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Abstract. We construct a global smooth approximate solution to a multidimensional

scalar conservation law describing the shock wave formation process for initial data with

small variation. In order to solve the problem, we modify the method of characteristics by

introducing “new characteristics”, nonintersecting curves along which the (approximate)

solution to the problem under study is constant. The procedure is based on the weak

asymptotic method, a technique which appeared to be rather powerful for investigating

nonlinear waves interactions.

1. Introduction. In the current paper, we construct an approximate (in a weak

sense) solution uε(t, x), x ∈ Rd, t ∈ R+, where ε is a regularization parameter, corre-

sponding to a multidimensional shock wave formation in the case of a Cauchy problem

for a scalar conservation law.

In order to make the problem precise, assume that Rd is divided into three disjoint

domains ΩL, Ω0 and ΩR, i.e., R
d = ΩL∪̇Ω0∪̇ΩR, where ∪̇ denotes disjoint union. Let

ΓL = ∂ΩL = ΩL ∩ Ω0 and ΓR = ∂ΩR = ΩR ∩ Ω0 (see Figure 1). Assume that ΓL and

ΓR are (d− 1)-dimensional manifolds admitting the following representation:

ΓL = {x = χL(s) : s ∈ Rd−1, χL ∈ Lip(Rd−1)},
ΓR = {x = χR(s) : s ∈ Rd−1, χR ∈ Lip(Rd−1)}.
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Now, take a Lipschitz piecewise smooth function u0 : Rd → R such that

u0(x) =

⎧⎪⎪⎨
⎪⎪⎩
UL, x ∈ ΩL,

u1(x), x ∈ Ω̄0 ∈ Lip(Rd),

UR, x ∈ ΩR,

(1.1)

where u1 ∈ C2(Ω0), and UL and UR are constants such that |UL − UR| is small enough.

We are going to consider the following problem:

∂u

∂t
+ 〈∇, f(u)〉 = 0, (1.2)

u|t=0 = u0(x) ∈ Lip(Rd), (1.3)

where for f ∈ C3(R;Rd), 〈∇, f(u)〉 = divx f(u) =
∑d

i=1
∂f(u)
∂xi

, u = u(x, t). It is well

known that problem (1.2), (1.3) in general does not admit a globally defined classical

solution. This means that after some time the shock wave will occur, and we need to

pass to the weak solution concept.

ΩR

ΩL

Ω0 ΩR

ΩL

Ω0

Fig. 1. The left-hand plot shows an admissible disposition of Ω0,
ΩL and ΩR. The right-hand profile is not admissible since the shock
wave has already been formed.

Although it is well known that for any initial data u0 ∈ L1(Rd) there exists a unique

entropy admissible weak solution to (1.2), (1.3) (see [20]), it is very important from

geometrical [19, 26], analytical [17, 18], and practical (petroleum engineering) [1, 16, 28]

points of view to explicitly construct the global (approximate) solution describing the

formation and propagation of the shock wave. The mentioned construction is the main

contribution of the paper.

To problem (1.2), (1.3), there corresponds the following system of characteristics:

ẋi = f ′
i(u), xi|t=0 = x0,

u̇ = 0, u|t=0 = u0(x).
(1.4)

As is well known, problem (1.2), (1.3) will have the classical solution along the charac-

teristics as long as the Jacobian J = det ∂x
∂x0

is greater than zero. From, e.g., [26], we

know that

J = det
∂x

∂x0
= 1 + t

d∑
i=1

f ′′(u0)
∂u0

∂x0i
. (1.5)
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Therefore, if we want a shock wave to appear, we must assume that J < 0 for some

t > 0 and x0 ∈ Rd. Actually, we shall assume a little bit more than the latter, that

u1(x0) = u0(x0), x0 ∈ Ω0, satisfies the following problem:

d∑
i=1

f ′′
i (u1)

∂u1

∂xi
= −K,

u1|ΓL
= UL, u1|ΓR

= UR,

(1.6)

where K = K(s), s ∈ Rd−1, is a positive Lipschitz continuous function which is constant

along the characteristics of problem (1.6). Furthermore, we shall assume that Ω0 admits

a complete fibration along the characteristics of problem (1.6) issuing from ΓL (see Figure

2 and Remark 1.1).
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Fig. 2. On the left plot we have an admissible disposition of ΩL, ΩR

and Ω0. The situation on the right-hand side is not admissible since
we have a part of Ω0 that is not covered by the fibres. Observe that
the fibres are characteristics corresponding to (1.6), and they are not
necessarily straight lines.

