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ABSTRACT SUPERPOSITION OPERATORS ON MAPPINGS
OF BOUNDED VARIATION OF TWO REAL VARIABLES. I

V. V. Chistyakov UDC 517.98

Abstract: We define and study the metric semigroup BV2

(
Ib
a;M

)
of mappings of two real variables

of bounded total variation in the Vitali–Hardy–Krause sense on a rectangle Ib
a with values in a met-

ric semigroup or abstract convex cone M . We give a complete description for the Lipschitzian Ne-
mytskii superposition operators acting from BV2

(
Ib
a;M

)
to a similar semigroup BV2

(
Ib
a;N

)
and, as

a consequence, characterize set-valued superposition operators. We establish a connection between
the mappings in BV2

(
Ib
a;M

)
with the mappings of bounded iterated variation and study the iter-

ated superposition operators on the mappings of bounded iterated variation. The results of this ar-
ticle develop and generalize the recent results by Matkowski and Mís (1984), Zawadzka (1990), and
the author (2002, 2003) to the case of (set-valued) superposition operators on the mappings of two
real variables.

Keywords: mappings of two variables, total variation, metric semigroup, Nemytskii superposition
operator, set-valued operator, Banach algebra type property, Lipschitz condition

§ 1. Introduction

Let I, M , and N be some nonempty sets. Denote by M I the family of all mappings from I to M .
Given a mapping h : I ×N →M , the operator H : N I →M I acting by the rule (H g)(x) = h(x, g(x))
for x ∈ I and g ∈ N I is called the (Nemytskii) superposition operator with generator h.

The superposition operator is a classical “simplest” nonlinear operator between function spaces, and
the bibliography devoted to its properties is rather extensive. This operator is studied sufficiently in
the classes of measurable and continuous functions and the ideal spaces as well as the Lebesgue, Orlicz,
Hölder, and Sobolev spaces (see [1–6] and the references therein). It turns out that the “nice” properties
of h are not necessarily inherited by H . For example, this is so with the behavior of the superposition
operator in the Lebesgue spaces: smoothness and even analyticity of its generator in no way imply
smoothness of the original superposition operator (these and other phenomena are presented in [4]).

Although the action of the superposition operator in most classical function spaces is described
completely, little is known about this operator in the spaces BV of functions of bounded variation even in
the case of a single real variable on an interval I = [a, b] ⊂ R for N = M = R [4, § 6.5; 7]. In this case the
important class has been more thoroughly studied of the superposition operators satisfying the Lipschitz
condition both univalent [8] and set-valued [9] (in the latter case M is a family of compact convex subsets
of a normed space). In the case of a single variable, the Lipschitzian superposition operators in the classes
of functions and mappings of bounded generalized variation and the classes of Lipschitz functions and
mappings were characterized in [10–23]. For the real functions of bounded variation of two variables
(in the Vitali–Hardy–Krause sense), the Lipschitzian superposition operators were described completely
in [24, 25].

The first result on the characterization of the Lipschitzian superposition operators belongs to Mat-
kowski [10]. Suppose that I = [a, b], M = N = R, and B(I) ⊂ RI is some Banach function space with
norm ‖ · ‖. We are interested in the conditions on the generator h : I × R → R under which the
corresponding superposition operator H : B(I) → B(I) is Lipschitzian; i.e., there is a constant L > 0
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such that ‖H g1 −H g2‖ ≤ L‖g1 − g2‖ for all g1, g2 ∈ B(I). Recall that (for L < 1) this operator H is
closely connected with a solution g ∈ B(I) to the functional equation H g = g by the Banach Contraction
Mapping Theorem. In [10] it was demonstrated that if B(I) = Lip(I) is the space of Lipschitz functions
on I with the usual Lipschitz norm then H satisfies the Lipschitz condition if and only if h(x, u) =
f(x)u + h0(x) for all x ∈ I and u ∈ R, where f and h0 are some functions in Lip(I). Note that such
a representation for h does not hold in the space B(I) = C(I) of continuous functions on I with the
usual sup-norm and in the Lebesgue space B(I) = Lp(I) of p-summable with p ≥ 1 functions on I with
the standard norm (for example, h(x, u) = cosu, x ∈ I, u ∈ R).

This result by Matkowski can be interpreted twofold. On the one hand, it demonstrates that the
set of Lipschitzian operators on Lip(I) is rather poor (the generators h of these operators are linear in
the second variable by necessity). On the other hand, the functional equation H g = g cannot be solved
in Lip(I) by Banach’s Theorem if the generator h depends nonlinearly on the second argument u ∈ R
(and we should apply a more powerful fixed theorem, for example, Schauder’s Theorem, etc.; see [26]).
Practically the same situation holds for the space B(I) = BV(I) of functions on I of bounded Jordan
variation (see [8] and Remark 6 at the end of § 3).

The goal of the present article is an exhausting description for the abstract Lipschitzian Nemytskii
superposition operators in the spaces of mappings of bounded variation of several real variables with
values in metric semigroups and abstract convex cones and also, as a consequence, a description for the
generators of set-valued superposition operators (in this or another context, the mappings of bounded
variation with values in metric spaces were studied in [9; 14; 23; 27, Chapter 4; 28] (the case of a single
variable) and in [22, 29–31] (the case of several variables). In this article we only consider the mappings of
bounded variation of two variables as introduced in [22, 31], since here the principal distinction from the
one-dimensional case is most transparent. Moreover, our results extend these of [24, 25] and [32, § 8.3];
in a short form they were published in [33] and reported in [34]. A much more bulky general case of
mappings of bounded variation of arbitrarily many variables and superposition operators on them will
be published elsewhere.

The present article consists of five sections and splits into two parts. The first comprises § 1–§ 3.
In § 2 we introduce and study the space of mappings of bounded variation of the Vitali–Hardy–Krause
type with values in a metric semigroup (abstract convex cone) and show that this space itself is a metric
semigroup (abstract convex cone). In § 3 we establish a necessary condition for the Lipschitz continuity of
the superposition operator (Theorem 1) which is a two-dimensional analog of a condition in [8]; moreover,
our results are new even for the superposition operators on the mappings of bounded variation of a single
variable (see Remark 6 at the end of the first part). The second part includes § 4 and § 5. In § 4 we
present a sufficient condition (Theorems 2 and 3) that generalizes the Banach algebra type condition
of [25]. In the final § 5 we propose another description for the space of mappings of bounded variation
of two variables and study the iterated Nemytskii superposition operator on the mappings of bounded
iterated variation (Theorem 4).

Observe that, in general, our results are not valid in the broader BV space of [30], since this space
does not possess the Banach algebra type property (cf. Theorem 2 of part II). Consideration of our
space of mappings of bounded variation is natural for the reason that it is essentially connected with the
integral representation of continuous linear functionals on the space of continuous functions on a rectan-
gle [35, Chapter 2].

The author is sincerely grateful to A. A. Tolstonogov (Irkutsk, Russia) for an inspiring discussion of
the results of the article and pointing out the reference [37] and to W. Smajdor (Katowice, Poland) for
fruitful exchange of opinions during the author’s visit to Katowice in April, 2000.

§ 2. Semigroups and Cones of Mappings

Definition 1. A metric semigroup [22] is a triple (M,d,+), where (M,d) is a metric space with met-
ric d, while (M,+) is an additive commutative semigroup with addition operation +, and d is translation-
invariant: d(u + w, v + w) = d(u, v) for all u, v, w ∈ M . A metric semigroup (M,d,+) is complete if
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(M,d) is a complete metric space. If M contains the zero element 0 ∈M (so that u+ 0 = 0 + u = u for
all u ∈M) then we put |u|d = d(u, 0) for u ∈M .

