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Abstract In this paper, we analyze a Lévy model based on two popular concepts - subordi-
nation and Lévy copulas. More precisely, we consider a two-dimensional Lévy process such
that each component is a time-changed (subordinated) Brownian motion and the depen-
dence between subordinators is described via some Lévy copula. The main result of this
paper is the series representation for our model, which can be efficiently used for simulation
purposes.
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1 Introduction

Copula is with no doubt the most popular tool for describing the dependence between two
random variables. The popularity is partially based on the fact that the dependence between
any random variables can be modelled by some copula. This fact is known as Sklar’s the-
orem, which states that for any two random variables Y1 and Y2 there exists a copula C (a
two-dimensional real-valued distribution function with domain [0, 1]2 and uniformmargins)
such that

P {Y1 ≤ u1, Y2 ≤ u2} = C
(
P {Y1 ≤ u1} ,P {Y2 ≤ u2}

)
, (1)
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for any u1, u2 ≥ 0. We refer to Cherubini et al. (2004), Joe (1997), Nelsen (2006) for a
comprehensive overview of the copula theory.

Now let us switch from random variables to stochastic processes and try to describe
dependence between components of some two-dimensional Lévy process �X(t) =
(X1(t), X2(t)), that is, of some cadlag process with independent and stationary increments.
Applying Sklar’s theorem for any fixed time moment t , we get that the dependence between
X1 and X2 can be described by some copula Ct , i.e.,

P {X1(t) ≤ u1, X2(t) ≤ u2} = Ct

(
P {X1(t) ≤ u1} ,P {X2(t) ≤ u2}

)
, (2)

for any u1, u2 ≥ 0.Nevertheless, the direct application of the representation (2) to stochastic
modeling has a couple of drawbacks. First, it turns out that the copula Ct in most cases
essentially depends on t , see Tankov (2004) for examples. Second, since the distribution
of �X(t) is infinitely divisible, (2) is possible only for some subclasses of copulas. In other
words, the class Ct depends on the class of marginal laws Xi(t).

To avoid such difficulties, researches are trying to characterize the dependence between
the components of Lévy process in the time-independent fashion. One of the most popular
approaches for this characterization is the so-called Lévy copula (defined below), which was
introduced by Tankov (2003), and later studied by Barndorff-Nielsen and Lindner (2004),
Cont and Tankov (2004), Kallsen and Tankov (2006), and others. Among many papers in
this field, we would like to emphasize some articles about statistical inference for Lévy
copulas (mainly with applications to insurance), which include some basic ideas that are
widely used in statistical research on this topic, in particular, in the statistical analysis in the
current research - Esmaeili and Klüppelberg (2010 and 2011), Avanzi et al. (2011), Bücher
and Vetter (2013).

The main objective of this article is the application of the Lévy copula approach to a class
of stochastic processes, known as time-changed Lévy processes. In the one-dimensional
case, the time-changed Lévy process is defined as Ys = LT (s), where L is a Lévy process
and T is a non-negative, non-decreasing stochastic process with T (0) = 0 referred as
stochastic time change or simply stochastic clock. If the process T is also a Lévy process,
then it is called the subordinator, and the process Ys is usually refered as the subordinated
process. The economical interpretation of the time change is based on the idea that the
“business” time T (s) may run faster than the physical time in some periods, for instance,
when the amount of transactions is high, see Clark (1973), Ané and Geman (2000), Veraart
and Winkel (2010).

In this paper, we consider one natural generalization of the aforementioned model to
the multidimensional case known as multivariate subordination. This construction was
introduced by Barndorff-Nielsen et al. (2001) and later studied by many researchers, e.g.,
Semeraro (2008), Luciano and Semeraro (2010). The main contribution of this paper is
Theorem 5.1, which gives the series representation of a process �X(t) from our class in the
following form:

�X(t) =
∞∑
i=1

H
(
�i, �Di

)
· I {Ri ≤ t} , (3)

where �i are arrival times in a Poisson process of rate 1, Ri is a sequence of independent
random variables, uniformly distributed on [0, 1], �Di is a sequence of i.i.d. random vectors
from some Borel space S, and H : R × S → R

d .

The proof of Theorem 5.1 is based on the paper by Rosiński (2001), which was
also used for some previous results of this type. For instance, Theorem 6.3 from the
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book of Cont and Tankov (2004) gives the series representation of the type (3) for a
bivariate Lévy process with positive jumps linked by Lévy copulas. In this respect, our
paper can be considered as an attempt to generalize the result by Cont and Tankov
(2004) to an important class of multivariate time-changed Lévy models. Note also
that other popular simulation tools like Gaussian approximations of small jumps (see
Cohen and Rosinsky, 2007) are also not available for multidimensional time-changed
models. We refer to the survey by Hilber and Winter (2009) for the overview of the
existing methods.

Series representations in the spirit of Eq. 3 are of great interest in the statistical literature,
especially in the context of Bayesian statistics. In particular, representation for generalized
gamma processes (see Ishwaran and Zarepour, 2009) or for the Poisson-Dirichlet processes
(see Leisen and Lijoi, 2011; Leisen et al. 2013; Zhu and Leisen, 2015) are widely used
to simulate priors in Bayesian nonparametric methods. Discrete random measures, which
allows for the series representations of similar types, draw attention of many researchers,
see Kalli et al. (2011), Griffin and Walker (2011), Kolossiatis et al. (2013). We clarify the
novelty of our approach in comparison with previously known related methods in Bayesian
statistics in Section 6.

The paper is organized as follows. In the next section we give the definitions of Lévy
processes, Lévy measures and Lévy copulas, and formulate the most important results from
this theory. In Section 3 we shortly explain the notion of stochastic change of time. After-
wards, in Section 4, we introduce our model and discuss some properties of it. Our main
results are given in Section 5, where we also provide some examples. The novelty of our
main result, Theorem 5.1, is discussed in Section 6. In the last two sections, we provide a
simulation study and a real-data example.

2 Brief Introduction to the Theory of Lévy Processes

We start with a very short introduction to the theory of Lévy processes. For the comprehen-
sive study of this topic we refer to Sato (1999).

Definition 2.1 An R
d -valued Lévy process �Z =

( �Zt , t ≥ 0
)
is a stochastic process with

the following properties:

1. �Z0 = 0 a.s.;
2. independent increments: ∀ 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ ∞, the random variables �Zt2 −

�Zt1 ,
�Zt3 − �Zt2 , ..., �Ztn − �Ztn−1 are independent;

3. stationary increments: ∀ t > s , �Zt − �Zs
L= �Zt−s ;

4. stochastic continuity: ∀ t > 0, �Zt+h
P−→ �Zt as h → 0.

The class of Lévy processes includes Brownian motion, compound Poisson process, α-
stable processes, gamma-process, and others. Below we formulate three basic results from
the theory of Lévy processes.

First, it turns out that this class of stochastic processes is closely related to the infinitely
divisible distributions, which we define below.

