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a b s t r a c t

Bilinear oscillators – the oscillators whose springs have different stiffnesses in

compression and tension – model a wide range of phenomena. A limiting case of

bilinear oscillator with infinite stiffness in compression – the impact oscillator – is

studied here. We investigate a special set of impact times – the eigenset, which

driving force. We found that this set and its subsets are stable with respect to variation

of initial conditions. Furthermore, amongst all periodic sets of impact times with the

period commensurate with the period of driving force, the eigenset is the only one

which can support resonances, in particular the multi-‘harmonic’ resonances. Other

resonances should produce non-periodic sets of impact times. This funding indicates

that the usual simplifying assumption [e.g., S.W. Shaw, P.J. Holmes, A periodically forced

piecewise linear oscillator, Journal of Sound and Vibration 90 (1983) 129–155] that the

times between impacts are commensurate with the period of the driving force does not

always hold. We showed that for the first sub-‘harmonic resonance’ – the resonance

achieved on a half frequency of the main resonance – the set of impact times is

asymptotically close to the eigenset. The envelope of the oscillations in this resonance

increases as a square root of time, opposite to the linear increase characteristic of multi-

‘harmonic’ resonances.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamics of engineering and natural systems often involves return forces which have different magnitudes in tension
and compression. One of the main mechanisms of such a difference is the presence of contacts such that the movement in
one direction is resisted by the elasticity of the system, while the movement in the other direction involves additional high
resistance of the bodies in contact. There are numerous examples of this situation. Firstly, it is characteristic of any cutting
process whereby the movement of the cutting tool towards the workpiece creates high contact forces, while the
movement away from it meets a lower resistance for the tool holder. This is regarded as the intermittent engagement
between the workpiece and the tool and is especially important as it can induce the loss of dynamic stability (chatter) and
limit material removal rates especially at high speeds [1]. A particular example is the drill bit–rock interaction whereby
the movement of the drill bit away from the rock is resisted by a drill string which is long and hence has low overall
stiffness. Also rotations of the cutting tool of the drill bit make the driving force periodic or near periodic. Other examples
include mooring lines and towers (e.g., [2–4]), the dynamics of structures with gaps and contacts such as suspension
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bridges [5,6], topological interlocking structures [7], where the elements are held together via kinematic constraints rather
than a binder, connections of carriages in trains [8], thin cracks in engineering and geo-materials [9–15] as well as
biological systems [16]. Another example is the normal oscillations of frictional contacts where the tensile phase of the
oscillations reduces normal force and hence friction, such that a sliding increment is possible [17,18]. As a result, the
apparent friction controlling the sliding becomes lower than the static one. What is important in these applications is the
possibility of resonances in the system which can lead to the loss of stability, for instance via an oscillation-induced
reduction in friction.

In this paper, we revisit the theory of bilinear oscillator by considering its simplest form—the impact oscillator.
We analyse the periodicity of impact times and the structure of resonances.

A single bilinear oscillator, Fig. 1a and b, is described, after normalisation, by the following equation:

x00 þ2ax0 þ ~kðxÞx¼ f ðtÞ, ~kðxÞ ¼
o2
þ , xZ0

o2
�, xo0

, oþoo�

(
(1)

where x(t) is the trajectory of the oscillator, a is the damping coefficient. We note that given the driving force f(t) is
continuously differentiable, solution of (1) is twice continuously differentiable while its third derivative is discontinuous at
x¼0. Often f(t) is considered to be periodic. In some cases the driving force also has an additional constant component
(pre-loading, e.g., [5,18]).

The main feature of the bilinear oscillator is that the phase space is split into two regions (states) within which the oscillator
behaves linearly, while the nonlinearity is associated with crossing the boundary between the linear states. The resonant
frequency can be obtained by summing up the times oscillator spent in each of the linear state; the result is (e.g., [19])

Or ¼
2OþO�
Oþ þO�

, O2
7 ¼o

2
7�a

2 (2)

System (1) and its stability were investigated in detail for the case of harmonic excitation when f(t)¼A cos(otþj)
(e.g., [2,7,16,19–21]). The main results are obtained by the semi-analytical method using the analytical solutions for the
linear states with transition points determined as the closest (in time) solution of a certain nonlinear algebraic equation
(see the general theory in Wiercigroch [22]). An alternative is to employ direct numerical methods of solving the
corresponding differential equations (e.g., [5]).

It was shown that system (1) exhibits multi-harmonic (o¼nOr) and sub-harmonic resonances (o¼(1/m)Or), where n,
m are integers. These frequencies are also seen in the corresponding spectra (e.g., [14,7]). Subharmonic (multi-harmonic)
resonances were experimentally detected in materials with cracks and defects by Solodov and Korshak [23] and Solodov
et al. [24,25]. Based on this, an apparatus was proposed by Ohara et al. [26] to use subharmonic ultrasound for the accurate
imaging of closed cracks. Phase portraits resembling the ones associated with bilinear oscillators were observed in the
milling experiment [1]. Multiple peak spectra were observed in a cracked beam [11] and in stacked (unglued) concrete and
mortar blocks under impact load [27].