For arbitrary elements u, v, ū, v̄ ∈M of a metric semigroup (M,d,+) we have

d(u, v) ≤ d(u+ ū, v + v̄) + d(ū, v̄), (1)

d(u+ ū, v + v̄) ≤ d(u, v) + d(ū, v̄). (2)

It follows from (2) that if some sequences {uk} = {uk}k∈N, {vk}, {ūk}, and {v̄k} of elements of M
converge to elements u, v, ū, and v̄ of M as k →∞ then

lim
k→∞

d(uk + ūk, vk + v̄k) = d(u+ ū, v + v̄); (3)

in particular, the addition operation (u, v) 7→ u+ v is a continuous mapping from M ×M to M .
Definition 2. The quadruple (M,d,+, ·) is an abstract convex cone if (M,d,+) is a metric semi-

group with zero 0 ∈ M and the operation · : R+ ×M → M of multiplication of elements of M by non-
negative numbers defined by the rule (λ, u) 7→ λu possesses the following properties for all u, v ∈M and
λ, µ ∈ R+: λ(u+ v) = λu+ λv, (λ+ µ)u = λu+ µu, λ(µu) = (λµ)u, 1 · u = u, and d(λu, λv) = λd(u, v).
If (M,d) is complete then this cone is called complete and, as in Definition 1, given u ∈ M , we put
|u|d = d(u, 0).

Observe that the following equality holds in an abstract convex cone (M,d,+, ·):

d(λu+ µv, λv + µu) = |λ− µ|d(u, v), λ, µ ∈ R+, u, v ∈M. (4)

Consequently, d(λu, µv) ≤ λd(u, v) + |λ− µ| · |v|d and so the operation of multiplication by nonnegative
numbers in M is continuous.

The simplest example of a metric semigroup and an abstract convex cone is an arbitrary normed
vector space (Y, | · |) with the induced metric d(u, v) = |u − v|, u, v ∈ Y , and the operations + and ·
from Y . If K ⊂ Y is a convex cone (i.e., u + v, λ u ∈ K for all u, v ∈ K and λ ≥ 0) then (K, d,+, ·) is
an abstract convex cone complete whenever Y is a Banach space and K is closed in Y .

Let (Y, | · |) be a real normed vector space. Denote by cbc(Y ) the family of all nonempty closed
bounded convex subsets of Y with the Hausdorff metric D generated by the norm in Y :

D(P,Q) = max{sup
p∈P

inf
q∈Q

|p− q|, sup
q∈Q

inf
p∈P

|p− q|}, P,Q ∈ cbc(Y ).

For P,Q ∈ cbc(Y ), we put P + Q = {p + q | p ∈ P, q ∈ Q}, λP = {λp | p ∈ P}, λ ∈ R+, and

P
∗
+ Q = cl(P + Q), where cl stands for the closure in Y . Then the following equalities [36, 37] hold

in cbc(Y ): P
∗
+ Q = cl(clP + clQ), λ(P

∗
+ Q) = λP

∗
+ λQ, (λ + µ)P = λP

∗
+ µP , λ(µP ) = (λµ)P , and

D(λP, λQ) = λD(P,Q) for all λ, µ ∈ R+. Moreover, since (see [38, Lemma 3; 39, Lemma 2.2])

D(P
∗
+R,Q

∗
+R) = D(P +R,Q+R) = D(P,Q), P,Q,R ∈ cbc(Y ),

(cbc(Y ), D,
∗
+, ·) is an abstract convex cone; and this cone is complete if Y is a Banach space (which

follows from the properties of the metric D; for example, see [40, Theorems II–9 and II–14]). Note that,

by the above, the following two set-valued mappings are continuous: the
∗
+-addition operation in cbc(Y )

and multiplication by numbers of R+. Other relevant examples of metric semigroups and abstract convex
cones will appear below.

Suppose that (M,d) is a metric space and [a, b] ⊂ R is a closed interval. Recall that the (Jordan)
variation of a mapping ϕ : [a, b] →M is the quantity

V b
a (ϕ) = sup

ξ

m∑
i=1

d(ϕ(ti), ϕ(ti−1))

557



(for example, see [27, Chapter 4, § 9; 28]), where the supremum is taken over all partitions ξ = {ti}m
i=0

of the interval [a, b] (i.e., m ∈ N and a = t0 < t1 < · · · < tm−1 < tm = b). If this quantity is finite
then we say that ϕ is a mapping of bounded variation on [a, b] and write ϕ ∈ BV1([a, b];M). In the case
when (M,d,+) is a (complete) metric semigroup (abstract convex cone), we can introduce (see [9, 20, 23])
the structure of a (complete) metric semigroup (abstract convex cone) on BV1([a, b];M), by defining the
addition (and multiplication by nonnegative numbers) pointwise and the translation-invariant metric d1

by the rule
d1(ϕ,ψ) = d

(
ϕ(a), ψ(a)) +W b

a(ϕ,ψ), ϕ, ψ ∈ BV1([a, b];M),

where the semimetric W b
a(ϕ,ψ) called the joint variation of ϕ and ψ is

W b
a(ϕ,ψ) = sup

ξ

m∑
i=1

d(ϕ(ti) + ψ(ti−1), ψ(ti) + ϕ(ti−1)). (5)

Correctness of the above construction follows from the properties of W b
a(ϕ,ψ) (cf. [32, Lemmas 2.14

and 2.15]).

Lemma 1. Let ϕ,ψ ∈ BV1([a, b];M). Then
(a) |d(ϕ(t), ψ(t))− d(ϕ(s), ψ(s))| ≤ d(ϕ(t) + ψ(s), ψ(t) + ϕ(s)) ≤W b

a(ϕ,ψ), t, s ∈ [a, b];
(b) d(ϕ(t), ψ(t)) ≤ d1(ϕ,ψ) for all t ∈ [a, b];
(c)

∣∣V b
a (ϕ)− V b

a (ψ)
∣∣ ≤W b

a(ϕ,ψ) ≤ V b
a (ϕ) + V b

a (ψ);
(d) W t

a(ϕ,ψ) +W b
t (ϕ,ψ) = W b

a(ϕ,ψ) if t ∈ [a, b];
(e) if sequences {ϕk} and {ψk} in BV1([a, b];M) converge pointwise on [a, b] to mappings ϕ and ψ

then
W b

a(ϕ,ψ) ≤ lim inf
k→∞

W b
a(ϕk, ψk).

We turn to considering the mappings of bounded total variation of two real variables.
We write the coordinate representations of points x, y ∈ R2 in the form x = (x1, x2) and y = (y1, y2)

and assume that x ≤ y or x < y (in R2) if these inequalities hold coordinatewise. Suppose that a =
(a1, a2) < b = (b1, b2) in R2 and Ib

a = Ib1,b2
a1,a2 = [a1, b1] × [a2, b2] is a basic rectangle on the plane (the

domain of most mappings). Given a mapping f : Ib
a →M and points x1 ∈ [a1, b1] and x2 ∈ [a2, b2], define

the two mappings f(·, x2) : [a1, b1] → M and f(x1, ·) : [a2, b2] → M of a single variable by the rules:
f(·, x2)(t) = f(t, x2) for t ∈ [a1, b1] and f(x1, ·)(s) = f(x1, s) for s ∈ [a2, b2].

Suppose that (M,d,+) is a metric semigroup and Ib
a is a basic rectangle.

Definition 3. The (Vitali) mixed difference of a mapping f : Ib
a →M on a rectangle Iy

x = [x1, y1]×
[x2, y2] ⊂ Ib

a, where x, y ∈ Ib
a, x ≤ y, is defined by [22, 31]

md
(
f, Iy

x

)
= md

(
f, Iy1,y2

x1,x2

)
= d(f(x1, x2) + f(y1, y2), f(x1, y2) + f(y1, x2)).

We say that a pair (ξ, η) is a (net) partition of Ib
a if there exist m,n ∈ N such that ξ = {ti}m

i=0 is
a partition of [a1, b1] (see above) and η = {sj}n

j=0 is a partition of [a2, b2]. Then the mixed difference
md(f, Iij) on the rectangles

Iij = I
ti,sj

ti−1,sj−1
= [ti−1, ti]× [sj−1, sj ], i = 1, . . . ,m, j = 1, . . . , n, (6)

which constitute this partition is calculated by the formula

md
(
f, I

ti,sj

ti−1,sj−1

)
= d(f(ti−1, sj−1) + f(ti, sj), f(ti−1, sj) + f(ti, sj−1)).

Definition 4. The double variation of a mapping f : Ib
a → M is defined by the rule (Vitali [41]

for M = R)

V2

(
f, Ib

a

)
= sup

(ξ,η)

m∑
i=1

n∑
j=1

md(f, Iij),
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where the supremum is taken over all partitions (ξ, η) of the rectangle Ib
a of the above form. The total

variation (in the modification of Hardy and Krause, see [42] if M = R) of a mapping f is the quantity

TVd

(
f, Ib

a

)
= V b1

a1
(f(·, a2)) + V b2

a2
(f(a1, ·)) + V2

(
f, Ib

a

)
, (7)

and the class of all mappings of finite total variation is called the space of mappings of bounded variation
(in the Vitali–Hardy–Krause sense) and denoted by BV2

(
Ib
a;M

)
.