Definition 2.2 The probability distribution F is infinitely divisible, if for any natural n

there exist n i.i.d. variables ξ1, ..., ξn such that their sum ξ1+ξ2+ ...+ξn has distribution F.
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Proposition 2.3 Any Lévy process �Zt at any time point t has an infinitely divisible distri-
bution. Conversely, for any infinitely divisible distribution L there exists a Lévy process �Zt

such that �Z1 has distribution L .

Second, the distribution of the Lévy process �Zt completely determines by the distribution
in one point, say, by the distribution of �Z1. This fact easily follows from the following
proposition.

Proposition 2.4 For any Lévy process �Zt , there exists a function ψ : Rd → C known as
characteristic exponent (or cumulant function), such that

φt (�u) := E

[
ei〈�u, �Zt 〉

]
= etψ(�u).

Finally, we formulate the proposition, which gives the exact form for the characteristic
function. This form is based on the fact that any Lévy process �Zt can be decomposed into
the sum of a.s. continuous process �bt + �1/2 �Wt , where �b ∈ R

d and �Wt is a d-dimensional
standard Brownian motion, and a pure jump process Jt , which is described by the Lévy
measure. The Lévy measure ν is defined as

ν(B) = E

[
	
{
t ∈ [0, 1] : 
 �Zt ∈ B

}]
, 
 �Zt = �Zt − �Zt−, B ∈ B(Rd/{0}),

that is, for any Borel subset B the Lévy measure is the expected number, per unit time,
of jumps whose size belongs to B. The triplet (�b,�, ν) is known as Lévy triplet, and it
completely determines the distribution of �Zt .

Proposition 2.5 The characteristic exponent of a Lévy process �Zt allows for the following
representation

ψ(�u) = i〈�b, �u〉 − 1

2
〈�u,��u〉 +

∫

R

(
ei〈�u,�x〉 − 1 − i〈�u, �x〉I{|�x| < 1}

)
ν(d �x), (4)

where

• �b ∈ R
d , � - non-negatively defined matrix of size d × d,

• ν is a Lévy measure, and
∫

‖�x‖≤1
‖�x‖2ν(dx) < ∞,

∫

‖�x‖>1
ν(d �x) < ∞.

If the process �Zt is of bounded variation, then the representation (4) reduces to

ψ(�u) = i〈�b∗, �u〉 +
∫

R

(
ei〈�u,�x〉 − 1

)
ν(d �x), (5)

where �b∗ = �b − ∫
‖�x‖≤1 �xν(d �x).

For every Lévy measure, one can define its tail integral, which plays a crucial role in the
construction of the Lévy copula.

Definition 2.6 For a one-dimensional Lévy measure ν, its tail integral is defined as

U(x) :=
{

ν (x,+∞) , if x > 0,
−ν (−∞, x) , if x < 0.
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Definition 2.6 can be equivalently written as

U(x) := (−1)s(x)ν
(
I (x)

)
,

where

I (x) :=
{

(x,+∞) , if x > 0,
(−∞, x) , if x < 0,

and s(x) :=
{
2, if x > 0,
1, if x < 0.

The reason for this definition is that in the case of infinite measure ν,U(A) is infinite for any
set A which contains 0. Analogously, for a d-dimensional Lévy process with Lévy measure
ν, the tail integral is defined as

U(x1, ..., xd) := (−1)s(x1)+...+s(xd ) · ν
(
I (x1) × ... × I (xd)

)
,

and this definition is also correct for any real x1, ..., xd .

Definition 2.7 A d-dimensional Lévy copula is a function from R̄
2 to R̄ such that

1. F is grounded, that is, F (�u) = 0 if ui = 0 for at least one i = 1, .., d.
2. F is d-increasing.
3. F has uniform margins, that is, F (1)(v) = ... = F (d)(v) = v, where

F (j)(v) = lim
u1,...,uj−1,uj+1,ud→∞ F

(
u1, ..., uj−1, v, uj+1, ..., ud

)
, j = 1..d,

4. F (u1, ..., ud) 
= ∞ for (u1, ..., ud) 
= (∞, ..., ∞).

The main result on Lévy copulas (an analogue of the Sklar theorem for ordinary copulas)
states that for any multidimensional Lévy process �Z with tail integral U and marginal tail
integrals U1, ..., Ud , there exists a Lévy copula F such that

U(x1, ..., xd) = F (U1(x1), ..., Ud(xd)) (6)

and vice versa, for any Lévy copula F and any one-dimensional Lévy process with tail
integrals U1, ..., Ud there exists a d-dimensional Lévy process with tail integral U given
by Eq. 6 and marginal tail integrals U1, ..., Ud . The first part of this theorem can be easily
verified for the case when the one-dimensional Lévy measures are infinite and have no
atoms, because in this case the Lévy copula is equal to

F(u1, ..., ud) = U
(
U−1
1 (u1), ..., U

−1
d (ud)

)
, (7)

where U is the tail integral of the Lévy measure of �Z, see Kallsen and Tankov (2006).
The most popular type of Lévy copulas is the (positive) Archimedian copulas defined by

F (A)(x1, ..., xd) = ϕ
(
ϕ−1 (x1) + ϕ−1 (xd)

)
,

where ϕ(·) : R+ → R+ is an Archimedian Lévy generator - a continuous decreasing
function satisfying ϕ(0) = ∞, limu→∞ ϕ(u) = 0. In the case ϕ(u) = u−1/θ with θ > 0
we arrive at the so-called positive Clayton-Lévy copula, which we discuss in more details
in Section 5.

It would be a worth mentioning that d−dimensional Lévy copulas can be iteratively con-
structed from (d−1) - dimensional Lévy copulas. One of such approaches known as positive
nested Archimedian Lévy copulas (PNALS) was introduced in Grothe and Hofert (2015).
The key idea of the construction of PNALS is to replace some arguments of Archimedian
Lévy copula with other processes from this class. For instance, taking two two-dimensional
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Archimedian Lévy copulas F
(A)
1 and F

(A)
2 with generators ϕ1(·) and ϕ2(·) resp., one can

construct a three-dimensional positive Lévy copula

F (NA) (x1, x2, x3) := F
(A)
2

(
x1, F

(A)
1 (x2, x3)

)
, xi ∈ R+, i = 1, 2, 3,

provided that the function
(
ϕ−1
2 ◦ ϕ1

)′
is completely monotone.

Another approach is the so-called vine construction of Lévy copulas introduced in Grothe
and Nicklas (2013). For instance, in the 3-dimensional case, this method yields that the
following function is a Lévy copula:

F (x1, x2, x3) =
∫ x3

0
C (G1(x1|v), G2(x2|v)) dμ3(v),

where C is a distribution copula, μ3 is the distribution measure of the third component,
G1(x1|v) and G2(x2|v) are the one-dimensional distribution functions of the random vari-
ables ξi|v, i = 1, 2, defined from the decomposition of the measures μi,3, i = 1, 2,
corresponding to the Lévy copulas between i-th and third components, to the generalized
product μi,3 = μ3 ⊗ ξi|v . For detailed description of such constructions we refer to Section
3.1 from Grothe and Nicklas (2013).