The abrupt transition from one value of the stiffness to another reduces the smoothness of the solution, especially if the
transition point xa0. Subsequently, some authors modelled the bilinear oscillator by smoothing the force–displacement
(stress–strain) curves. Lyakhovsky et al. [12] model the dynamics of rocks with bilinear behaviour (different moduli in
tension and compression) by using a constitutive law which essentially rounds the kink shown in Fig. 1b. This of course
makes the solution smooth, but then the solution becomes dependent upon the radius of rounding, which in its own turn
depends upon the parameters of the model. Given the presence of regions of instability in bilinear oscillators, it is yet
unclear whether the smoothened model will converge to the original bilinear one as the radius tends to zero. Peng et al.
[15,28] approximated the bilinear oscillator by a nonlinear one with a polynomial dependence of the stiffness upon the
displacement. The polynomial is chosen in such a way that the natural frequencies of the bilinear oscillator (1) and its
approximation are closely matched. This method is however only applicable to low frequency ratios, i.e. when the
Fig. 1. Bilinear oscillator: (a) oscillator with nonlinear spring; (b) the return force law for bilinear oscillator; and (c) the return force law for impact

oscillator.
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stiffnesses differ slightly and the oscillator is close to the linear one (the smallest frequency ratio modelled in [15,28] was
0.8). This approach could be viewed as an extension of the modelling of a bilinear oscillator with small difference in
stiffnesses with a linear one mentioned by Miles [29]. In the cases when the difference in stiffnesses is high, this approach
is clearly not applicable.

Another feature of the bilinear oscillator is the existence of regions of instability and chaotic behaviour (e.g.,
[2,3,5,6,19,20,30,31]). In particular, this manifests itself in instabilities in the numerical solution [18]. Shaw and Holmes
[19] performed stability analysis of both bilinear and impact (o�-1, Fig. 1c) oscillators. Whiston [20] extended this
analysis to the case of bilinear oscillator with preload. Their analysis is based on the assumption that the flight time
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(the time between the successive transitions from x40 to o0) is commensurate to the period of driving force. For the case of
impact oscillator this assumption would mean that the set of impact times has a period equal or multiple to the period of the
driving force. While for harmonic driving forces with the frequency o multiple of the eigenfrequency of the oscillator
(o¼ KOr) it is valid, any minor deviation from such a frequency will produce non-periodic impact times, as illustrated by Fig. 2.
It is seen that while in the beginning (Fig. 2a) the intervals between the successive impacts seem to be equal to the period of
the driving force, eventually at the end of the time interval (Fig. 2b) the non-periodicity becomes apparent.

The above overview shows that it is necessary to conduct further analysis in an attempt to determine the possibility of
closed form solutions. The only known analytical solutions are those which correspond to the limiting case of o�-N,
Fig. 1c. This is so-called impact oscillator1 (e.g., [19]) whose multi-harmonic resonances (o¼nOr) were found in closed
form [2,16,19].

Here we concentrate on the impact oscillator without damping and with the coefficient of restitution equal to 1.
We approach the problem by analysing the sets of impact times. We start with formulating general properties of impact
oscillators (Section 2) and specific properties related to the respective sets of impact times (Section 3). In Section 4 we
consider the periodic impact times commensurate with the excitation period, derive the multi-harmonic resonances and
determine the conditions for periodic motion. In Section 5 we consider the first subharmonic resonance and analyse its
asymptotical behaviour.

2. Impact oscillator and its properties

The limiting transition o�-N transfers (1) to

x00 þ2ax0 þo2
þ x¼ f ðtÞ, x40 (3)

Points x(t)¼0 are the transition (impact) points happening at times tk, k¼0, 1,y, where

xðtkÞ ¼ 0, x0ðtkþ0Þ ¼�x0ðtk�0Þ ¼ Vk (4)

and Vk are impact velocities. Formally, (3), and (4) can be solved stepwise starting with initial conditions at t0 and using the
conventional solution of linear equation to which (3) turns in the interval (t0, t1). Point t1 is determined from equation
x(t1)¼0. Then for the interval (t1, t2) the velocity at point t1þ0 is determined from (4) and again the conventional solution
is used, and so on. Thus for given initial conditions the solution of (3) and (4) exists and unique.