Observe that the notion of total variation (7) was effectively applied to proving the Helly selection
principle in BVn

(
Ib
a;M

)
in [43, § III.6.5; 44, Theorem 3.2] (for n = 2 and M = R), [45, Theorem 4] (for

n ∈ N and M = R), and [31, Theorem 2] (for n = 2 and a metric semigroup M).
The main properties of the double variation V2(·, ·) are as follows: Additivity in the second argument;

i.e., for every above-indicated partition (ξ, η) of the rectangle Ib
a generating subrectangles {Iij}m,n

i,j=1, we
have

V2

(
f, Ib

a

)
=

m∑
i=1

n∑
j=1

V2(f, Iij); (8)

and (sequential) lower semicontinuity in the first argument; i.e., if a sequence of mappings fk : Ib
a → M

converges pointwise on Ib
a in the metric d to a mapping f : Ib

a →M then the following inequality is valid:

V2

(
f, Ib

a

)
≤ lim inf

k→∞
V2

(
fk, I

b
a

)
. (9)

Using additivity in the second argument and lower semicontinuity in the first argument of the Jordan vari-
ation V b

a (·, ·) (for example, see [28, § 2]), we find that (9) remains valid if we replace V2(·, ·) with TVd(·, ·).
If f ∈ BV2(Ib

a;M) then f(·, s) ∈ BV1([a1, b1];M) for all s ∈ [a2, b2] and, similarly, f(t, ·) ∈
BV1([a2, b2];M) for all t ∈ [a1, b1]; moreover, the following inequalities hold [25, 31]:

V y1
x1

(f(·, s)) ≤ V y1
x1

(f(·, a2)) + V2

(
f, Iy1,s

x1,a2

)
, x1, y1 ∈ [a1, b1], x1 ≤ y1, (10)

V y2
x2

(f(t, ·)) ≤ V y2
x2

(f(a1, ·)) + V2

(
f, It,y2

a1,x2

)
, x2, y2 ∈ [a2, b2], x2 ≤ y2. (11)

Given f ∈ BV2

(
Ib
a;M

)
, the function νf (x) = TVd

(
f, Ix

a

)
, x ∈ Ib

a, is called the function of total
variation of f on Ib

a and possesses the following properties [25, 31]:

d(f(y), f(x)) ≤ TVd

(
f, Iy

x

)
≤ νf (y)− νf (x), x, y ∈ Ib

a, x ≤ y; (12)

V2

(
νf , I

b
a

)
= V2

(
f, Ib

a

)
and TV

(
νf , I

b
a

)
= TVd

(
f, Ib

a

)
;

the function νf : Ib
a → R is completely monotone; (13)

i.e., νf (·, a2) is nondecreasing on the interval [a1, b1], νf (a1, ·) is nondecreasing on [a2, b2], and νf (x1, x2)+
νf (y1, y2)− νf (x1, y2)− νf (y1, x2) ≥ 0 for all points x, y ∈ Ib

a, x ≤ y.
In the case when (M,d,+) is a metric semigroup (abstract convex cone) the structure of a metric

semigroup (abstract convex cone) on BV2

(
Ib
a;M

)
is defined as follows [32, § 8.3]:

Definition 5. Let f, g ∈ BV2

(
Ib
a;M

)
. The addition operation + (multiplication by a nonnegative

number λ) in BV2

(
Ib
a;M

)
is introduced pointwise: (f + g)(x) = f(x) + g(x) ((λf)(x) = λf(x)), x ∈ Ib

a,
and the translation-invariant metric d2 on BV2

(
Ib
a;M

)
is defined by the rule

d2(f, g) = d(f(a), g(a)) + TWd

(
f, g, Ib

a

)
,

where the joint total variation of f and g is

TWd

(
f, g, Ib

a

)
= W b1

a1
(f(·, a2), g(·, a2)) +W b2

a2
(f(a1, ·), g(a1, ·)) +W2

(
f, g, Ib

a

)
.
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Here the first summand on the right-hand side is the quantity (5) calculated in the metric d for the
mappings t 7→ f(t, a2) and t 7→ g(t, a2) on the interval [a1, b1], the second summand has a similar
meaning, and the joint double variation W2

(
f, g, Ib

a

)
of the mappings f and g is defined in the notations

of (6) by the rule

W2

(
f, g, Ib

a

)
= sup

(ξ,η)

m∑
i=1

n∑
j=1

md2(f, g, Iij),

where the supremum is taken over all partitions ξ = {ti}m
i=0 and η = {sj}n

j=0 of the respective inter-
vals [a1, b1] and [a2, b2] (m,n ∈ N) and the joint mixed difference md2

(
f, g, Iy

x

)
on the subrectangle

Iy
x = [x1, y1]× [x2, y2] ⊂ Ib

a is

md2

(
f, g, Iy1,y2

x1,x2

)
= d(f(x1, x2) + f(y1, y2) + g(x1, y2) + g(y1, x2),

g(x1, x2) + g(y1, y2) + f(x1, y2) + f(y1, x2)).

Correctness of the definition of operations in BV2

(
Ib
a;M

)
is verified immediately by using (2):

TVd

(
f + g, Ib

a

)
≤ TVd

(
f, Ib

a

)
+ TVd

(
g, Ib

a

) (
TVd

(
λf, Ib

a

)
= λTVd

(
f, Ib

a

))
.

The further verification of correctness of Definition 5 relies upon the main properties of the semimetric
TWd

(
·, ·, Ib

a

)
as given in the following

Lemma 2. If (M,d,+) is a metric semigroup and f, g ∈ BV2

(
Ib
a;M

)
then

(a) |d(f(y), g(y))− d(f(x), g(x))| ≤ TWd

(
f, g, Iy

x

)
for all x, y ∈ Ib

a, x ≤ y;

(b)
∣∣TVd

(
f, Ib

a

)
− TVd

(
g, Ib

a

)∣∣ ≤ TWd

(
f, g, Ib

a

)
≤ TVd

(
f, Ib

a

)
+ TVd

(
g, Ib

a

)
;

(c) if {fk}, {gk} ⊂ BV2

(
Ib
a;M

)
and d(fk(x), f(x)) → 0, d(gk(x), g(x)) → 0 as k → ∞ for all x ∈ Ib

a

then TWd

(
f, g, Ib

a

)
≤ lim infk→∞ TWd

(
fk, gk, I

b
a

)
.

Proof. (a) Applying (1) thrice, using the invariance of d under translations, and given x, y ∈ Ib
a,

x ≤ y, we find that

|d(f(y1, y2), g(y1, y2))− d(f(x1, x2), g(x1, x2))|
≤ d(f(y1, y2) + g(x1, x2), g(y1, y2) + f(x1, x2))

≤ d(f(y1, y2) + g(x1, x2) + f(y1, x2) + g(y1, y2), g(y1, y2) + f(x1, x2) + f(y1, y2)

+g(y1, x2)) + d(f(y1, x2) + g(y1, y2), f(y1, y2) + g(y1, x2))

≤ d(f(y1, x2) + g(x1, x2), g(y1, x2) + f(x1, x2))

+d
(
f(x1, y2) + g(x1, x2), g(x1, y2) + f(x1, x2)) + d

(
g(x1, x2) + g(y1, y2) + f(x1, y2) + f(y1, x2),

f(x1, x2) + f(y1, y2) + g(x1, y2) + g(y1, x2))

≤W y1
x1

(f(·, x2), g(·, x2)) +W y2
x2

(f(x1, ·), g(x1, ·)) +W2

(
f, g, Iy

x

)
= TWd

(
f, g, Iy

x

)
.