3 Time-Changed Lévy Models

As it was already mentioned in the introduction, the time-changed Lévy process in the
one-dimensional case is defined as

Ys = LT (s), (8)

where L is a Lévy process, and T (s) - a non-negative, non-decreasing stochastic process
with T (0) = 0. This class of models has strong mathematical background based on the
so-called Monroe theorem (Monroe 1978), which stands that any semimartingale can be
represented as a time-changed Brownian motion (that is, in the form Eq. 8 with L equal
to the Brownian motion W ) and vice versa, any time-changed Brownian motion is a semi-
martingale. Various aspects of this theory are discussed in Barndorff-Nielsen and Shiryaev
(2010) and Cherny and Shiryaev (2002). Nevertheless, the first part of the Monroe theorem
doesn’t hold if one introduces any of the following additional assumptions:

1. Processes W and T are independent. This assumption is widely used in the statistical
literature and is quite convenient for both theoretical and practical purposes.

2. Time change process T is itself a Lévy process, that is, a subordinator. In this case
any resulting process Ys is also a Lévy process, which is usually called a subordinated
process.

These drawbacks of the time-changed Brownian motion lead to the idea of considering more
general model (8) with any Lévy process instead of the Brownian motion and introducing
the assumption that the processes T and L are independent. This model has been attracting
attention of many researches, see, e.g., Belomestny and Panov (2013), Bertoin (1998) Carr
et al. (2003), Cherubini et al. (2010), and Schoutens (2003).

Nevertheless, there is no clear understanding in the literature how to extend this model
to the multi-dimensional case. The most popular construction is to consider the model (8)
with a d-dimensional Lévy process �L and to provide a time change in each component with
the same process T , see Sato (1999).
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Interestingly enough, in the case when �L is a Brownian motion, the correlation
coefficient between subordinated processes is upper bounded by the correlation coeffi-
cient between the components of the Brownian motion, see Eberlein and Madan (2010).
Moreover, these coefficients coincides in some cases, see Cont and Tankov (2004).

4 Multidimensional Subordinated Processes

In this section, we introduce a multidimensional generalization of the model (8). This gen-
eralization is based on the notion of the d-dimensional subordinator, which we define
below.

Definition 4.1 A d - dimensional subordinator �T (s) = (T1(s), ..., Td(s)) is a Lévy process
in R

d such that its components T1, ..., Td are one-dimensional subordinators.

In particular, T1, ..., Td in the above definition may be independent. Another example
is given by the following statement (see Semeraro (2008)): if T1, T2, T3 are 3 independent
subordinators, then the processes

(T1(s) + T3(s), T2(s) + T3(s))

and
(T1(T3(s)), T2(T3(s)))

are two-dimensional subordinators.
Consider now d independent one-dimensional Lévy process L1(t), ..., Ld(t) and

a d-dimensional subordinator �T (s) = (T1(s), ...,Td(s)) such that Ti (s) is inde-
pendent of Li(s) for all i = 1, .., d. Define the subordinated process by
composition

�X(s) =
(
X1(s), ..., Xd(s)

)
:=
(
L1(T1(s)), ..., Ld(Td(s))

)
. (9)

This construction, known as multivariate subordination, was firstly considered in Barndorff-
Nielsen et al. (2001). In what follows, we consider the case when Li, i = 1..d, are
independent Brownian motions with drifts.

Theorem 4.2 Consider the model (9) with Li(t) = ci t + σiWi(t), i = 1..d , where
Wi(t), i = 1, ..., d are d independent one-dimensional Brownian motions, μi ∈ R, σi ≥ 0,
�T (s) = (T1(s), ...,Td(s)) is a d-dimensional subordinator. Denote

ψT (�u) := 〈 �ρ, �u〉 +
∫

R

(
e〈�u,�x〉 − 1

)
η(d �x),

where �ρ = (ρ1, ..., ρd) ∈ R
d , ρi ≥ 0, i = 1, ..., d, and η is a Lévy measure in R

d+.
Denote by diag (�x) with �x = (x1, ..., xd) ∈ R

d a d-dimensional diagonal matrix with
values x1, ..., xd on the diagonal.

Then the process

�X(s) :=
(
L1(T1(s)), ..., Ld(Td(s))

)
(10)

is a d-dimensional Lévy process with the characteristic function

φ �X(u1, ..., ud) = exp
{
tψT

(
ic1u1 − σ 2

1 u21/2, ..., icdud − σ 2
1 u2d/2

)}
, (11)
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and the Lévy triplet
(�b,�, ν

)
defined as follows:

• vector �b ∈ R
d equals to

�b = (c1ρ1, ..., cdρd)� +
∫

R
d+

η(d �u)

∫

|�x|≤1
�x μ(d �x, �u),

where μ(·, �s) with �s = (s1, ..., sd) stands for the distribution of the random vector
(L1(s1), ..., Ld(sd)) .

• matrix � equals to

� = diag
(
σ 2
1 ρ1, ..., σ

2
d ρd

)
,

• and the Lévy measure ν is given by

ν(B) :=
∫

R
d+

μ
(
B; diag(y)

)
η(dy), B ⊂ R

2, y ∈ R
d .

In particular, if ci = 0 and σi = 1 for all i = 1..d (that is, Li(t) are independent standard
Brownian motions), then �b = �0 and � = diag( �ρ).

Proof This theorem is essentially proven in Barndorff-Nielsen et al. (2001).

5 Series Representation for Subordinated Processes

In this section, we apply the result by Rosiński (2001) to our setup.

Theorem 5.1 Let �X(s) be a d-dimensional Lévy process constructed by multivariate sub-
ordination of the standard Brownian motion, see Theorem 4.2 for notation. Denote by
F(u1, ..., ud) a positive Lévy copula between T1(s), ..,Td(s), and assume that �ρ = �0.
Assume also that F(u, v) is continuous and the mixed derivative ∂dF (u1, ..., ud)/∂u1...∂ud

exists in R
d+. Moreover, assume that there exists a density function p∗(·) : Rd−1 → R and

(d − 1) functions f ∗
j (xj , xd) : R2+ → R+, j = 1..(d − 1), such that

1. for any u, x > 0,
∫ f ∗

1 (x1,xd )

−∞
...

∫ f ∗
d−1(xd−1,xd )

−∞
p∗(z1, ..., zd−1)dzd−1...dz1 = ∂F (x1, ..., xd)

∂xd

; (12)

2. the functions f ∗
j (xj , xd), j = 1..(d − 1) monotonically increase in xj for any fixed xd ,

and moreover, for any j = 1..(d − 1) and any y > 0, the equation

f ∗
j (xj , xd) = y

has a closed-form solution with respect to xj ; we denote this solution by h∗
j (y, xd).