This is a technical assumption which provides all the characteristics issuing from the

same fibre of Ω0 to intersect at the same point (t∗(s), x(s)) ∈ R+ ×Rd, where s ∈ Rd−1

is the parametrization argument of ΓL (see Figure 3). It appears that this significantly

simplifies the description of the shock wave formation process (see a further explanation

below).

Notice that the problem of construction of a global smooth approximating solution to

(1.2), (1.3) describing the formation of shock waves has already been studied by A. M. Il’in

[22, 18, 23] and by the authors [7, 8, 9] in the case of one-dimensional scalar conservation

laws with a convex flux f ∈ C2(R). In [22], the author considered a situation with initial

data such that a classical solution blows up in a single point. His construction is based on

a viscosity regularization of the considered conservation law. Using such a regularization,

the author obtains a global approximating solution via a set of functional series which

are defined in appropriate domains in R+ × R. Then, he shows that every two such

series match in domains where they are both defined. Such a method is known as the

matching method. The most difficult part in the matching method was the construction
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of the approximate solution in a neighborhood of the gradient catastrophe point, i.e. the

point where the classical solution blows up (see Figure 4, a)). In [7], we noticed that it

is much easier to construct a global smooth approximating solution if we have a line of

the “gradient catastrophe” (see Figure 4, b)). In [7], we assumed that the function u1

from (1.1) was defined by the following implicit equation:

f ′(u1(x0)) = −Kx0 + b, a ≤ x0 ≤ b, (1.7)

where K > 0 and b > 0 were assumed to be constants. Calculating the derivative of both

sides of (1.7) we get f ′′(u1(x0))
∂u1

∂x0
= −K. So, we see that (1.6) is a direct generalization

of the one-dimensional situation. Actually, condition (1.7) provides all the characteristics

issuing from the interval (a, b) to intersect at the same point. Thus, we have the line of the

gradient catastrophe (Figure 4, b)), and not only the point of the gradient catastrophe

(Figure 4, a)).

Also, notice that problem (1.2), (2.5) was only auxiliary. In [8, 24], we considered a

one-dimensional system of generalized pressureless gas dynamics. We used the explicit

form of the approximate solution to (1.2), (1.3) in order to describe the formation of the

delta shock wave which appears as a natural part of a solution to the considered system.

In [9], we used (1.2), (1.3) (with |UL −UR| arbitrarily small) to describe the evolution of

arbitrary initial data u0 ∈ C1(R) corresponding to a one-dimensional scalar conservation

law with a convex flux f ∈ C2(R).

�

�

discontinuity line corresponding to the fibre

�

characteristics issuing from the fibre�

fibre corresponding to s0 ∈ Rd−1

..............

X(s0,τ̂0(s0))

τ̂

t∗(s0)

�

X(s0,0)

	
�

Ω0

ΩL

ΩR

X(s0,τ̂0(s0))X(s0,0)
�

�t

t

......t∗(s0)

Fig. 3. Behavior of the standard characteristics issuing from the
fibre corresponding to s0 ∈ Rd−1 plotted in (t, τ̂) ∈ R+ × R-plane
(left plot) and in (t, x) ∈ R+ ×Rd-space (right plot).

In order to find the desired approximate solution of (1.2), (1.3) in the one-dimensional

case, we modified the method of characteristics. More precisely, we have defined the non-

intersecting curves, so-called “new characteristics”, along which the approximate solution
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is constant (see Figure 6). As the regularization parameter tends to zero, the “new char-

acteristics” tend to the Dafermos generalized characteristics [2]. Therefore, the approx-

imate solution tends to an admissible weak solution of the considered Cauchy problem

(see [7, 8]). Here, we shall present a nontrivial generalization of the latter procedure to

the multidimensional case.

�

� �

�

.............

.................
x x

�

t = 0 t = t∗

�

�

�

�

...

�

x x

a)

b)

x∗

Fig. 4. Plot a) shows blowing up in a single point (the point (t∗, x∗)).
Plot b) is a case when we have a line of the gradient catastrophe (the
part between the dots straightens in the shock wave at the moment
t = t∗).

Recall that in the case of initial data in the general position, at the moment of the

gradient catastrophe, one point with vertical tangent arises on the graph of the solution.