(b) Note first that∣∣V2

(
f, Ib

a)− V2

(
g, Ib

a)
∣∣ ≤W2

(
f, g, Ib

a

)
≤ V2

(
f, Ib

a

)
+ V2

(
g, Ib

a

)
. (14)

Indeed, for every subrectangle Iy
x ⊂ Ib

a we have

md
(
f, Iy

x

)
≤ md

(
g, Iy

x

)
+ md2

(
f, g, Iy

x

)
, (15)

since, by (1),

md
(
f, Iy

x

)
= d(f(x1, x2) + f(y1, y2), f(x1, y2) + f(y1, x2))

≤ d(g(x1, x2) + g(y1, y2), g(x1, y2) + g(y1, x2))

+d(f(x1, x2) + f(y1, y2) + g(x1, y2) + g(y1, x2),

g(x1, x2) + g(y1, y2) + f(x1, y2) + f(y1, x2)) = md
(
g, Iy

x

)
+ md2

(
f, g, Iy

x

)
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and, similarly, by (2),
md2

(
f, g, Iy

x

)
≤ md

(
f, Iy

x

)
+ md

(
g, Iy

x

)
. (16)

From (15) and (16) we derive (14). From (7), Lemma 1(c), and (14) we obtain∣∣TVd

(
f, Ib

a

)
− TVd

(
g, Ib

a

)∣∣ ≤ ∣∣V b1
a1

(f(·, a2))− V b1
a1

(g(·, a2))
∣∣

+
∣∣V b2

a2
(f(a1, ·))− V b2

a2
(g(a1, ·))

∣∣ +
∣∣V2

(
f, Ib

a

)
− V2

(
g, Ib

a

)∣∣
≤W b1

a1
(f(·, a2), g(·, a2)) +W b2

a2
(f(a1, ·), g(a1, ·)) +W2

(
f, g, Ib

a

)
= TWd

(
f, g, Ib

a

)
≤ V b1

a1
(f(·, a2)) + V b1

a1
(g(·, a2)) + V b2

a2
(f(a1, ·)) + V b2

a2
(g(a1, ·)) + V2

(
f, Ib

a

)
+ V2

(
g, Ib

a

)
= TVd

(
f, Ib

a

)
+ TVd

(
g, Ib

a

)
.

(c) Suppose that ξ = {ti}m
i=0 and η = {sj}n

j=0 are partitions of [a1, b1] and [a2, b2] and Iij are generated
rectangles (6). It follows from the definition of W2 that

m∑
i=1

n∑
j=1

md2(fk, gk, Iij) ≤W2(fk, gk, I
b
a), k ∈ N.

Passing to the limit inferior as k →∞ and using the pointwise convergence of fk to f and gk to g together
with (3), we find that

m∑
i=1

n∑
j=1

md2(f, g, Iij) ≤ lim inf
k→∞

W2(fk, gk, I
b
a),

whence W2

(
f, g, Ib

a

)
≤ lim infk→∞W2

(
fk, gk, I

b
a

)
. Recalling Lemma 1(e), we obtain (c): we should use

the inequality
lim inf(αk + βk) ≥ lim inf αk + lim inf βk

for all real sequences {αk} and {βk} where the right-hand side is not of the form ∓∞ or ±∞. (Moreover,
observe that W2(·, ·) possesses the additivity property of the form (8).) �

Lemma 3. If (M,d,+) is a (complete) metric semigroup (abstract convex cone) then so is
(
BV2

(
Ib
a;

M
)
, d2,+

)
.

Proof. Let f, g ∈ BV2

(
Ib
a;M

)
. It is clear that if f = g then d2(f, g) = 0 and if d2(f, g) = 0 then,

by Lemma 2(a),
d(f(x), g(x)) = d(f(a), g(a)) = 0, x ∈ Ib

a, x 6= a;

i.e., f = g. The symmetry of d2, the triangle inequality for d2, and the invariance of d2 under translations
follow from the corresponding properties of d.

Let us establish completeness. Suppose that {fk} ⊂ BV2

(
Ib
a;M

)
is a Cauchy sequence; i.e., d2(fk, fj)

→ 0 as k, j →∞. Then from Lemma 2(a) we find that {fk(x)} is a Cauchy sequence in M for all x ∈ Ib
a;

therefore, there is a mapping f : Ib
a → M such that d(fk(x), f(x)) → 0 as k → ∞ for all x ∈ Ib

a. By
Lemma 2(c),

TWd

(
fk, f, I

b
a

)
≤ lim inf

j→∞
TWd

(
fk, fj , I

b
a

)
≤ lim

j→∞
d2(fk, fj), k ∈ N.

Since {fk} is a Cauchy sequence in BV2

(
Ib
a;M

)
, we have

lim sup
k→∞

TWd

(
fk, f, I

b
a

)
≤ lim

k→∞
lim

j→∞
d2(fk, fj) = 0;

whence d2(fk, f) → 0 as k →∞. It remains to note that f ∈ BV2

(
Ib
a;M

)
: by Lemma 2(b),

{
TVd

(
fk, I

b
a

)}
is a Cauchy sequence in R; therefore, it is bounded and convergent and, by (9), for TVd(·, ·) we find that

TVd

(
f, Ib

a

)
≤ lim

k→∞
TVd

(
fk, I

b
a

)
<∞. �
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Let (N, ρ) be a metric space and let (M,d,+) be a metric semigroup (abstract convex cone). As
usual, an operator T : N →M is called Lipschitzian if its (least) Lipschitz constant is finite:

L(T ) = sup{d(Tu, Tv)/ρ(u, v) | u, v ∈ N, u 6= v},
and the set of all these operators is denoted by Lip(N ;M). This set is closed with respect to the
pointwise addition (multiplication by λ ∈ R+), since L(T + S) ≤ L(T ) + L(S) (L(λT ) = λL(T )) for
T, S ∈ Lip(N ;M) by (2). Given a fixed u0 ∈ N , the translation-invariant metric dL on Lip(N ;M) is
defined by the rule (for example, see [16])

dL(T, S) = d(Tu0, Su0) + d`(T, S), T, S ∈ Lip(N ;M), (17)

where
d`(T, S) = sup{d(Tu+ Sv, Su+ Tv)/ρ(u, v) | u, v ∈ N, u 6= v}.

In the following lemma we give the properties of the translation-invariant semimetric d` :

Lemma 4. The following hold for T, S ∈ Lip(N ;M):
(a) |d(Tu, Su)− d(Tv, Sv)| ≤ d(Tu+ Sv, Su+ Tv) ≤ d`(T, S)ρ(u, v) for u, v ∈ N ;
(b) |L(T )− L(S)| ≤ d`(T, S) ≤ L(T ) + L(S);
(c) if {Tk, Sk} ⊂ Lip(N ;M) and d(Tku, Tu) → 0, d(Sku, Su) → 0 as k → ∞ for all u ∈ N then

d`(T, S) ≤ lim infk→∞ d`(Tk, Sk).
Thus, (Lip(N ;M), dL,+) is a metric semigroup (abstract convex cone) which is complete if (X, d,+)

is complete.
Let (N, ρ,+) and (M,d,+) be two metric semigroups. An operator T : N → M is called additive

if it satisfies the Cauchy equation: T (u + v) = Tu + Tv for all u, v ∈ N . Denote by L(N ;M) the set
of all Lipschitzian additive operators from N to M . If, in addition, N and M contain zeros (denoted
by the same symbol 0) and T ∈ L(N ;M) then T (0) = 0, for T (0) = T (0 + 0) = T (0) + T (0) and
d(0, T (0)) = d(T (0), T (0) + T (0)) = 0. In this case dL = d` (see (17) for u0 = 0) is a metric on L(N ;M)
and the equality L(T ) = dL(T, 0) = |T |dL

is valid.
If (N, ρ,+, ·) and (M,d,+, ·) are two abstract convex cones then every additive continuous operator

T : N → M also possesses the property T (λu) = λTu for all λ ∈ R+ and u ∈ N . Indeed, let {λk}
be a sequence of positive rational numbers converging to λ as k → ∞. Additivity of T implies that
T (λku) = λkTu and continuity of T implies that d

(
T (λu), T (λku)) → 0 as k →∞. By (4),

d(T (λku), λTu) = d(λkTu, λTu) = |λk − λ|d(Tu, 0)

and therefore

d(T (λu), λTu) ≤ d(T (λu), T (λku)) + d(T (λku), λTu) → 0 as k →∞.