In order to further simplify the analysis we assume the absence of damping, a¼0. By setting a¼0, rewriting (3) and (4)
in terms of the dimensionless time variable t-toþ and denoting f=o2

þ as just f, one obtains the following differential
equation:

x00 þx¼ f ðtÞ, x40, (5)

which is to be solved together with impact conditions (4).
The resonance frequency of (5) is Or¼2 in the dimensionless time variable; correspondingly the multi-harmonics are

even numbers, 2n. It is also easy to see that if f(t) is infinitely differentiable, the solution x(t) is infinitely differentiable
in the intervals ðtk, tkþ1Þ, where tk

� �
is the set of impact times. At the impact times the first derivative x0ðtÞ and all

odd derivatives xð2mþ1ÞðtÞ, m¼ 1, 2, . . . are discontinuous, while the solution itself, x(t) and all even derivatives
xð2mÞðtÞ, m¼ 1, 2, . . . are continuous.

We also note that while the differential operator in the left hand side of (5) is nonlinear, it allows a limited form of
convex combination, namely if x(t) and y(t) satisfy x00 þx¼ f ðtÞ, x40 and y00 þy¼ gðtÞ, y40 with the same impact times

tk

� �
, then for any a, b40 z¼ axþby satisfies equation

z00 þz¼ af ðtÞþbgðtÞ, z40 (6)

together with conditions (4) at the impact points. This property trivially follows from the fact that both x(t) and y(t) are not
negative and have the same zeros, tk

� �
, so their convex combination is positive, has the same zeros and satisfies (6) in

between them.
It is seen from this property that the sets of impact times play a pivotal role in the structure of solutions of system (5)

with conditions (4). This suggests that the impact oscillator can be analysed by considering sets of impact times and
corresponding impact velocities, which are of course the points of the Poincaré map for x¼0 (e.g., [19]). In what follows
we pursue this approach.

3. Impact times

We introduce the following notations. Let Y¼ tk

� �
be a set of impact times. We shift the origin to the first impact time

such that t0¼0. We single out a special set Y0 ¼ pk
� �

, k¼ 0, 1,. . . which is the set of impact times for solutions of
1 It should be noted that the term ‘impact oscillator’ is also used to indicate rigid body impacting systems (see e.g. [32,33] and literature reviews

[34,35]). We use the term here as a synonym of asymptotics of large ratios of stiffnesses on compression and tension in a bilinear oscillator, as introduced

by Shaw and Holmes [19].



A.V. Dyskin et al. / Journal of Sound and Vibration 331 (2012) 2856–28732860
homogeneous equation

x00 þx¼ 0, x40, (7)

with impact conditions (4) and initial conditions

xð0Þ ¼ 0, _xð0Þ ¼ V0 (8)

where V0 is the initial velocity. We will call set Y0 ¼ pk
� �

the eigenset of Eq. (7). The solution of Eq. (7) with impact
conditions (4) and initial conditions (8) can be expressed as

x0ðtÞ ¼ V0 sinðt�pkÞ for pkrtrpðkþ1Þ (9)

Obviously, if x is a solution of (5) with the set of impact times Y0 ¼ pk
� �

, then xþx0 is another solution (but with a
different initial velocity). Thus x0 plays a role of a neutral element in a semigroup of solutions of non-homogeneous
equation (5) with the set of impact times Y0 ¼ pk

� �
. This is an analogue of the corresponding relation between

homogeneous and non-homogeneous linear differential equations.
We now list some properties of (5) and (4) related to the sets of impact times.

Property 1. If x and yax satisfy x00 þx¼ f ðtÞ, x40 and y00 þy¼ gðtÞ, y40 with the same impact times YgY0, then fag.
(We assume that neither f�0 nor g�0.) In other words the decomposition of the solution into the sum of a general solution of

homogeneous equation and a particular solution of the heterogeneous one is only possible for solutions with impact times

belonging to the eigenset Y0 ¼ pk
� �

. Thus, if YgY0, then the solution of the homogeneous equation cannot be added to the

solution of the corresponding non-homogeneous equation without changing the driving force, contrary to the case of linear

differential equations.

Proof. Suppose the opposite is valid, f¼g. Then, due to uniqueness of the solution of (5) and (4) for any k, x0ðtkÞay0ðtkÞ,
otherwise x and y would coincide. Suppose x0ðtkÞ ¼ Vk, y0ðtkÞ ¼Wk and let VkoWk. Consider interval ðtk, tkþ1Þ. Since, in this
interval, both x and y satisfy the same linear differential equation (7) with the same right hand side, z(t)¼y(t)�x(t) is a
solution of the corresponding homogeneous equation on ðtk, tkþ1Þ with initial conditions zðtkÞ ¼ 0, z0ðtkÞ ¼Wk�Vk. The
form of this solution is known, it is zðtÞ ¼ Wk�Vkð Þsint. Since both x and y have the next zero at tkþ1, this point must be a
zero of z. Therefore, tkþ1 ¼ tkþpsk, where sk is integer, which implies that YDY0. This concludes the proof.

This property has another interpretation: for an equation with the given right hand side changing the initial velocity
leads to change in the set of impact times Y as long as YgY0.

Given that Y0 is the set of impact times for the general solution of homogeneous equation that satisfies (4), one could
think that Property 1 applies to any set YaY0. This is however not so, since there exist sets Y such that changing initial
velocity, at least in a certain interval does not affect Y. This is demonstrated by the following example.