Next, define a d-dimensional stochastic process �Z(s) = (Z1(s), ..., Zd(s)),

Zk(s) :=
∞∑
i=1

G
(k)
i

√
U

(−1)
k

(
h∗

k(Q
(k)
i , �i)

)
· I {Ri ≤ s} (13)

for k = 1..(d − 1), and

Zd(s) :=
∞∑
i=1

G
(d)
i ·

√
U

(−1)
d (�i) · I {Ri ≤ s} , (14)
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where U1, ..., Ud are tail integrals of the subordinators T1, ..., Td resp., U
(−1)
1 , ..., U

(−1)
d

are their generalized inverse functions, that is,

U
(−1)
i (y) = inf {x > 0 : Ui(x) < y} , i = 1..d, y ∈ R+,

�i is an independent sequence of jump times of a standard Poisson process, G(1)
i , ..., G

(d)
i

- are d sequences of i.i.d. standard normal r.v.,

Qi :=
(
Q

(1)
i , .., Q

(d−1)
i

)

- sequence of i.i.d. random vectors with density p∗(·), Ri - sequence of i.i.d. r.v., uniformly
distributed on [0, 1], and all sequences of r.v. are independent of each other. Then

�X(s)
L= �Z(s), ∀s ∈ [0, 1].

Example 1. Consider the positive Clayton-Lévy copula

FC(x1, ..., xd) = (x−θ
1 + ... + x−θ

d )−1/θ

with some θ > 0. Derivative with respect to xd is equal to

∂FC(x1, ..., xd)

∂xd

= 1(
1 + (x1/xd)−θ + ... + (xd−1/xd)−θ

)(1+θ)/θ
.

Motivated by this representation, we suggest to define the density function p∗(z) as

p∗(z1, ..., zd−1) = ∂

∂z

⎧⎪⎨
⎪⎩

1(
1 + z−θ

1 + ... + z−θ
d−1

)(1+θ)/θ

⎫⎪⎬
⎪⎭

,

and the function f ∗
j (xj , xd) := xj /xd, j = 1..(d−1). Both conditions on the functions

p∗ and f ∗
j are fulfilled.

2. Note that the same arguments can be applied to any sufficiently smooth homogeneous
Lévy copula, that is, to any copula such that

FH (ku1, ..., kud) = kFH (u1..., ud), ∀ u1..., ud > 0, ∀ k > 0, (15)

see Remark 5.3 about the difference between ordinary copulas and Lévy copulas. Note
that taking the derivatives with respect to u from both parts of Eq. 15, yields

∂

∂xd

FH (kx1, ..., kxd) = ∂

∂x
FH (x1..., xd) = ∂

∂rd
FH (r1, ..., rd)

∣∣∣∣ r1=x1/xd
...

rd−1=x1/xd

rd=1

,

and therefore one can define

p∗(z) = ∂

∂z

⎧
⎨
⎩

∂

∂rd
FH (r1, .., rd)

∣∣∣∣(r1,...,rd−1)=z
rd=1

⎫⎬
⎭ , f ∗

j (xj , xd) := xj /xd .

For the description of the class of homogeneous Lévy copulas we refer to Section 4
from Barndorff-Nielsen and Lindner (2004).

3. Moreover, we can apply the same approach for any mixtures of homogeneous Lévy
copulas. In fact, consider the function

FM(x1, ..., xd) =
n∑

r=1

βrFr(x1, ..., xd),
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where β1, ..., βn are positive numbers such that
∑n

r=1 βr = 1 and Fr(x1, ..., xd) are
homogeneous Lévy copulas for any r = 1..n. It’s easy to see that FM(x1, ..., xd) is also
a homogeneous Lévy copula. As it was shown in the previous example, we can take
f ∗

j (xj , xd) := xj /xd . Note also that in the case of mixture model,

p∗(z) =
n∑

r=1

βrp
∗
r (z),

where by p∗
r (·) we denote the density functions, constructed by Eq. 12 with Lévy

copulas Fr(x1, ..., xd).

Proof of Theorem 5.1 In the core of this proof lies the result by Rosiński (2001), which is
nicely formulated as Theorem 6.2 in Cont and Tankov (2004). Below we give a (slightly
simplified) version of this result, which is needed for our purposes.

Proposition 5.2 Let S be a measurable space, and H : (0, ∞) × S → R
d - a measurable

function. Let Di be an i.i.d. sequence of random elements from S. Define 2 measures on Rd :

σ(r, B) := P {H(r, Di) ∈ B} , r > 0, B ∈ B(Rd),

ν(B) :=
∫

R+
σ(r, B)dr, B ∈ B(Rd).

Assume that the measure σ(r, B) is symmetric in B, and ν is a Lévy measure, that is,∫
Rd

min(1, ‖x‖2)ν(dx) < ∞. Then the series

X(s) =
∞∑
i=1

H (�i, Di) · I {Ri ≤ s} (16)

converges to a Lévy process with triplet (0, 0, ν), where �1, �2, ... is a sequence of jumping
times of a standard Poisson process, and R1, R2, ... is a sequence of independent random
variables, uniformly distributed on [0, 1] and independent from Di and �i .

The general aim of this proof is to find a d- dimensional distribution π and function
H : (0, ∞) × S → R

d , such that

ν(B) :=
∫

R+
P {H(r, D) ∈ B} dr, r > 0, B ∈ B(Rd),

where a r.v. �D has distribution π , and moreover the measure

σ(r, B) = P {H(r, D) ∈ B} , B ∈ B(Rd) (17)

is symmetric.
First note that it is sufficient to consider the sets B = B1 × ... × Bd , where Bk =

[xk, ∞), xk ∈ R, k = 1..d . For such B,

μ
(
B; diag(U(r))

)
= μ

(
B1; U−1

1 (r1)
)

· ... · μ
(
Bd ; U−1

d (rd)
)
,

where by μ(·; σ) in the right-hand side we denote the one-dimensional normal distribution
with zero mean and variance equal to σ (since there is no risk of confusion, we use the same
letter for d-dimensional and 1-dimensional distributions), and U(r) = (U1(r1), ..., Ud(rd)).
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Since the Lévy copula F is sufficiently smooth, we can differentiate both parts in Eq. 6 and
get that

ν(B) =
∫

R
d+

μ
(
B ; diag(y)

) ∂dF

∂r1 ... ∂rd

∣∣∣∣r1=U1(y1)
...

rd=Ud(yd )

d (U1(y1)) ...d (Ud(yd))

=
∫

R
d+

μ
(
B ; diag(U−1(r))

) ∂dF (r1, ..., rd)

∂r1 ... ∂rd
dr1...drd ,

where U−1(r) =
(
U−1
1 (r1), ..., U

−1
d (rd)