§ 3. Lipschitzian Superposition Operators. A Necessary Condition

The central result of this section is Theorem 1 which gives a necessary condition for Lipschitz con-
tinuity of a superposition operator H between abstract convex cones BV2

(
Ib
a;M

)
. To state it, we need

the notion of left-left regularization of a mapping in BV2

(
Ib
a;M

)
and two auxiliary lemmas (Lemmas 5

and 6).
If (M,d,+) is a complete metric semigroup then we define the left-left regularization f− : Ib

a → M
of a mapping f ∈ BV2

(
Ib
a;M

)
by the rule [25]

f−(x1, x2) =



lim
(y1,y2)→(x1−0,x2−0)

f(y1, y2) if a1 < x1 ≤ b1 and a2 < x2 ≤ b2,

lim
(y1,y2)→(x1−0,a2+0)

f(y1, y2) if a1 < x1 ≤ b1 and x2 = a2,

lim
(y1,y2)→(a1+0,x2−0)

f(y1, y2) if x1 = a1 and a2 < x2 ≤ b2,

lim
(y1,y2)→(a1+0,a2+0)

f(y1, y2) if x1 = a1 and x2 = a2.
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We should note that the condition (y1, y2) → (x1 − 0, x2 − 0) (shortly, y → x − 0) is understood in the
sense (y1, y2) ∈ Ib

a, y1 < x1, y2 < x2, and (y1, y2) → (x1, x2) in R2; the other three limits are understood
similarly, and the limits themselves are calculated in the metric space M . Existence of all these limits
will be proven below in Lemma 5.

A mapping f : Ib
a →M is called left-left continuous if

lim
(y1,y2)→(x1−0,x2−0)

f(y1, y2) = f(x1, x2) for all x1 ∈ (a1, b1] and x2 ∈ (a2, b2].

Denote by BV−2
(
Ib
a;M

)
the subspace of BV2

(
Ib
a;M

)
constituted by left-left continuous mappings on

(a1, b1]× (a2, b2].

Lemma 5. If (M,d,+) is a complete metric semigroup and f ∈ BV2

(
Ib
a;M

)
then f− ∈ BV−2

(
Ib
a;M

)
;

moreover,
V2

(
f−, Ib

a

)
≤ V2

(
f, Ib

a

)
and TVd

(
f−, Ib

a

)
≤ 3TVd

(
f, Ib

a

)
.

Proof. 1. Let us show that the mapping f− is defined correctly. Using (13), from [43, § III.5.3] we
obtain existence of the left-left regularization ν−f : Ib

a → R of νf . Let us prove the existence of the limit
f−(x) ∈M , for example, at a point x = (x1, x2), where xi ∈ (ai, bi], i = 1, 2 (the other three possibilities
are considered similarly). Take y′, y′′ ∈ Ib

a such that y′ < x and y′′ < x. If y′ ≤ y′′ or y′′ ≤ y′ then,
by (12),

d(f(y′), f(y′′)) ≤ |νf (y′)− νf (y′′)| → |ν−f (x)− ν−f (x)| = 0 as y′, y′′ → x.

If y′′1 < y′1 and y′2 < y′′2 then, using again (12), we obtain

d(f(y′), f(y′′)) ≤ d(f(y′1, y
′
2), f(y′1, y

′′
2)) + d(f(y′1, y

′′
2), f(y′′1 , y

′′
2))

≤ νf (y′1, y
′′
2)− νf (y′1, y

′
2) + νf (y′1, y

′′
2)− νf (y′′1 , y

′′
2)

→ ν−f (x)− ν−f (x) + ν−f (x)− ν−f (x) = 0 as y′, y′′ → x.

Similarly, we examine the case when y′1 < y′′1 and y′′2 < y′2. Thus, d(f(y′), f(y′′)) → 0 as y′, y′′ → x, and
we are left with applying Cauchy’s criterion for existence of the limit of f(y) as y → x− 0 in a complete
space M .

2. Let us show that f− is left continuous at all points x ∈ Ib
a, a < x ≤ b. By [43, § III.5.4], all

discontinuity points of a completely monotone function νf lie on at most countably many lines parallel
to the coordinate axes. Then (12) implies that this property is enjoyed by the discontinuity points of f .
Therefore, there is a sequence {yk} ⊂ Ib

a of continuity points of f such that yk < x for all k ∈ N and
yk → x in R2 as k →∞. Hence,

lim
y→x−0

f−(y) = lim
k→∞

f−(yk) = lim
k→∞

f(yk) = lim
y→x−0

f(y) = f−(x) in M.

3. Let us prove that f− lies in BV2

(
Ib
a;M

)
. Suppose that a1 = t0 < t1 < · · · < tm−1 < tm = b1,

a2 = s0 < s1 < · · · < sn−1 < sn = b2, and ε > 0 is given. By the definition of f−, there exist points
t′i ∈ (ti−1, ti), i = 1, . . . ,m, s′j ∈ (sj−1, sj), j = 1, . . . , n, t′0 ∈ (a1, t

′
1), and s′0 ∈ (a2, s

′
1) such that

d(f−(ti, sj), f(t′i, s
′
j)) ≤ ε/(4mn), i = 0, 1, . . . ,m, j = 0, 1, . . . , n.

Then, applying the triangle inequality and (2) together with (6), we obtain

md(f−, Iij) = d(f−(ti−1, sj−1) + f−(ti, sj), f−(ti−1, sj) + f−(ti, sj−1))

≤ d(f(t′i−1, s
′
j−1) + f(t′i, s

′
j), f(t′i−1, s

′
j) + f(t′i, s

′
j−1))

+d(f−(ti−1, sj−1), f(t′i−1, s
′
j−1)) + d(f−(ti, sj), f(t′i, s

′
j))

+d(f−(ti−1, sj), f(t′i−1, s
′
j)) + d(f−(ti, sj−1), f(t′i, s

′
j−1)) ≤ md(f, I ′ij) + ε/(mn),
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where I ′ij = [t′i−1, t
′
i] × [s′j−1, s

′
j ], i = 1, . . . ,m, j = 1, . . . , n. Summing over these i and j, taking the

supremum over all partitions of Ib
a, and using the arbitrariness of ε > 0, we find that V2

(
f−, Ib

a

)
≤

V2

(
f, Ib

a

)
.

To show that V b1
a1

(f−(·, a2)) < ∞, take a1 = t0 < t1 < · · · < tm−1 < tm = b1 and ε > 0. By the
definition of f−, we find t′i ∈ (ti−1, ti), i = 1, . . . ,m, t′0 ∈ (a1, t

′
1), and s0 ∈ (a2, b2) such that

d(f−(ti, a2), f(t′i, s0)) ≤ ε/(2m), i = 0, 1, . . . ,m.

From the triangle inequality for i = 1, . . . ,m we obtain

d(f−(ti, a2), f−(ti−1, a2)) ≤ d(f(t′i, s0), f(t′i−1, s0)) + d(f−(ti, a2), f(t′i, s0))

+d(f−(ti−1, a2), f(t′i−1, s0)) ≤ d(f(t′i, s0), f(t′i−1, s0)) + (ε/m).

Summing over i and applying (10), we find that

m∑
i=1

d(f−(ti, a2), f−(ti−1, a2)) ≤ V b1
a1

(f(·, s0)) + ε ≤ V b1
a1

(f(·, a2)) + V2(f, Ib1,s0
a1,a2

) + ε,

whence V b1
a1

(f−(·, a2)) ≤ V b1
a1

(f(·, a2))+V2

(
f, Ib

a

)
. Using (11), we similarly obtain the following estimate:

V b2
a2

(f−(a1, ·)) ≤ V b2
a2

(f(a1, ·)) + V2

(
f, Ib

a

)
. �

Some particular cases of the following lemma for operators T with compact convex values were also
established in [46, Theorem 2; 47, Theorem 5.6]:

Lemma 6 [17, Theorem 1 and Corollary 2]. Suppose that (N,+) is a commutative semigroup with
zero and division by 2 and (M,d,+, ·) is a complete abstract convex cone. Then a mapping T : N →M
satisfies the Jensen functional equation

2T
(
u+ v

2

)
= Tu+ Tv in M for all u, v ∈ N

if and only if there exist a unique additive mapping A : N → M and a constant h0 ∈ M such that
Tu = Au+ h0 for all u ∈ N .

The main result of the present section is the following

Theorem 1. Suppose that (N, ρ,+, ·) and (M,d,+, ·) are two abstract convex cones such that M
is complete and a mapping h : Ib

a ×N → M is the generator of a superposition operator H for I = Ib
a.