Example: Consider the following set of impact times:

Ym ¼ fpskg � Y0 : s0 ¼ 0, skþ1 ¼
skþm if k is even

skþ1 if k is odd

(
(10)

and a family of functions

xnðtÞ ¼ Asint�cos
2tþp
mþ1

þcos
p

mþ1
(11)

All these functions have Ym as a set of their roots. At all other points they satisfy (5) with

f ðtÞ ¼
ð3�mÞðmþ5Þ

ðmþ1Þ2
cos

2tþp
mþ1

þcos
p

mþ1
(12)

The factor A is to be chosen in each interval between the impact times to ensure that the obtained solution of (5) and
(12) is not negative. In order to accomplish this we note that set Ym has period T¼(mþ1)p. The first part of (11)
(the solution of homogeneous equation in the linear case) has period either T or 2T for m odd or even, respectively. Let V0

be the initial velocity (at t¼0). Then

A¼
V0þ

2
mþ1 sin p

mþ1 if 0rtrmp
�V0þ

2
mþ1 1þ2ð�1Þm

� �
sin p

mþ1 , if mprtrðmþ1Þp

(
(13)

For the next interval ðmþ1Þprtr2ðmþ1Þp the initial velocity is

V1 ¼
�V0þ

4
mþ1 sin p

mþ1 , if m is even

V0, if m is odd

(
(14)

When m is even, the initial velocity becomes equal to V0 only for the next interval 2ðmþ1Þprtr3ðmþ1Þp, which reflects
the fact that in this case the period is 2ðmþ1Þp.

Figs. 3 and 4 show functions (11) and (13) for m¼2 and 3. These functions deliver the solutions of (5) and (12) with
impact times Ym for some values of initial velocity V0. However, not all values V0 produce solutions of (5) and (12) with the
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set of impact times Ym. The condition is V0oVnðmÞ, where for even m, VnðmÞ ¼ ð4=ðmþ1ÞÞsinðp=ðmþ1ÞÞ. For m¼3,
Vnð3Þ ¼ 1þ3=4

ffiffiffi
2
p

. For other odd values of m, VnðmÞ are given in Table 1 (see Appendix A for details). For values of V0 higher
than VnðmÞ the solutions of (5) and (12) still exist, but involve different (irregular) sets of impact times.

It is noteworthy that while for m¼3 the period is (mþ1)p, which coincides with the period of the driving force,
for m¼2 the period is as twice as much, 2(mþ1)p.

The example considered demonstrates that the periods of impact times and the driving force do not have to coincide
(the impact times may even be aperiodic) contrary to the assumption made in [19,20]. It also highlights the importance of



Table 1
Limiting values of initial velocity below which there exist solutions of (5) and (12) with impact times Ym.

m 5 7 9 11 13 15

VnðmÞ 1.5 0.984 0.675 0.486 0.365 0.283
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a case when both the set of impact times and the driving force are periodic and share a common period. This case is
analysed in the following section.
4. Periodic impact times commensurate with the excitation period: Resonances

Assume now that the set Y of impact times is periodic with a period T and that the driving force has the same period,
f ðtþTÞ ¼ f ðtÞ. Then for a resonance to happen the set of impact times must coincide with the eigenset Y0 as assured by the
following property:

Property 2. If a solution x of (5) with impact times Y is a resonance, then Y¼Y0.

Proof. Suppose the opposite holds and YaY0. Let x(t) be a solution of (5) with initial condition x0ð0Þ ¼ V0 and suppose
that it is a resonance, i.e. x0ðtkþTÞ4x0ðtkÞ and for any V there exists impact time tV 2 Y : x0ðtV Þ4V . As usual, we assume
that t0 ¼ 0.

We conduct the proof in the following steps.
1.
 We show that for any k and the impact velocities, Vn ¼ x0ðtkþnTÞ and for any m there exist n4m such that Vn4Vm.
Indeed, suppose Vn ¼ Vm and let V ¼ max

mT ,ðmþ1ÞT½ �
x0ðtkþtÞ then choose n such that t2V 2 tkþnT , tkþðnþ1ÞT½ �. Introduce

xmðtÞ ¼ xðtþtkþmTÞ and xnðtÞ ¼ xðtþtkþnTÞ. They are both solutions of (5) with the T-periodic driving force and have
the same initial conditions by the assumption, so they must coincide. However, this contradicts the way they were
constructed in which x0nðtÞ42x0mðtÞ. Thus Vn4Vm.
2.
 We now have two solutions of the same equation with different initial velocities. According to Property 1, Y � Y0,
at least when the origin is moved to tk.
3.
 We show that Vn-1 as n-1. Again, assume the opposite that the set of impact velocities Vnf g is bounded, i.e. there
exists W such that 0rVnrW . Then there exists a subsequence Vni

