(there exist infinitely many such n). Let z of length n be such that C(z|K (n), n) > n.
Let y be the concatenation of K (n) in binary and the last n — log‘® n bits of z. By
Lemma 2, the length of K (n) in binary is log(z) n, thus |y| = n. The string y is the
same constructed string as in the proof of [3, Corollary 6], and there it is shown using
symmetry of information that C(y) =n and K(y) = K(n) +n — log(z) n.

What happens if for some i < log‘® n in this construction only the last i bits from
K (n) and the first n — i bits from z are chosen? Let x; be the string obtained in this
way. Note that x; | is obtained from x; by removing the last bit and prepending the
i + 1-th last bit of K (n). This implies that K (x;) = K (x;4+1) + O(1). Fori = 0 we
have x;, = yand K(x;) = K(n) +n — log(z) n, and fori = log(z) n we have x; = z
and thus K (x;) = K (n) + n. This implies that the values of K (x;) are O(1)-dense
in an interval of size log® n. Using symmetry of information in a similar way as
before, one can show that C(x;) = n + O(logi) (we use that any i-bit segment of
K (n) is O(logi) incompressible given 7). Recall that i < log(z) n, thus this implies
that all values C (x;) are contained in an interval of size 0(10g(3) n), and this finishes
the proof of item 1.

We show item 3. Recall that C(x;) = n + O(log(3)n), so we need to show
that CCC(n) < O(log® n). We know that C(log® n) < O(log® n) but unfor-
tunately, CC(n) can contain much more information than log(z) n. We take another
approach by showing that CC(K (n)) < O(log® n) and CCC(n) < O(CCK (n)).
The last inequality follows from footnote 2. For the first, note from footnote 3 that
C(K (n)) = log® n, and by (14) this implies CC (K (n)) < O (log® n).

References

. Barmpalias, G.: Algorithmic randomness and measures of complexity. Bull. Symb. Log. 19(3) (2013)

2. Bauwens, B.: Prefix and plain Kolmogorov complexity characterizations of 2-randomness: sim-
ple proofs. ArXiv e-prints. Submitted, presented at Computability, Complexity and Randomness
conference in July 2012 Cambridge (2013)

3. Bauwens, B., Shen, A.: Complexity of complexity and maximal plain versus prefix-free Kolmogorov
complexity. J. Symb. Log. 79(2), 620-632 (2013)

4. Bennett, C.: Logical depth and physical complexity, pp. 227-257. Oxford University Press, Inc., New
York (1988)

5. Bienvenu, L., Gics, P, Hoyrup, M., Rojas, C., Shen, A.: Algorithmic tests and randomness with
respect to a class of measures. Proceedings of the Steklov Institute of Mathematics 274(1), 34-89
(2011). doi:10.1134/S0081543811060058

6. Chaitin, G.: A theory of program size formally identical to information theory. J. Assoc. Comput.
Mach. 22(3), 329-340 (1975). doi:10.1145/321892.321894

7. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Theory and
Applications of Computability. Springer (2010). http://www.springer.com/mathematics/
numerical+and+computational+mathematics/book/978-0-387-95567-4

8. Gdcs, P.: On the symmetry of algorithmic information. Soviet Math. Dokl. 15, 1477-1480 (1974)

@ Springer

http://dx.doi.org/10.1134/S0081543811060058
http://dx.doi.org/10.1145/321892.321894
http://www.springer.com/mathematics/numerical+and+computational+mathematics/book/978-0-387-95567-4
http://www.springer.com/mathematics/numerical+and+computational+mathematics/book/978-0-387-95567-4

12.

13.

14.

15.
16.

17.

18.

19.
20.

Theory Comput Syst

. Gécs, P.: Lecture notes on descriptional complexity and randomness (1988-2013). http://www.cs.bu.

edu/faculty/gacs/papers/ait-notes.pdf

. Kolmogorov, A.: Three approaches to the quantitative definition of information. Problemy Peredachi

Informatsii 1(1), 3—-11 (1965)

. Levin, L.: The various measures of the complexity of finite objects (an axiomatic description). Soviet

Mathematics Doklady 17(2), 522-526 (1976)

Levin, L.A.: Laws of information conservation (nongrowth) and aspects of the foundation of
probability theory. Problemy Peredachi Informatsii 10(3), 30-35 (1974)

Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag,
New York (2008)

Miller, J.: Every 2-random real is Kolmogorov random. J. Symb. Log. 69(3), 907-913 (2004). http://
projecteuclid.org/euclid.jsl/1096901774

Miller, J. Contrasting plain and prefix-free Kolmogorov complexity, Unpublished (2006)

Miller, J.: The K-degrees, low for K-degrees, and weakly low for Ksets. Notre Dame Journal of Formal
Logic 50(4), 381-391 (2009)

Nies, A., Stephan, F., Terwijn, S.: Randomness, relativization and Turing degrees. J. Symb. Log. 70(2),
515-535 (2005)

Shen, A., Romashchenko, A.: Topological arguments for Kolmogorov complexity. In:
AUTOMATA’2012: 18th International Workshop on Cellular Automata and Discrete Complex
Systems, pp. 127-132 (2012)

Solomonoff, R.J.: A formal theory of inductive inference. Part I. Inf. Control. 7(1), 1-22 (1964)
Solovay, R.: Draft of a paper (or series of papers) on Chaitin’s work. 215 pp., unpublished (1975)

@ Springer

http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf
http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf
http://projecteuclid.org/euclid.jsl/1096901774
http://projecteuclid.org/euclid.jsl/1096901774

	Relating and Contrasting Plain and Prefix Kolmogorov Complexity
	Abstract
	Introduction
	Prerequisites
	Relating Plain and Prefix Complexity
	Contrasting Maximal Plain and Prefix Complexity
	Infinitely Often C and K Trivial Sequences
	Contrasting Plain and Prefix Complexity in 3-random Sequences
	Contrasting Expectation and Probabilistically Bounded Deficiency
	Acknowledgments
	Appendix A
	References