If H ∈ Lip
(
BV2

(
Ib
a;N

)
; BV2

(
Ib
a;M

))
then h(x, ·) ∈ Lip(N ;M) for all x ∈ Ib

a and there exist two

mappings f : Ib
a → L(N ;M) and h0 : Ib

a → M such that f(·)u, h0 ∈ BV−2
(
Ib
a;M

)
for all u ∈ N and the

representation h−(x, u) = f(x)u + h0(x) holds for all x ∈ Ib
a and u ∈ N , where f(·)u acts by the rule

x 7→ f(x)u and h−(·, u) is the left-left regularization of the mapping h(·, u) for each fixed u ∈ N .

Proof. The Lipschitz continuity of H and Definition 5 of the metrics ρ2 and d2 on BV2

(
Ib
a;N

)
and BV2

(
Ib
a;M

)
yield the inequality d2(H g1,H g2) ≤ L(H )ρ2(g1, g2) for all g1, g2 ∈ BV2

(
Ib
a;N

)
whose

expanded form is

d((H g1)(a), (H g2)(a)) +W b1
a1

((H g1)(·, a2), (H g2)(·, a2))

+W b2
a2

((H g1)(a1, ·), (H g2)(a1, ·)) +W2

(
H g1,H g2, I

b
a

)
≤ L(H )

(
ρ(g1(a), g2(a)) +W b1

a1
(g1(·, a2), g2(·, a2))

+W b2
a2

(g1(a1, ·), g2(a1, ·)) +W2

(
g1, g2, I

b
a

))
. (18)
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1. Show first that h(x, ·) ∈ Lip(N ;M) for all x ∈ Ib
a. (Observe that the arguments of this step can

be applied for every metric semigroup M .) For a point x = (x1, x2) ∈ Ib
a we observe the following four

possible cases:
(i) a1 < x1 ≤ b1 and a2 < x2 ≤ b2;
(ii) a1 < x1 ≤ b1 and x2 = a2;
(iii) x1 = a1 and a2 < x2 ≤ b2;
(iv) x1 = a1 and x2 = a2.
Define the functions ζα,β ∈ Lip(R; [0, 1]), where α, β ∈ R and α < β, by the rules

ζα,β(t) =


0 if t ≤ α,

(t− α)/(β − α) if α ≤ t ≤ β,

1 if t ≥ β.

(19)

Let u1, u2 ∈ N be arbitrary.
Case (i). Define two mappings g1, g2 ∈ BV2

(
Ib
a;N

)
by the rules

gk(y1, y2) =
1
2
(ζa1,x1(y1) + ζa2,x2(y2))uk, yk ∈ [ak, bk], k = 1, 2,

and note that gk(a) = 0, k = 1, 2. By (4),

W b1
a1

(g1(·, a2), g2(·, a2)) =
1
2
V b1

a1
(ζa1,x1)ρ(u1, u2) = ρ(u1, u2)/2

and similarly W b2
a2

(g1(a1, ·), g2(a1, ·)) = ρ(u1, u2)/2; moreover, W2

(
g1, g2, I

b
a

)
= 0; therefore, ρ2(g1, g2) =

ρ(u1, u2) on the right-hand side of (18). Recalling that

(H gk)(a1, a2) = h(a1, a2, gk(a1, a2)) = h(a1, a2, 0), k = 1, 2,

and using (1) and the invariance of d under translations, from (18) we find that

d(h(x, u1), h(x, u2)) = d((H g1)(x1, x2), (H g2)(x1, x2))

≤ d((H g1)(x1, a2) + (H g2)(a1, a2), (H g2)(x1, a2) + (H g1)(a1, a2))

+d((H g1)(a1, x2) + (H g2)(a1, a2), (H g2)(a1, x2) + (H g1)(a1, a2))

+d((H g1)(a1, a2) + (H g1)(x1, x2) + (H g2)(a1, x2) + (H g2)(x1, a2),

(H g2)(a1, a2) + (H g2)(x1, x2) + (H g1)(a1, x2) + (H g1)(x1, a2))

≤W b1
a1

((H g1)(·, a2), (H g2)(·, a2)) +W b2
a2

((H g1)(a1, ·), (H g2)(a1, ·))

+W2(H g1,H g2, I
b
a) = d2(H g1,H g2) ≤ L(H )ρ2(g1, g2) = L(H )ρ(u1, u2)

and thereby arrive at the claim in this case.
Cases (ii) and (iii). In Case (ii) we put gk(y1, y2) = ζa1,x1(y1)uk for all yk ∈ [ak, bk], k = 1, 2. Then

gk(a) = 0, k = 1, 2, W b1
a1

(g1(·, a2), g2(·, a2)) = ρ(u1, u2), W b2
a2

(g1(a1, ·), g2(a1, ·))= 0, and W2(g1, g2, Ib
a) = 0;

therefore, ρ2(g1, g2) = ρ(u1, u2). Since gk(x1, a2) = uk, k = 1, 2, from (18) we find that

d(h(x1, a2, u1), h(x1, a2, u2)) = d((H g1)(x1, a2), (H g2)(x1, a2))

= d((H g1)(x1, a2) + (H g2)(a1, a2), (H g2)(x1, a2) + (H g1)(a1, a2))

≤W b1
a1

((H g1)(·, a2), (H g2)(·, a2)) = d2(H g1,H g2) ≤ L(H )ρ(u1, u2).

In Case (iii) we put gk(y1, y2) = ζa2,x2(y2)uk for all yk ∈ [ak, bk], k = 1, 2, and argue similarly.
Case (iv). Putting

gk(y1, y2) =
1
2
(2− ζa1,b1(y1)− ζa2,b2(y2))uk, yk ∈ [ak, bk], k = 1, 2,
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we obtain gk(a) = uk, k = 1, 2,

W b1
a1

(g1(·, a2), g2(·, a2)) = W b2
a2

(g1(a1, ·), g2(a1, ·)) = ρ(u1, u2)/2,

and W2

(
g1, g2, I

b
a

)
= 0; therefore, ρ2(g1, g2) = 2ρ(u1, u2). Recalling that (H gk)(b1, b2) = h(b1, b2, 0),

k = 1, 2, from (18) we find that

d(h(a1, a2, u1), h(a1, a2, u2)) = d((H g1)(a1, a2), (H g2)(a1, a2))

≤ d((H g1)(b1, a2) + (H g2)(a1, a2), (H g2)(b1, a2) + (H g1)(a1, a2))

+d((H g1)(a1, b2) + (H g2)(a1, a2), (H g2)(a1, b2) + (H g1)(a1, a2))

+d((H g1)(a1, a2) + (H g1)(b1, b2) + (H g2)(a1, b2) + (H g2)(b1, a2),

(H g2)(a1, a2) + (H g2)(b1, b2) + (H g1)(a1, b2) + (H g1)(b1, a2))

≤W b1
a1

((H g1)(·, a2), (H g2)(·, a2)) +W b2
a2

((H g1)(a1, ·), (H g2)(a1, ·))

+W2(H g1,H g2, I
b
a) ≤ d2(H g1,H g2) ≤ 2L(H )ρ(u1, u2),

which completes the proof of the first assertion.
2. Now, establish the representation for h−(x, u). We first take x = (x1, x2) ∈ Ib

a, where x1 ∈ (a1, b1]
and x2 ∈ (a2, b2]. Also, let m ∈ N, a1 < α1 < β1 < α2 < β2 < · · · < αm < βm < x1 and a2 < ᾱ1 < β̄1 <
ᾱ2 < β̄2 < · · · < ᾱm < β̄m < x2. Inequality (18) and Definition 5 imply in particular that

m∑
i=1

d((H g1)(βi, a2) + (H g2)(αi, a2), (H g2)(βi, a2) + (H g1)(αi, a2))

+
m∑

i=1

d((H g1)(a1, β̄i) + (H g2)(a1, ᾱi), (H g2)(a1, β̄i) + (H g1)(a1, ᾱi))

+W2

(
H g1,H g2, I

b
a

)
≤ L(H )ρ2(g1, g2). (20)

Let ζm : [a1, b1] → [0, 1] and ζ̄m : [a2, b2] → [0, 1] be the two Lipschitz continuous functions defined as
follows:

ζm(t) =


0 if a1 ≤ t ≤ α1,

ζαi,βi
(t) if αi ≤ t ≤ βi, i = 1, . . . ,m,

1− ζβi,αi+1
(t) if βi ≤ t ≤ αi+1, i = 1, . . . ,m− 1,

1 if βm ≤ t ≤ b1,

(21)

ζ̄m(s) =


0 if a2 ≤ s ≤ ᾱ1,

ζᾱi,β̄i
(s) if ᾱi ≤ s ≤ β̄i, i = 1, . . . ,m,

1− ζβ̄i,ᾱi+1
(s) if β̄i ≤ s ≤ ᾱi+1, i = 1, . . . ,m− 1,

1 if β̄m ≤ s ≤ b2,

where ζα,β are defined by (19). Given u1, u2 ∈ N , y1 ∈ [a1, b1], y2 ∈ [a2, b2], and k = 1, 2, we put

gk(y1, y2) =
1
4
(ζm(y1) + ζ̄m(y2))u1 +

1
4
(2− ζm(y1)− ζ̄m(y2))u2 +

1
2
uk.