)
, see Proposition 5.8 from Cont and Tankov

(2004). Therefore, for B = B1 × ... × Bd defined above,

ν(B) =
∫

R+
EL (rd )

[
G(B1, ..., Bd−1)

]
μ
(
Bd ; U−1

d (rd)
)
drd,

where

G(B1, ..., Bd−1) := μ
(
B1 ;U−1

1 (·)
)

· ... · μ
(
Bd−1 ; U−1

d−1(·)
)
,

and by

EL (rd )

[
G(B1, ..., Bd−1)

]

=
∫

R
d−1+

G(B1, ..., Bd−1)
∂d−1

∂r1 ... ∂rd−1

(
∂F (r)

∂rd

)
dr1...drd−1

we denote the mathematical expectation with respect to the measure L (rd) with the dis-
tribution function F̃ (rd) = ∂F (r)/∂rd (the proof of the statement that F̃ (rd) is in fact
a distribution function follows the same lines as the proof of Lemma 5.3 from Cont and
Tankov (2004)). By the well-known Fubini theorem,

EL (rd )

[
G(B1, ..., Bd−1)

]
=
∫

B1

...

∫

Bd−1

g(v1, .., vd−1 ; rd) dvd−1...dv1,

where

g(v1, .., vd−1 ; rd) =
∫

R
d−1+

p
(
v1 ; U−1

1 (r1)
)

· ... · p
(
vd−1· ;U−1

d−1(rd−1)
)

· ∂d−1

∂r1 ... ∂rd−1

(
∂F (r)

∂rd

)
dr1...drd−1, rd > 0, (18)

and p (· ; σ) is the density of the normal distribution with zero-mean and variance equal to
σ > 0. Note that g is a density function, see Remark 5.4. Changing the variables we get

g(v1, .., vd−1 ; rd) =
∫

R
d−1+

p
(
v1 ; r̃1

)
· ... · p

(
vd−1· ; r̃d−1

)

· ∂d−1

∂r1 ... ∂rd−1

(
∂F (r)

∂rd

)∣∣∣∣ r1=U1(r̃1)
...

rd−1=Ud−1(r̃d−1)

d (U1(r̃1)) ...d (Ud−1(r̃d−1)) (19)
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The last expression yields that g(·; rd) is in fact a variance mixture of the normal distri-
bution (see Barndorff-Nielsen et al. (1982) or Kelker (1971)). This in particularly gives that
the random vector

(
η1

√
η

(1)
d , ..., ηd−1

√
η

(d−1)
d

)

has a distribution with density g(·; rd), where η1, ..., ηd−1 are (d − 1) i.i.d. standard normal

r.v.’s, and vector ηd =
(
η

(1)
d , ..., η

(d−1)
d

)
has a distribution with density

p̆(v1, .., vd−1; rd) = ∂d−1

∂r1 ... ∂rd−1

(
∂F (r)

∂rd

)∣∣∣∣r1=U1(v1)
...

rd=Ud(vd )

U ′
1(v1)...U

′
d−1(vd−1),

that is, the density of the random variable
(
U−1
1 (η̃

(1)
d ), ..., U−1

d (η̃
(d−1)
d )

)
,

where η̃d :=
(
η̃

(1)
d , ..., η̃

(d−1)
d

)
has a distribution function F̃ (rd). Since (12) holds, we get

that

∂dF (r)

∂r1...∂rd
= ∂f ∗

1 (r1, rd)

∂r1
...

∂f ∗
d−1(rd−1, rd)

∂rd
· p∗ (f ∗

1 (r1, rd), ..., f ∗
d−1(rd−1, rd)

)
,

and therefore η3 has the same distribution as
(
h∗
1(η̄

(1)
d , rd), ..., h∗

d−1(η̄
(d−1)
d , rd)

)

where η̄d :=
(
η̄

(1)
d , ..., η̄

(d−1)
d

)
has distribution with density p∗(·).

Finally, we get the following representation for the Lévy measure ν:

ν(B) =
∫

R+

⎡
⎣P

⎧⎨
⎩

d−1⋃
j=1

{
ηj

√
h∗

j (η̄
(j)
d , rd) ∈ Bj

}
⎫⎬
⎭ ·

∫

B1

p
(
u ; U−1

d (rd)
)
du

⎤
⎦ drd .

This representation motivates to define the function H as

H(r, D) =

⎛
⎜⎜⎜⎜⎜⎝

D1,1

√
U−1
1 (h∗

1(r,D1,2))

...

D(d−1),1

√
U−1

d−1(h
∗
d−1(r,D(d−1),2))

Dd,1 ·
√

U−1
d (r)

⎞
⎟⎟⎟⎟⎟⎠

,

with D = (D1,1,D1,2, ..., D(d−1),1, D(d−1),2,Dd,1), where Dj,1 have standard normal dis-
tribution for j = 1..d , and r.v.

(
Dj,1, ..., Dj,d−1

)
has a distribution with density function

p∗(·). This observation completes the proof.

Remark 5.3 In the context of ordinary copulas, it is common to introduce the homogeneous
copula C

(k)
H of order k by

C
(k)
H (ku, kv) = kαCH (u, v), ∀ k, u, v > 0, (20)
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see, e.g., Nelsen (2006) (generalizations for d-dimensional case are straightforward). Sub-
stituting u = v = 1, we get CH (k, k) = kα . Therefore, taking into account the Fréchet
bounds, we arrive at the inequality

max(2k − 1, 0) ≤ kα ≤ k,

which yields that α ∈ [1, 2]. Moreover, it turns out that the class of homogeneous ordinary
copulas coincides with Cuadras-Augé family. More precisely,

C
(k)
H (u, v) = (min(u, v))2−α (uv)α−1 , u, v ∈ [0, 1],

see Theorem 3.4.2 from Nelsen (2006). Returning to Lévy copulas, we realize that similar
to Eq. 20 equality

FH (ku, kv) = kαFH (u, v), ∀ k, u, v > 0

is possible only in case α = 1. In fact, taking limit as v → ∞, we get the equality ku =
kαu, ∀u, which leads to trivial conclusion α = 1. This argument yields the definition of
homogeneous Lévy copula (15).

Remark 5.4 Let us shortly show that the function g(v1, .., vd−1 ; rd) defined by Eq. 21 is
a density function for any rd . In fact, as it was mentioned before, the function F̃ (rd) =
∂F (r)/∂rd is a distribution function, and moreover ∂dF (r)/∂r1...∂rd is the density function
of this distribution. Therefore, g(·; rd) ≥ 0, and∫

Rd−1
g(v1, .., vd−1 ; rd)dv1...dvd−1

=
∫

R
d−1+

[∫

Rd−1
p
(
v1 ;U−1

1 (r1)
)

· ... · p
(
vd−1· ; U−1

d−1(rd−1)
)
dv1...dvd−1

]

· ∂d−1

∂r1 ... ∂rd−1

(
∂F (r)

∂rd

)
dr1...drd−1

=
∫

R
d−1+

∂d−1

∂r1 ... ∂rd−1

(
∂F (r)

∂rd

)
dr1...drd−1 = 1 (21)

Remark 5.5 It is a worth mentioning that the right way to truncate series in Eqs. 13–14 (or,
more generally speaking, in Eq. 16) is to fix some large h and keep N(h) = infi {�i ≤ h}
terms. In this case, the truncated series

Xh(s) =
N(h)∑
i=1

H (�i,Di) · I {Ri ≤ s}

is a compound Poisson process (see Rosiński (2001)) with a Lévy measure

νh(B) :=
∫

R+
P {H(r, Di) · I {r ≤ h} ∈ B} dr, B ∈ B(Rd).