Moreover, small variations of arbitrary (smooth) initial data render the initial data in

the general position. As one can see, we do not use the concept of construction of general

position, which is standard in geometry. Actually, we replace the general position by a

special one which allows us to construct an approximate solution.

Remark 1.1. Notice that problem (1.6) is equivalent to the following system of char-

acteristics:

dXi

dτ̂
= f ′′

i (u1), Xi|τ̂=0 = χi
L(s),

du1

dτ̂
= −K(s), u1|τ̂=0 = UL,

(1.8)

and from here we have

u1 = UL −K(s)τ̂ ,

X =

∫ τ̂

0

f ′′(UL −K(s)τ ′)dτ ′ + χL(s) = − 1

K(s)
(f ′(u1)− f ′(UL)) + χL(s).

(1.9)

Furthermore, notice that from the boundary conditions given in (1.6), it follows that

for every s ∈ Rd−1 there exists τ̂ > 0 such that UR = UL −K(s)τ̂ . Thus, we see from

(1.6) that it must be

UL > UR. (1.10)
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Notice that our assumption on the complete fibration of Ω0 can be written as

Ω0 =
⋃̇

s∈ΓL

{X (s, τ̂) : τ̂ ∈ [0, τ̂0(s)]}, (1.11)

where X is given by (1.8) and ∪̇ denotes the disjoint union. By τ̂0(s) we denote a real

number such that X(τ̂0(s), s) ∈ ΓR. It is clear that X(0, s) ∈ ΓL. Also, since Ω0 admits

the complete fibration along the characteristics X, the change of coordinates (τ̂ , s) 
→ x0,

(τ̂ , s) ∈
⋃̇

s∈Rd−1 [0, τ̂0(s)]× {s} is regular and the corresponding Jacobian det(∂x0

∂τ̂ , ∂x0

∂s )

must be different from zero. Therefore, without losing generality, we can assume that

det(
∂x0

∂τ̂
,
∂x0

∂s
) ≥ const > 0, (τ̂ , s) ∈

⋃̇
s∈Rd−1

[0, τ̂0(s)]× {s}. (1.12)

Example 1.2. We will give an example of problem (1.2), (1.3) satisfying the assump-

tions given above. A similar example is [26, Example 7.]. Consider the equation

∂u

∂t
+ p

∂u2

∂x1
+ q

∂u2

∂x2
= 0, (1.13)

where p, q > 0. To assign initial data u0 ∈ Lip(R2), fix arbitrary constants UL > UR > 0,

and a positive function K ∈ Lip(R). Then, put

ΓL = {(x1, x2) ∈ R2 : x2 = 0},

ΓR = {(x1, x2) ∈ R2 : UL −K(x1 −
p

q
x2)

x2

2q
= UR, x2 ≥ 0}.

Finally, we take

u0(x) =

⎧⎪⎪⎨
⎪⎪⎩
UL, (x1, x2) ∈ ΩL,

UL −K(x1 − p
qx2)

x2

2q , (x1, x2) ∈ Ω0,

UR, (x1, x2) ∈ ΩR,

(1.14)

where ΩL, ΩR and Ω0 are plotted in Figure 5. Let us prove that the function u1(x1, x2) =

UL −K(x1 − p
qx2)

x2

2q satisfies (1.6). In our case, (1.6) reduces to

2p
∂u1

∂x1
+ 2q

∂u1

∂x2
= −K(x1),

u1|ΓL
= UL, u1|ΓR

= UR.

The corresponding system of characteristics is{
ẋ1 = 2p, ẋ2 = 2q, u̇1 = −K(x10),

x1(0) = x10, x2(0) = 0, u1(0) = UL,

whose solution is

x1 = 2pτ̂ + x10, x2 = 2qτ̂ ,

u1 = UL −K(x10)τ̂ , τ̂ > 0,

and from this system, we finally conclude u1(x1, x2) = UL − K(x1 − p
qx2)

x2

2q , which is

exactly the form of the function u0 on Ω0.



MULTIDIMENSIONAL SHOCK WAVE FORMATION 7

�

�
...
...
...
..

...
...
...
...
...
.

...
...
...
...
...

...
...
...
...
...

...
...
...
...
...
...

...
...
...
...
...
...

...
...
...
...
...
...
..

...
...
...
...
...

...
...
...
...
...

...
...
...
...
...
.