Since ρ(g1(y), g2(y)) = ρ(u1, u2)/2 for all y ∈ Ib
a, we have ρ2(g1, g2) = ρ(u1, u2)/2. The following inequal-

ity holds for all i = 1, . . . ,m:

d((H g1)(βi, β̄i) + (H g2)(αi, ᾱi), (H g2)(βi, β̄i) + (H g1)(αi, ᾱi))

≤ d((H g1)(βi, a2) + (H g2)(αi, a2), (H g2)(βi, a2) + (H g1)(αi, a2))
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+d((H g1)(a1, β̄i) + (H g2)(a1, ᾱi), (H g2)(a1, β̄i) + (H g1)(a1, ᾱi))

+d((H g1)(αi, a2) + (H g1)(βi, β̄i) + (H g2)(αi, β̄i) + (H g2)(βi, a2),

(H g2)(αi, a2) + (H g2)(βi, β̄i) + (H g1)(αi, β̄i) + (H g1)(βi, a2))

+d((H g1)(a1, ᾱi) + (H g1)(αi, β̄i) + (H g2)(a1, β̄i) + (H g2)(αi, ᾱi),

(H g2)(a1, ᾱi) + (H g2)(αi, β̄i) + (H g1)(a1, β̄i) + (H g1)(αi, ᾱi));

therefore, summing over i = 1, . . . ,m, by (20), we find that

m∑
i=1

d((H g1)(βi, β̄i) + (H g2)(αi, ᾱi), (H g2)(βi, β̄i) + (H g1)(αi, ᾱi))

≤ d2(H g1,H g2) ≤ L(H )ρ(u1, u2)/2.

Since g1(βi, β̄i) = u1, g2(βi, β̄i) = (u1 + u2)/2, g1(αi, ᾱi) = (u1 + u2)/2, and g2(αi, ᾱi) = u2, we can
rewrite the last inequality as

m∑
i=1

d

(
h(βi, β̄i, u1) + h(αi, ᾱi, u2), h

(
βi, β̄i,

u1 + u2

2

)
+ h

(
αi, ᾱi,

u1 + u2

2

))
≤ L(H )

ρ(u1, u2)
2

. (22)

Using the fact that H maps BV2

(
Ib
a;N

)
to BV2

(
Ib
a;M

)
and that the constant mappings of two variables

lie in BV2

(
Ib
a;N

)
, we find that h(·, u) = H (u) ∈ BV2

(
Ib
a;M

)
for all u ∈ N . Then, by Lemma 5, the

left-left regularization h−(·, u) in the first two variables belongs to BV−2
(
Ib
a;M

)
for all u ∈ N . Passing to

the limit in (22) as (α1, ᾱ1) → (x1− 0, x2− 0) and using completeness of M , the definition of the left-left
regularization h−(·, u) of x 7→ h(x, u), and continuity of + in M , we obtain

d

(
h−(x1, x2, u1) + h−(x1, x2, u2), h−

(
x1, x2,

u1 + u2

2

)
+ h−

(
x1, x2,

u1 + u2

2

))
≤ L(H )

ρ(u1, u2)
2m

.

Hence, letting m→∞, we come to the following equality valid for all u1, u2 ∈ N :

d

(
h−(x, u1) + h−(x, u2), h−

(
x,
u1 + u2

2

)
+ h−

(
x,
u1 + u2

2

))
= 0. (23)

Since d is a metric on M and M is a convex cone, we conclude now that

h−(x, u1) + h−(x, u2) = h−
(
x,
u1 + u2

2

)
+ h−

(
x,
u1 + u2

2

)
= 2h−

(
x,
u1 + u2

2

)
.

Thus, the operator h−(x, ·) : N →M satisfies the following Jensen functional equation:

2h−
(
x,
u1 + u2

2

)
= h−(x, u1) + h−(x, u2), u1, u2 ∈ N. (24)

Now, let a1 < x1 ≤ b1 and x2 = a2. If m ∈ N, a1 < α1 < β1 < · · · < αm < βm < x1, and
a2 < ᾱ1 < β̄1 < · · · < ᾱm < β̄m < b2 then the above arguments yield estimate (22). Passing to the limit
in this estimate as (α1, β̄m) → (x1− 0, a2 + 0), we obtain (23) and hence (24). Similarly, we consider the
cases in which x1 = a1 and a2 < x2 ≤ b2 or x1 = a1 and x2 = a2.

Consequently, the Jensen equation (24) holds for all x ∈ Ib
a.
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By Lemma 6, for every x ∈ Ib
a, there exist an additive operator f(x)(·) : N → M and a constant

h0(x) ∈M such that
h−(x, u) = f(x)u+ h0(x), u ∈ N. (25)

Since f(x)(0) = 0, it follows from (25) that h−(x, 0) = h0(x) for all x ∈ Ib
a, however, as observed above,

h(·, 0) ∈ BV2

(
Ib
a;M

)
; therefore, by Lemma 5, we find that h0 = h−(·, 0) ∈ BV−2

(
Ib
a;M

)
. At step 1 we

demonstrated that

d(h(x, u1), h(x, u2)) ≤ 2L(H )ρ(u1, u2), x ∈ Ib
a, u1, u2 ∈ N ;

therefore, taking the left-left regularization, we find that this inequality is valid with h− instead of h.
By (25), we find that

d(f(x)u1, f(x)u2) = d(f(x)u1 + h0(x), f(x)u2 + h0(x))

= d(h−(x, u1), h−(x, u2)) ≤ 2L(H )ρ(u1, u2), u1, u2 ∈ N,

so that f(x) ∈ L(N ;M) and hence f : Ib
a → L(N ;M).

We are left with showing that if u ∈ N then f(·)u ∈ BV−2
(
Ib
a;M

)
. Since the mapping h(·, u) lies in

BV2

(
Ib
a;M

)
, by Lemma 5, the mappings h0 and h−(·, u) lie in BV−2

(
Ib
a;M

)
. In the inequalities below we

use (1) and (25) several times. If x, y ∈ Ib
a and x ≤ y then

md(f(·)u, Iy
x) = d(f(x1, x2)u+ f(y1, y2)u, f(x1, y2)u+ f(y1, x2)u)

≤ d(h−(x1, x2, u) + h−(y1, y2, u), h−(x1, y2, u) + h−(y1, x2, u))

+d(h0(x1, x2) + h0(y1, y2), h0(x1, y2) + h0(y1, x2)) = md
(
h−(·, u), Iy

x

)
+ md

(
h0, I

y
x

)
,

whence
V2

(
f(·)u, Ib

a

)
≤ V2

(
h−(·, u), Ib

a

)
+ V2

(
h0, I

b
a

)
.

By analogy, if t, s ∈ [a1, b1] then

d(f(t, a2)u, f(s, a2)u) ≤ d(h−(t, a2, u), h−(s, a2, u)) + d(h0(t, a2), h0(s, a2)),

whence
V b1

a1
(f(·, a2)u) ≤ V b1

a1
(h−(·, a2, u)) + V b1

a1
(h0(·, a2)),

and a similar estimate holds for V b2
a2

(f(a1, ·)u). Thus,

TVd

(
f(·)u, Ib

a

)
≤ TVd

(
h−(·, u), Ib

a

)
+ TVd

(
h0, I

b
a

)
.