In Cohen and Rosiński (2007), it is shown that the quality of the approximation X(s) by
Xh(s) can be improved by adding a Brownian motion and a drift. More precisely, denote
the remainder part of this approximation by Xh(s) := X(s) − Xh(s), the Lévy measure
of Xh by νh := ν − νh, and the covariance function of Xh(1) by Ah = ∫

Rd xx�νh(dx).

Theorem 3.1 from Cohen and Rosiński (2007) yields that under some assumptions,

X(s)
L= Xh(s) + AhW(s) + bh + Yh(s), (22)
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where W(s) is a d-dimensional standard Brownian motion independent of Xh(s), bh :=
b + ∫‖x‖>1 xνh(dx)− ∫‖x‖≤1 xνh(dx), and Yh(s) is a càdlàg -process such that for any time
horizon T > 0

sup
s∈[0,T ]

‖A−1
h Yh(s)‖ P−→ 0. (23)

One can derive from Eq. 22 that the approximation

X(s) ≈ Xh(s) + AhW(s) + bh (24)

has smaller error as the approximation Xh(s).

Remark 5.6 With no doubt, this result can be generalized for the case, whenLi(t), i = 1..d,

are Brownian motions with drift and ρi are positive, see Theorem 4.2 for notation. In this
case, the series representation (13) – (14) also gives the representation for the jump part,
and therefore

�X(s)
L= �Z(s) + s �b + �1/2 �W(s),

where

�b =
∫

R
d+

η(d �u)

∫

|�x|≤1
�x μ(d �x, �u),

�1/2 = diag
(
σ1ρ

1/2
1 , ..., σdρ

1/2
d

)
,

and �W(s) is a d-dimensional standard Brownian motion, independent from �Z(s).

6 Discussion

In this section, we discuss the novelty of the representation (13) – (14) in comparison with
other series representations for Lévy processes and related models. For instance, Ishwaran
and Zarepour (2009) used a scale invariance principle to construct the series representation
for bivariate generalized gamma processes (�1(t), �2(t)). This representation is in the form

�1(·) =
∞∑

j=1

J1(Vj,1�j )εXj
(·), �2(·) =

∞∑
j=1

J2(Vj,2�j )εXj
(·), (25)

where (Vj,1, Vj,2) and Xj are two sequences of i.i.d. random variables, �j are jumping
times of a standard Poisson process, J1, J2 are some functions which specify the jump
heights of the process, and εXj

(·) is a discrete measure concentrated on Xj .
This result can be applied to modeling the bivariate Dirichlet process and some general-

izations. Such constructions are of great interest in Bayesian nonparametric statistics, and
some further works in this direction are known. For instance, the papers (Leisen and Lijoi
2011; Leisen et al. 2013; Zhu and Leisen 2015) are devoted to the study of the multivariate
Poisson-Dirichlet process. As in the present paper, the dependence between components is
described via the Lévy copula.

There are at least two essential differences between the aforementioned papers and our
approach. First, we consider any one-dimensional Lévy processes as marginal distributions,
not only gamma (as in Ishwaran and Zarepour (2009)) or stable (as in Leisen and Lijoi
(2011), Leisen et al. (2013), Zhu and Leisen (2015)). Second, we consider the model of
time-changed Brownian motions, which has both mathematical and economical motivation,
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see Sections 1 and 3. In Ishwaran and Zarepour (2009), one partial case known as vari-
ance gamma model (Brownian motion subordinated by a gamma process) is considered.
Nevertheless, the representation given in Ishwaran and Zarepour (2009), essentially uses
the special property of the variance gamma model (the possibility to represent this process
as a difference between two independent Gamma-processes), which has no analogues for
another time-changed models.

7 Simulation Study

In this section we show the performance our approach for a kind of multivariate variance
gamma model.

Consider the two-dimensional process �X(s) := (W1(G1(s)),W2(G2(s))), where W1 and
W2 are independent Brownian motions, G1(s) and G2(s) are dependent gamma-processes
with parameters a1, b1 and a2, b2 (that is, Lévy processes such that Gi (s) has gamma dis-
tribution with parameters ais and bi , i=1,2). Dependence between the subordinators G1(s)

and G2(s) is expressed through the Clayton-Lévy copula F(x1, x2) = (x−δ
1 + x−δ

2 )−1/δ .
Moreover, it is assumed that Wi is independent of Gi , i = 1, 2.

For this model, series representation (13)–(14) reduces to

Z1(s) :=
∞∑
i=1

G
(1)
i

√
U

(−1)
1 (Qi�i)) · I {Ri ≤ s} , (26)

Z2(s) :=
∞∑
i=1

G
(2)
i ·

√
U

(−1)
2 (�i) · I {Ri ≤ s} , (27)

where

• for j = 1, 2,

Uj (x) =
∫ ∞

x

aj e
−bj uu−1du

are tail integrals of the gamma-processes Gj ;
• Ri is a sequence of i.i.d. r.v., uniformly distributed on [0, 1];
• �i is an independent sequence of jump times of a standard Poisson process;
• G

(1)
i , G

(2)
i - are two sequences of i.i.d. standard normal r.v.;

• Qi is a sequence of i.i.d. random variables with distribution function

F(z) = (
1 + z−δ

)−(δ+1)/δ
,

which is modelled by
(
−1 + ξ

−δ/(δ+1)
i

)−1/δ
with i.i.d. random variables ξi, i = 1..d ,

uniformly distributed on [0, 1].
In this numerical example, we truncate series in Eqs. 26–27 according to Remark 5.5

with different h. Denote by �Zh(s) = (
Zh
1 (s), Zh

2 (s)
)
the process, obtained from Eqs. 26–27

by keeping only N(h) terms in the infinite sums.
For the simulation study, we set δ = 1, a1 = 10000, b1 = 0.1, a2 = 500, b2 = 1, and

simulate data for M = 100 time points on the equidistant grid with step 
 = 0.01.
A typical trajectory of this simulation procedure is displayed on Fig. 1. Since the exact

distribution function of the considered model cannot be calculated in closed form, we pro-
pose to check the closeness of the fitted model �Zh(s) = (

Zh
1 (s), Zh

2 (s)
)
to the true model
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Fig. 1 Typical trajectories for the simulated data

�X(s) := (W1(G1(s)),W2(G2(s)) by comparing moments of these processes. In what fol-
lows, we will take into account that �X(s) is a Lévy process (see Theorem 4.2), and therefore
the increments


 �X(j) =
(

X

(j)

1 ,
X
(j)

2

)
:= �X(
j) − �X(
(j − 1)), j = 1..M

form a sequence of i.i.d. random variables. Empirical increments are denoted by


 �Zh(j) := �Zh(
j) − �Zh(
(j − 1)), j = 1..M.