� �
� Vnf g which converges to a limit. That means

that for any e40 there exists N such that for any i, j4N : 9Vni
�Vnj

9oe. We now introduce two solutions,
yðtÞ ¼ xðtþniTÞ and zðtÞ ¼ xðtþnjTÞ. In the interval ðtk, tkþ1Þ we represent these two solutions as

yðtÞ ¼ Ay sint�xpartð0ÞþxpartðtÞ

zðtÞ ¼ Az sint�xpartð0ÞþxpartðtÞ (15)

where xpart(t) is a partial solution of non-homogeneous equation (5) in its linear state, Ay ¼ Vni
, Az ¼ Vnj

. Obviously,
Ay�Az

�� ��oe and subsequently, for t 2 tk, tkþ1

� �
9yðtÞ�zðtÞ9oe and 9y0ðtÞ�z0ðtÞ9oe (16)

It follows from here that y0ðtkþ1Þ�z0ðtkþ1Þ
�� ��oe and then inequalities (16) can be continued by induction into the full

period T. On the other hand, nj can be chosen large enough to contain point t2V, where V ¼max tk ,tkþT½ �y0ðtÞ, which
contradicts (16).
4.
 We can now prove Property 2. Indeed, due to the supposition YaY0, there exists an interval ðtk, tkþ1Þ such that
tkþ1�tk ¼ skp, sk41. We use representation of the type of (15) in this interval and since the interval is longer than p,
there are points t, where A sin to0. On the other hand, by shifting tk by the large enough number of periods we can
ensure that Asint

�� ��42max xpartðtÞ
�� ��, which violates the condition xðtÞZ0. Thus assumption YaY0 leads to a contra-

diction, and hence Y¼Y0. This concludes the proof.
Property 2 is a necessary condition of resonance on a periodic set of impact times. This is however not a sufficient
condition as demonstrated below by the analysis of the equation

x00 þx¼ sinnt, x40 (17)

Period of the driving force here is 2p/n. When n is even, the period of eigenset Y0 (recall, it is p) is equal to or a multiple
of 2p/n. Then the resonance is possible and its form is well known (e.g., [2,19]):

xkðtÞ ¼ Ak sint�
1

n2�1
sinnt, x0kðtÞ ¼ Ak cost�

n

n2�1
cosnt (18)
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Ak ¼ ð�1Þk Vkþ
n

n2�1

h i
, Vk ¼ Vk�1þ

2n

n2�1
, (19)

where Vk40 is the impact velocity at the beginning of a cycle.
This is a multi-harmonic resonance (since the main angular frequency of oscillator (17) is 2) with linearly increasing

amplitude and impact velocity. The higher the harmonics, the smaller velocity increment Vk�Vk�1; it decreases as 2/n.
Fig. 5 shows solutions (18) and (19) for n¼2, 4, 6.

When however n is odd, only the double period of eigenset Y0 (which is 2p) is equal to or a multiple of 2p/n. Formally,
the necessary condition of resonance is satisfied, but direct calculations show that the solution with impact times Y0 is

xkðtÞ ¼ Ak sint�
1

n2�1
sinnt, x0kðtÞ ¼ Ak cost�

n

n2�1
cosnt, Ak ¼ ð�1ÞkVkþ

n

n2�1
(20)

It follows from here that

Vk ¼ Vk�1 (21)

Thus we have steady-state oscillations (Fig. 6a). This solution is however only valid as long as xkðtÞ does not have roots
(impact times) in addition to the elements of eigenset Y0. From (20) we obtain the following equations for the extra roots:

For k¼ 2p V2pþ
n

n2�1

h i
sint�

1

n2�1
sinnt¼ 0, 2ppoto ð2pþ1Þp (22)

For k¼ 2pþ1 �V2pþ
n

n2�1

h i
sint�

1

n2�1
sinnt¼ 0, ð2pþ1Þpoto2ðpþ1Þp (23)

Since Vk40, Eq. (22) does not have roots in the interval (2pp, 2ppþp). Consider interval (2ppþp, 2ppþ2p). In order to
find the values of Vk, which allow the extra roots, we use the same technique as in Appendix A. We consider Vk as a
parameter and starting with a large value of Vk, keep reducing it until an extra root appears. Let tn be the extra root. This
obviously happens at the point when xkðtnÞ ¼ x0kðtnÞ ¼ 0. This leads to a system of equations which, after substitution
tn¼xþ2ppþ3p/2, �p/2rxrp/2, assumes the form

xðxÞ ¼ V2p�
n

n2�1

h i
cosxþ ð�1Þm

n2�1
cosnx¼ 0, n¼ 2mþ1

x0ðxÞ ¼ V2p�
n

n2�1

h i
sinxþ ð�1Þmn

n2�1
sinnx¼ 0

8><
>: (24)