The left-left continuity of f(·)u follows from the fact that, for every point x = (x1, x2), where
xk ∈ (ak, bk], k = 1, 2, letting Ib

a 3 y → x− 0, we obtain

d(f(y)u, f(x)u) ≤ d(h−(y, u), h−(x, u)) + d(h0(y), h0(x)) → 0.

Theorem 1 is proven completely. �

Closing this section and the first part of the article, we make some remarks and complements to the
main result.

Remark 1. An assertion similar to Theorem 1 is valid for the right-right, right-left, or left-right
regularization of the mapping h(·, u), u ∈ N . However, in the representation h−(x, u) = f(x)u + h0(x),
we cannot replace h− with h in general: an appropriate example is constructed in [25, Theorem 3].

Remark 2. Suppose that Ik = [ak, bk] and Pk(Ik;N) ⊂ N Ik is a family of mappings possessing
the property: for all u1, u2 ∈ N , m ∈ N, and ak < α1 < β1 < · · · < αm < βm < bk, the mapping
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Ik 3 t 7→ ζm(t)u1 + u2 ∈ N belongs to Pk(Ik;N), where k = 1, 2 and the function ζm has the form (21).
Put P

(
Ib
a;N

)
= P1(I1;N) + P2(I2;N) and endow this set with the metric ρ2 of BV2

(
Ib
a;N

)
. Then the

conclusion of Theorem 1 remains valid, if we replace the assumption of Lipschitz continuity of H with
the condition H ∈ Lip

(
P

(
Ib
a;N

)
; BV2

(
Ib
a;M

))
.

Remark 3. Suppose that the conditions of Theorem 1 are satisfied. Denote by B(N ;M) the set of
all bounded additive operators from N to M . From the proof of Theorem 1 we see that the following
result is valid: if the superposition operator H acts from BV2

(
Ib
a;N

)
to BV2

(
Ib
a;M

)
and is (globally)

bounded ; i.e., there is a constant C ≥ 0 such that d2(H g1,H g2) ≤ C for all g1, g2 ∈ BV2

(
Ib
a;N

)
(see

also Remark 2), then h(x, ·) ∈ B(N ;M) for all x ∈ Ib
a and there is a mapping h0 ∈ BV−2

(
Ib
a;M

)
such

that h−(x, u) = h0(x) for all x ∈ Ib
a and u ∈ N . Indeed, there exist mappings f : Ib

a → B(N ;M) and
h0 ∈ BV−2

(
Ib
a;M

)
for which h−(x, u) = f(x)u + h0(x), x ∈ Ib

a, u ∈ N . Since d(h(x, u1), h(x, u2)) ≤ C

for x ∈ Ib
a and u1, u2 ∈ N , we have d(f(x)u1, f(x)u2) = d(h−(x, u1), h−(x, u2)) ≤ C. Consequently, for

an arbitrary rational λ > 0 and every u ∈ N we have

λd(f(x)u, 0) = d(λf(x)u, 0) = d(f(x)(λu), f(x)(0)) ≤ C,

so that f(x)u = 0 and hence f(x) = 0 for all x ∈ Ib
a.

Remark 4. Assume that h : N → M in Theorem 1 (i.e., h is independent of the first argument
x ∈ Ib

a). The following assertion is valid: The superposition operator H generated by h maps BV2

(
Ib
a;N

)
to BV2

(
Ib
a;M

)
and satisfies the Lipschitz condition if and only if there exist f ∈ L(N ;M) and h0 ∈ M

such that hu = fu+h0 in M for all u ∈ N . Indeed, it follows from Theorem 1 that h(u) = f(x)u+h0(x),
whence h(0) = h0(x) for all x ∈ Ib

a. Moreover, if x, y ∈ Ib
a then

d(f(x)u, f(y)u) = d(f(x)u+ h(0), f(y)u+ h(0)) = d(h(u), h(u)) = 0;

therefore, f(x)u = f(y)u for all u ∈ N and hence f(x) = f(y) in L(N ;M). Sufficiency follows from
Theorem 2 of part II of this article.

Remark 5. Let (Y, | · |) be a real normed vector space. A set-valued operator T : N → cbc(Y ) from

an abstract convex cone (N, ρ,+, ·) to cbc(Y ) is called linear if it is
∗
+-additive (i.e., T (u+ v) = Tu

∗
+Tv

for all u, v ∈ N) and nonnegatively homogeneous (i.e., T (λu) = λTu for all λ ∈ R+ and u ∈ N). Note
that if T is linear then T (0) = {0}. Denote by L(N ; cbc(Y )) the abstract convex cone of all linear
Lipschitzian set-valued operators from N to cbc(Y ) endowed with the pointwise operations (for which
we keep the notations of the operations on cbc(Y )) and the metric DL = D`:

DL(T, S) = sup
u,v∈N,u 6=v

D(Tu
∗
+ Sv, Su

∗
+ Tv)/ρ(u, v).

Hence, we see that Theorem 1 remains valid if (M,d,+) = (cbc(Y ), D,
∗
+), (Y, | · |) is a Banach space,

and L(N ;M) is replaced by L(N ; cbc(Y )). Moreover, if N is a vector space then the operator f(x)(·) for
every x ∈ Ib

a is univalent (so that f : Ib
a → L(N ;Y )); this is a consequence of the fact that if u ∈ N then

(−u) ∈ N ; therefore, by
∗
+-additivity of the operator f(x)(·), we find that

f(x)(u)
∗
+ f(x)(−u) = f(x)(u+ (−u)) = f(x)(0) = {0}.

Moreover, if N is real then we can consider L(N ;Y ) as the usual space of all bounded linear operators
from N to Y .

Remark 6. An analog of Theorem 1 is also valid for mappings and superposition operators of a single
variable if we put Ib

a = [a, b] ⊂ R, replace BV2 everywhere with BV1 (see also Remark 2), and assume
that h−(x, u) = limy→x−0 h(y, u) for a < x ≤ b, h−(a, u) = limx→a+0 h

−(x, u) in M for all u ∈ N , and
BV−1

(
Ib
a;M

)
is the subset of BV1

(
Ib
a;M

)
constituted by the left continuous mappings on (a, b]. Following
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the proof of Theorem 1, we only sketch the main steps of the proof in this case. For g1, g2 ∈ BV1

(
Ib
a;N

)
the Lipschitz condition for H has the form

d((H g1)(a), (H g2)(a)) +W b
a(H g1,H g2) ≤ L(H )

(
ρ(g1(a), g2(a)) +W b

a(g1, g2)
)
.

In particular, if m ∈ N and a ≤ α1 < β1 < α2 < β2 < · · · < αm < βm ≤ b then

m∑
i=1

d(h(βi, g1(βi)) + h(αi, g2(αi)), h(βi, g2(βi)) + h(αi, g1(αi))) ≤ L(H )ρ1(g1, g2).

Hence, for m = 1 and α1 = a we see that d(h(x, u1), h(x, u2)) ≤ 2L(H )ρ(u1, u2), x ∈ [a, b], u1, u2 ∈ N ,
if we put β1 = x and gk(y) = ζa,x(y)uk for a < x ≤ b and β1 = b and gk(y) = (1 − ζa,b(y))uk for x = a,
y ∈ [a, b], k = 1, 2. If a < x ≤ b, a < α1, and βm < x then, putting

gk(y) =
1
2
ζm(y)u1 +

1
2
(1− ζm(y))u2 +

1
2
uk, y ∈ [a, b], k = 1, 2,

we find that

m∑
i=1

d

(
h(βi, u1) + h(αi, u2), h

(
βi,

u1 + u2

2

)
+ h

(
αi,

u1 + u2

2

))
≤ L(H )

ρ(u1, u2)
2

,

whence, letting α1 → x− 0, we standardly find that

d

(
h−(x, u1) + h−(x, u2), h−

(
x,
u1 + u2

2

)
+ h−

(
x,
u1 + u2

2

))
≤ L(H )

ρ(u1, u2)
2m

.

The remaining part of the proof is the same as in Theorem 1.
The result of the above remark generalizes the results of [8, 9] (in the set-valued case we should put

(M,d,+) = (cbc(Y ), D,
∗
+)).

Remarks 1–5 with due changes can be translated to the case of the functions in BV1([a, b];M) and
superposition operators of a single variable.
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