Theoretical moments are equal to

E

[

 �X

]
= �0, E [
X1
X2] = 0, E

[

X2

1

]
= 1000, E

[

X2

2

]
= 5,

where the values for the second moments are calculated by the formula E
[

X2

i

] =
E [Ti(
)] = 
ai/bi, i = 1, 2. For simulations, we truncate series in Eqs. 26–27 accord-
ing to Remark 5.5 with different h corresponding to N(h) = 5000, 10000, 12000, 20000,
50000. The values for its empirical moments

Ê

[

 �Zh

]
= M−1

M∑
j=1


 �Zh(j), Ê

[

 �Zh

1
 �Zh
2

]
= M−1

M∑
j=1


Zh
1 (j)
Zh

2 (j),

Ê

[
(
 �Zh

i )2
]

= M−1
M∑

j=1

(
Zh
i (j))2, i = 1, 2,

are given in Table 1. This table indicates that the theoretical moments good matched by the
empirical moments.

An interesting point, which was raised by one of the referees, is that the speed of conver-
gence crucially depends on the strength of dependence between the components, expressed
in the parameter δ of the Lévy copula. If the parameter δ is relatively small (e.g., δ = 1), the
first component converges slower than the second. Otherwise, if δ is relatively large (e.g.,
δ = 10), then the speed of convergence is approximately the same. To illustrate this worth
mentioning, we compare the absolute values of relative errors for the second moments,
that is, ∣∣∣Ê[(
 �Zh

i )2] − E[
X2
i ]
∣∣∣

E
[

X2

i

] , i = 1, 2,



Methodol Comput Appl Probab

Table 1 Empirical moments of the simulated data

N = N(h) h Ê

[

 �Zh

1

]
Ê

[

 �Zh

2

]
Ê

[

 �Zh

1
 �Zh
2

]
Ê[(
 �Zh

1 )2] Ê[(
 �Zh
2 )2]

5000 4980 1.255 0.010 −8.718 440.159 5.221

10000 9830 −0.519 −0.082 −4.399 493.826 4.946

12000 11975 −0.262 −0.261 −3.511 676.704 5.096

20000 19954 −0.273 0.073 1.524 628.867 5.43

50000 50425 −0.162 0.018 0.43 889.857 5.082

for different values of the parameter δ of Lévy copula, see Fig. 2. Definitely, for δ = 1
(leftmost plot) first component convergence much slower than the second, while for δ = 10
(rightmost plot) the rates are approximately the same.

8 Real Data Example

In this section, we provide an example of the real data analysis, which uses the methodology
described in Section 5. The full description of this study is given in the preprint by Panov
and Sirotkin (2015).

Setup Consider the following model:

�X(s) = (X1(s),X2(s)) := (
W̃1(T1(s)), W̃2(T2(s))

)
(28)

where

W̃i(t) = μit + σiWi(t), i = 1, 2, (29)

W1(t),W2(t) are two independent Brownian motions, μ1, μ2 ∈ R, σ1, σ2 ∈ R+, and
(T1(s),T2(s)) is a two-dimensional subordinator. The dependence between T1(s) and T2(s)
is described via the Clayton-Lévy copula

F(x1, x2; δ) = (x−δ
1 + x−δ

2 )−1/δ

Fig. 2 Absolute values of the relative errors for the second moments for δ = 1, 2, 10. Blue lines corresponds
to the first component, maroon line - to the second component
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with some δ > 0.The marginal subordinators T1(s) and T2(s) belong to the class of
compound Poisson processes with exponential jumps, that is,

T1(s) =
N1(s)∑
i=i

Xi, T2(s) =
N2(s)∑
j=1

Yj , (30)

where Xi and Yi are i.i.d random variables with densities f1(x; θ1) = θ1 exp(−θ1x) and
f2(x; θ2) = θ2 exp(−θ2x) for x > 0,N1(s) andN2(s) are Poisson processes with intensities
λ1 and λ2 resp.

Data In what follows, we will apply this setup to modeling the stock returns. In this context,
�X(s) represents the returns of two stocks, and (T1(s),T1(s)) are cumulative numbers of
trades of these stocks. Our approach can be considered as a generalization of the paper (Ané
and Geman 2000), where the one-dimensional time-changed Brownian motion is used for
representing some one-dimensional stock returns.

We examine 10- and 30-minutes Cisco, Intel and Microsoft prices traded on the Nasdaq
over the period from the 25. August 2014 till the 21. November 2014. In addition to the
prices, the number of trades is available for each equity. The length of time series is 832
observations for 30- minutes data and 2496 observations for 10- minutes data.

Step 1. Estimation of the parameters δ, θ1, θ2, λ1, λ2. First, we aim to estimate the param-
eter of Lévy copula δ and the parameters of marginal subordinators (30). We follow
recent papers (Esmaeli and Klüppelberg 2010, 2011) and apply a maximum likeli-
hood estimation approach. In Section 6.2 from Panov and Sirotkin (2015), it is shown
that the likelihood function of the continuously observed two-dimensional CPP process
(T1(s),T2(s)) can be written in the following form, assuming that jumps occur at each
moment for both components:

L(λ1, λ2, θ1, θ2, δ)

=
(
(1 + δ)θ1θ2(λ1λ2)

δ+1
)n

exp

{
−λ‖T − (1 + δ)

(
θ1

n∑
i=1

xi + θ2

n∑
i=1

yi

)}

·
n∏

i=1

(
λδ
1 exp(−θ1δxi) + λδ

2 exp(−θ2δyi)
)− 1

δ
−2

, (31)

where xi and yi, i = 1..n, are jumps of the first and the second components occuring up
to some fixed time T , and λ‖ = F(λ1, λ2; δ). The results of the numerical maximization
of L(λ1, λ2, θ1, θ2, δ) are presented in Table 2.