Due to the symmetry, it is sufficient to consider 0rxrp/2. The analysis, similar to the one conducted in Appendix A,
shows that for n¼3 the suitable root of (24) is x¼0. (The other root, x¼p/2, gives a trivial condition VkZ0.) From here the
condition of the existence of extra roots is Vk¼V2prVmax¼1/2. For n¼5, 7,y system (24) reduces to equation

tanx¼ ntannx (25)

Then the condition of the existence of extra roots is

Vk ¼ V2prVmax
1

n2�1
n�ð�1Þm

cosnx
cosx

� 	
, n¼ 2mþ1 (26)
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Fig. 5. Trajectories (18) and (19) of impact oscillator with multi-harmonic driving force showing the main resonance (n¼2), double (n¼4) and triple

(n¼6) resonances.
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Eq. (25) was solved numerically and the upper bounds were produced for impact velocities shown in Table 2.
As an example, Fig. 6b shows solutions of (17) for n¼3 and V0¼0.51 (which corresponds to impact times Y0, Fig. 6a)

and V0¼0.45 (impact times different from Y0, Fig. 6b). These values of V0 are chosen because the first one is greater than
Vmax ¼

1
2 and the second one is smaller than that. The first plot is the trajectory according to (20). The second plot was

obtained numerically using the fourth-order Runge–Kutta method adaptive step to solve the corresponding bilinear
oscillator equation (1) with a¼0, o�=oþ ¼ 2� 104 and 220 points in the interval 0, 30pð Þ. The difference in behaviour for
different initial velocities is also seen in the phase portraits (Fig. 7), and power spectra SðoÞ

�� ��2 (Fig. 8), where S(o) is Fourier
transform of x(t). In particular, the solution with periodic impact times shows regular spectral peaks of rapidly reducing



Table 2
Critical values of initial velocity. Velocities below the critical one produce solutions of (17) with impact times different from the eigenset Y0.

n 5 7 9 11 13 15

VmaxðnÞ 0.26 0.18 0.138 0.112 0.095 0.082
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Fig. 7. Phase portraits of impact oscillator (17) with a periodic driving force for n¼3 (3/2 harmonic) with different initial velocities: (a) V0¼0.51 (impact

times Y0, Eq. (20)) and (b) V0¼0.45 (impact times YaY0).
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amplitude as frequency increases, while the other solution is characterised by a wider spectrum with irregular but much
slower reduced spectral peaks.

For comparison, Fig. 9 shows another case when impact times are Y0—periodic motion for n¼9 and V0¼0.139.
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Thus, the only resonances with periodic impact times commensurate with the period of driving force are the ones given
by (18) and (19). We will now turn our attention to resonances not associated with the eigenset of impact times Y0. These
are subharmonic resonances.
5. Asymptotically periodic impact times: Subharmonic resonance

Consider excitation on the half harmonic frequency (the main resonant frequency is equal to 2):

x00 þx¼ sint, x40 (27)

Numerical simulations show [2,3,19] that this equation exhibits resonance, which we will now analyse.
Let Y¼ tk

� �
be a set of impact times. For each interval (tk, tkþ1) we can express the solution of (27) as

xkðtÞ ¼ Ak sintþBk cost�
t

2
cost

x0kðtÞ ¼ Ak�
1

2


 �
cost�Bk sintþ

t

2
sint (28)

Suppose both the impact time tk and the impact velocity Vk are known. Then Eq. (28) give the motion for t4tk and the
next impact time, tkþ1, is to be found from equation xk(tkþ1)¼0. This equation, by introducing xk¼tkþ1�tk (which is the
period at cycle k) can be written in the form

tanxk ¼
costk

costkþ2Vk
xk (29)

This equation cannot be solved analytically, however asymptotics of large Vk which corresponds to the half harmonic
resonance can be found as follows. We denote

costk

costkþ2Vk
¼ ak (30)

and note that for Vkb19ak951. Then the asymptotic solution of (29) can be expressed as

xk ¼ pð1þakÞþOða2
k Þ, ak ¼

costk

2Vk
þOðV�2

k Þ, (31)

Therefore, at large Vk the impact time period is close to p and the set of impact times Y¼ tk

� �
is asymptotically close to

the eigenset Y0.
We can now express the impact velocity for the next cycle as Vkþ1 ¼�x0kðtkþ1Þ. After some algebra we have

Vkþ1 ¼ Vkþ
p
2

sintkþðpþ2sintkÞak½ �þOða2
k Þ (32)
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Now, tk is close to kp but in order to express the difference one needs the velocity from the previous cycle, Vk�1.
Instead, we just proceed to the next cycle and find that

Vkþ2 ¼ Vkþ
p
2

p=2
� 


cos2 tkþsin2tk

� �
Vk

þOðV�2
k Þ (33)