Step 2. Estimation of the parameters of the processes W̃1(t) and W̃2(t). On this stage, we
estimate the parameters the parameters μ1, μ2, σ1, σ2 applying the method of moments
separately to the first and second components. Since for i = 1, 2, Ti (s) is a Lévy process,
the increments 
Ti (s) := Ti (s) − Ti (s − 1) form an i.i.d. sample. Next, taking into
account that for i = 1, 2, Ti (s) is the CPP with intensity λi and jumps distributed by
exponential law with parameter θi , we get

E[
Ti (s)] = μi

λi

θi


, Var[
Ti (s)] = σ 2
i λi


θi

+ 2μ2
i λi


θ2i

,

where 
 is the length of the observed equity. Solving the system of equations

E[
Ti (s)] = ̂E[
Ti (s)], Var[
Ti (s)] = ̂Var[
Ti (s)],
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Table 2 MLE for the parameters of copula and marginal distributions

Pair θ1 θ2 δ λ1 λ2 Log likelihood value

30-minutes returns

Csco vs Int 0,29 0,14 2,21 24,91 14,69 5161,43

Csco vs Msf 0,23 0,14 2,71 16,39 17,21 5196,93

Int vs Msf 0,14 0,17 2,38 14,41 24,68 5579,32

10-minutes returns

Csco vs Int 0,85 0,43 1,76 74,18 48,60 10299,11

Csco vs Msf 0,71 0,42 2,11 52,66 55,78 10406,96

Int vs Msf 0,42 0,49 2,00 46,22 72,48 11511,90

where ̂E[
Ti (s)] and ̂Var[
Ti (s)] are the sample mean and sample variance calcu-
lated by 
Ti (s), i = 1..n, we arrive at the following estimates of the parameters
μi and σ 2

i :

μ̂i = θi
̂E[
Ti (s)]
λi


, σ̂ 2
i =

̂Var[
Ti (s)] − 2μ̂2
i λi
/θi

λi

.

The results of this estimation procedure are presented in Table 2. Some further details on
this part of the empirical analysis can be found in Section 6.3 from Panov and Sirotkin
(2015).

Step 3. Applying simulation techniques.

Below we describe the simulation algorithm.

1. Fix some truncation level h > 0 and simulate i.i.d. standard exponential random vari-
ables

(
Tj

)
until �i := ∑i

j=1 Tj < h. The maximal i is denoted by N(h), see Remark
5.5.

2. Simulate N(h) independent standard normal random variables G
(1)
i and G

(2)
i , i =

1, . . . , N(h).

Table 3 Estimated values of the parameters of Brownian motions

Pair μ1 μ2 σ 2
1 σ 2

2

30-minutes data

csco intc 1,94E-08 7,25E-09 3,45E-09 4,93E-09

csco msft 2,31E-08 1,16E-08 4,10E-09 3,05E-09

intc msft 7,33E-09 1,00E-08 4,99E-09 3,84E-10

10-minutes data

csco intc -6,00E-09 -7,64E-10 5,17E-10 9,56E-10

csco msft -7,05E-09 -2,63E-09 6,07E-10 4,14E-10

intc msft -7,85E-10 -2,35E-09 9,82E-10 3,69E-10
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3. Simulate N(h) independent uniform random variables Ri on [0, 1], i = 1, . . . , N(h).
4. Simulate N(h) independent random variables Qi with distribution function H(z) =

(z−δ̂ + 1)−(1+δ̂)/δ̂ by the method of inverse function, that is, Qi = H−1(ξi), where ξi

are independent uniform random variables on [0, 1], i = 1, . . . , N(h).
5. Simulate two subordinated Brownian motions by (truncated) series representation:

Zh
1 (s) :=

k∑
i=1

√
U−1
1 (�i) · G

(1)
i · I {Ri ≤ s} , (32)

Zh
2 (s) :=

k∑
i=1

G
(2)
i

√
U−1
2 (�iQi) · I {Ri ≤ s} , (33)

where the generalized inverse functions of Ui(·), i = 1, 2 are equal to

Ui
(−1)(x) =

{
− 1

θ̂i
log( x

λ̂i
), for x ≤ λ̂i ,

0, for x > λ̂i .
(34)

6. Simulate a two-dimensional subordinator (T1(s),T2(s)) by the series representation for
subordinators, see Algorithm 6.13 from Cont and Tankov (2004).

7. Resulting trajectory is a linear transform of subordinator and subordinated Brownian
motion:

Xh
1 (s) := μ̂1T1(s) + σ̂ 2

1 Zh
1 (s), (35)

Xh
2 (s) := μ̂2T2(s) + σ̂ 2

2 Zh
2 (s). (36)

Discussion Our procedure has three steps. The first and the second step consist in the
estimation of the parameters of Lévy copula δ, parameters of the marginal subordinators
θ1, θ2, λ1, λ2, and the parameters of the Brownian motions with drifts μ1, σ1, μ2, σ2. On
the third step, we simulate the data from the two-dimensional time-changed Lévy model
based on the methodology described in Section 5.

As the result of this procedure we get the estimates of all parameters of our model (see
Tables 2 and 3), and the two-dimensional trajectory �Xh(s) := (

Xh
1 (s),X

h
2 (s)

)
drawn by

Eqs. 35–36 with the truncated series (32)–(33). The distribution of �Xh(s) is close to the dis-
tribution of our model in the sense described in Section 5. The presented methodology can
be further applied to predictive modeling or to calculating priors in Bayesian nonparametric
methods.

Typical trajectories of simulated processes are presented in the Appendix. Figures 3 and 6
display trajectories for the time-changed Brownian motions modeled by Eqs. 32–33 for 30-
and 10- minutes data. Figures 4 and 7 show typical trajectories for subordinators modeled
as compound Poisson processes with exponential jumps. Finally, Figures 5 and 8 display
resulting trajectories for the two-dimensional processes �Xh(s).
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Appendix

Graphs

Fig. 3 Time-changed Brownian motion. Subordinators are CPP with exponential jumps. Parameters are
estimated from the Cisco and Intel 30-minutes data

Fig. 4 Subordinators for 30 minute data. Parameters are estimated from the Cisco and intel 30-minute data

Fig. 5 Resulting trajectory of process �Xh(t) for 30-minute data

Fig. 6 Time-changed brownian motion. Subordinators are CPP with exponential jumps. Parameters are
estimated from the Cisco and Microsoft 10-minutes data
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Fig. 7 Subordinators for 10-minute data. Parameters are estimated from Cisco and Microsoft 10-minute data

Fig. 8 Resulting trajectory of process �Xh(s) for 10- minute data
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Bertoin J (1998) Lévy processes. Cambridge University Press
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Cohen S, Rosiński J (2007) Gaussian approximation of multivariate Lévy processes with applications
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copulas. J Multivariate Anal 97:1551–1572
Kelker D (1971) Infinite divisibility and variance mixtures of the normal distribution. Ann Math Stat 42:802–

808
Kolossiatis M, Griffin JE, Steel MFJ (2013) On Bayesian nonparametric modelling of two correlated

distributions. Stat Comput 23:1–15. doi:10.1007/s11222-011-9283-7 3018346
Leisen F, Lijoi A (2011) Vectors of two-parameter Poisson-Dirichlet processes. J Multivariate Anal 102:482–

495. doi:10.1016/j.jmva.2010.10.008 2755010 (2011j:62074)
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