Now, using the approximation Vkþ2�Vk ¼ tkþ2�tk

� 

V 0ðtkÞ ¼ 2p 1þakð ÞV 0ðtkÞþO V�2

k

� �
, considering times much larger

than tkþ2�tk, and replacing the numerator in (33) with its average value which we denote a (a40 as we assume
resonance), one obtains the following differential equation for asymptotics V(t):

dV

dt
¼

a

pV
þOðV�2

Þ (34)

Solution of (34), together with the assumption that V(0)¼0 is

VðtÞ ¼ b
ffiffi
t
p

(35)

where b is a constant. Fig. 10 shows x0ðtÞ obtained through the numerical solution of (27) with the initial condition V0¼0.
We used the fourth-order Runge–Kutta method adaptive step for the corresponding bilinear oscillator equation (1) with
a¼0, o�=oþ ¼ 2� 104and 220 points in the interval 0, 400ð Þ. The plot also shows asymptotics (35), where constant b is
determined by making (35) the envelope of the velocity plot. Fig. 11 shows that the same power law provides the envelope
for x(t) as well. In both cases the fact that the numerical solution allows asymptotics (35) indicates that for these values of
parameters the numerical solution is accurate.

Figs. 12 and 13 show the phase portrait and power spectrum. Both the phase portrait and power spectrum have a
regular character with the power spectrum showing strong regular peaks. This is attributed to the fact that the set of
impact times is asymptotically regular approaching Y0 as the impact velocities increase.

The existence of the half harmonic resonance depends upon the phase of the driving force. As an example consider the
equation

x00 þx¼ cost, x40 (36)

The general solution for each interval (tk, tkþ1) has the form

xkðtÞ ¼ Ak�
t

2


 �
sint

x0kðtÞ ¼ Ak�
t

2


 �
cost�

1

2
sint (37)
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Fig. 10. Velocity obtained through numerical modelling of impact oscillator (27) with driving force at half harmonic frequency. The envelope represents

asymptotics (35).



0 80 160 240 320
0

3

6

9

12
x(

t)

t

0.61t1/2

Fig. 11. Displacement obtained through numerical modelling of impact oscillator (27) with driving force at half harmonic frequency. The envelope

represents asymptotics (35).

x′(
t)

x(t)
0 1 2 3 4 5
6

3

0

3

6

Fig. 12. Phase portrait of impact oscillator (27) with driving force at half harmonic frequency.

A.V. Dyskin et al. / Journal of Sound and Vibration 331 (2012) 2856–28732868
The obvious set of impact times to test is Y0, since xk(kp)¼0. If Vk is the impact velocity at kp, then (37) produce the
following set of solutions:

xkðtÞ ¼ Vkþð�1Þk
t
2

� �
sint, t¼ t�kp, 0rtrp

x0kðtÞ ¼ Vkþð�1Þk
t
2

� �
cost�

ð�1Þk

2
sint (38)
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From here

Vkþ1 ¼ Vkþð�1Þk
p
2

, Vkþ2 ¼ Vk (39)

It is now necessary to check if there are any additional solutions of xk(t)¼0. To this end we rewrite the first equation of (38) as

xkðtÞ ¼ Vkþ
t
2

� �
sint, if k is even,

xkðtÞ ¼ Vk�
t
2

� �
sint, if k is odd,

t¼ t�kp, 0rtrp (40)

It is seen, that for even k the only solutions are kp. For odd k the additional solutions are only possible if Vkrp=2. On
the other hand, the first equation of (39) states that for odd k, VkZVk�1þp=2Zp=2, since all VkZ0. Therefore, the only
situation when other solutions are possible is V0¼0. Then, there is an impact time at t¼p/2.

Thus for any initial velocity V040, Eq. (36) has only steady-state periodic solutions with periodic impact times Y0. If
however V0¼0, one can shift time by p/2 to place the origin in this additional impact time. This will turn Eq. (36) into (27)
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and the corresponding analysis applies. Figs. 14 and 15 show the corresponding velocity and displacement vs. time.
The envelopes show the same asymptotics (35), but the factors are now much lower owing to the time shift.
6. Discussion

We have considered the bilinear oscillator with stiffness transition at zero displacement in its simplest form—impact
oscillator which corresponds to the case when stiffness in compression is taken as infinity. The trajectory of the impact
oscillator is non-negative and assumes zero only at certain time points called impact times. The velocities change sign at
the impact times, while the absolute values remain the same. (The coefficient of restitution is assumed to be equal to
unity.) Closed form solutions are known for only few cases, so numerical modelling has been the only tool in analysing the
impact oscillators. However, when the combinations of parameters are such that the oscillator exhibits chaotic behaviour,
the numerical simulation is not stable. Developing a general theory of impact oscillators is hampered by the fact that the
solutions of the equations modelling impact oscillators are not additive, unless they share the same sets of impact times.
Thus the sets of impact times play pivotal role in the impact oscillator motions and should be used as a basis of the analysis
of impact oscillators.

Amongst all sets of impact times, there is a special one which can be regarded as the eigenset, that is the set of impact
times corresponding to the solution of the homogeneous equation, i.e. the oscillator without the driving force. The
importance of it is in the fact that this set and its subsets are the only ones that can support different motions of impact
oscillator for different initial conditions. With all other sets of impact times, any change in the initial velocity will change
the impact times.

An important feature of impact oscillator is the presence of multiple resonances, both sub- and multi-‘harmonic’. The
eigenset of impact times plays a special role here as well: amongst all periodic sets of impact times with the period
commensurate with the period of driving force, the eigenset is the only one which can support resonance. Subsequently,
the multi-‘harmonic’ resonances are the ones supported by the eigenset. Other resonances produce non-periodic sets of
impact times. It is interesting that for the first sub-‘harmonic resonance’ – a resonance achieved on a half frequency of the
homogeneous equation – the set of impact times is not periodic; it is however asymptotically close to the eigenset. The
envelope of the oscillations in this resonance increases as a square root of time, opposite to the linear increase
characteristic of multi-‘harmonic’ resonances.

The eigenset of impact times and its periodic subsets also support steady-state periodic oscillations. Their existence
however strongly depends upon the initial conditions (magnitude of impact velocity)—there exist ranges of initial
velocities which produce oscillations with the eigenset of impact times (or its periodic subsets), while outside these ranges
the impact times lose periodicity.
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7. Conclusion

We analysed the motions of impact oscillators with impacts at zero displacement, the full restitution and periodic
driving force. Such oscillators model a wide range of phenomena, from oscillations of fragmented structures and mooring
lines, to chatter in cutting tools, to deformation of geological media. We performed the analysis by considering the
associated sets of impact times – the times of change of the velocity sign. We singled out the eigenset – the impact times of
a free oscillator (the oscillator without the driving force). This is a periodic set and this is the only set which supports
multi-harmonic resonances independent of the initial velocities. In all other cases, the periodic impact times commensu-
rate with the period of the driving force, if exist depend upon the initial velocity. This means that the traditional approach
to analysing the stability of bilinear oscillators based on Poincare maps related to times which are multiple of the driving
force period is insufficient, as some important cases (e.g., subharmonic resonances) are missed.

We also analysed the first subharmonic resonance (half of the resonance frequency) and found that the set of impact
times, while not periodic, is asymptotically close to the eigenset. The envelope of the oscillations in this resonance
increases as a square root of time, opposite to the linear increase characteristic of multi-‘harmonic’ resonances.
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Appendix A. Upper bounds for initial velocities which deliver solutions of (5) and (12) with impact times Hm

Here we derive bounds on V0 which ensure that solution (11), (13) and (14) is non-negative. To this end we rewrite the
solution taking into account the periodicity:

xnðtÞ ¼ uðtÞ�wðtÞ,

uðtÞ ¼
V0�

2
mþ1 sin p

mþ1

� �
sint, 0rtrmp

�V0þ
2

mþ1 1þ2ð�1Þm
� 


sin p
mþ1

� �
sint, mprtr ðmþ1Þp

8><
>:

wðtÞ ¼ cos
2tþp
mþ1

�cos
p

mþ1
(A1)

The condition xnðtÞZ0 is satisfied when

uðtÞZwðtÞ (A2)

Fig. A1 shows the plots for both u(t) and w(t) for even m (Fig. A1a) and odd m (Fig. A1b). For mpoto(mþ1)p and for all
values of t when m is even, condition (A2) can be reduced to

u0ðtÞ
�� ��Z w0ðtÞ

�� ��, (A3)

which produces the condition on V0

V0oVnðmÞ ¼
4

mþ1
sin

p
mþ1


 �
(A4)

For 0otomp and odd values of m the upper bound V(m) can be determined from the condition that plots u(t) and w(t)
touch each other at a certain point tn. For m¼3 this point is obviously in the middle of interval (0, mp) (Fig. A1b), that is
tn¼3p/2. Then the condition xn(tn)¼0 leads to

Vnð3Þ ¼ 1þ3
ffiffiffi
2
p

=4 (A5)

For other odd values of m, tn is determined from the solution of the system for D and tn

Dsintn�cos 2tnþp
mþ1 þcos p

mþ1 ¼ 0

Dcostnþ 2
mþ1 sin 2tnþp

mþ1 ¼ 0

8<
: (A6)

where D is an (unknown) amplitude of u(t) at which plots u(t) and w(t) touch each other, ðm�2Þprtnrðm�1Þp. Then the
upper bound for V0 can be found from the condition that the amplitude of u(t) does not exceed D:

V0�
2

mþ1
sin

p
mþ1

rD, (A7)
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from where the upper bound can be expressed through tn

VnðmÞ ¼
2

mþ1
sin

p
mþ1

�
sin 2tnþpð Þ= mþ1ð Þ
� 


costn

� 	
(A8)

The tangent point tn was found by solving system (A6) numerically; the results are shown in Table 1.
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