Ω0

ΩR

ΩL

fibres


�
(p,q)

ΓR

ΓL

Fig. 5. If (1.13) models a traffic flow, then the vector (p, q) de-
termines the direction of the traffic while the unknown function u
represents the density of the vehicles.

For instance, if we take ΓL as above and ΓR = {(x, 2) : x ∈ (−∞,−1]}∪{(x, x2+1) :

x ∈ (−1, 0]} ∪ {(x, 1) : x ∈ (0,∞)}, p = 1, q = 1/2, then we must have

UR = UL −K

(
x− 1

2
(x2 + 1)

)
x2 + 1

4
=⇒ K(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4(UL−UR)

(1+
√
2)2+1

, y ≤ −2,
4(UL−UR)

(1+
√−y)2+1

, −2 < y < − 1
2 ,

4(UL−UR)

(1+
√

1/2)2+1
, y ≥ − 1

2 .

The paper is organized as follows.

In Section 2, we solve an auxiliary Cauchy problem whose weak asymptotic solution

actually represents the weak asymptotic solution to (1.2), (1.3). The latter fact is proved

in Section 3.

2. Approximate equation. In this section, we shall introduce and solve a family of

problems whose solutions will represent the wanted approximating solution to (1.2), (1.3).

In the beginning, we introduce definitions and the fundamental theorem of the method

that we are going to use: the weak asymptotic method. The family of approximating

solutions constructed in such a way will be called the weak asymptotic solution. The

method is intensively used in recent years for investigations of nonlinear wave phenomena.

For instance, using this method, we are able to find explicit formulas describing the

interaction of solitons in the case of generalized KdV equations [5, 10], the interaction

of Sine-Gordon solitons [14, 21], the evolution of nonlinear waves in the case of scalar

conservation laws [3, 7], the interaction [6, 11] and formation [8, 25] of δ-shock waves

in the case of a triangular system of conservation laws, δ′-shock waves as a new type of

singular solution of hyperbolic systems of conservation laws [27], the confluence of free

boundaries in the Stefan problem with underheating [4], and different interactions of the

shock waves appearing on the gas dynamics [12, 13, 15], etc.

In the sequel, we imply that t ∈ R+ and x ∈ Rd. Also, for a differentiable function

f : Rd → R, we write

∇f = ∇xf = (
∂f

∂x1
, . . . ,

∂f

∂xd
).
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If s = (s1, . . . , sm) : Rd → Rm is a differentiable function depending on x ∈ Rd, then

we denote

∂s

∂x
=

⎛
⎜⎝

∂s1
∂x1

. . . ∂s1
∂xd

...
...

∂sm
∂x1

. . . ∂sm
∂xd

⎞
⎟⎠ ∈ Mm×d,

where Mm×d is the space of the matrix with m rows and d columns.

By det(a, b) we denote the determinant of the matrix (a, b) ∈ Md×d, where a ∈ Md×k

and b ∈ Md×(d−k).

For two vectors x, y ∈ Rd, we write

〈x, y〉 =
d∑

i=1

xiyi and xy = [xiyj ]i,j=1,...,d ∈ Md×d.

Definition 2.1. By OD′(εα) ⊂ D′(Rd), α ∈ R, we denote the family of distributions

depending on ε ∈ (0, 1) and t ∈ R+ such that for any test function η(x) ∈ C1
0 (R

d), the

estimate

〈OD′(εα), η(x)〉 = O(εα), ε → 0,

holds, where the term on the right-hand side is understood in the usual Landau sense

and locally uniformly in t, i.e., |O(εα)| ≤ CT ε
α for t ∈ [0, T ], where CT is a constant

depending only on T .

By oD′(1) ⊂ D′(Rd) we denote a family of distributions depending on ε ∈ (0, 1) and

t ∈ R+ such that for any test function η(x) ∈ C1
0 (R

d), the estimate

〈oD′(1), η(x)〉 = o(1), ε → 0,

holds, where the estimate on the right-hand side is understood in the usual Landau sense

and locally uniformly in t, i.e., |o(1)| ≤ CT g(ε) for t ∈ [0, T ], where g is a function

tending to zero as ε → 0, and CT is a constant depending only on T .

Definition 2.2. The family of functions (uε) = (uε(t, x)) ⊂ C1(R+;D′(Rd)) is called

a weak asymptotic solution of problem (1.2), (1.3) if

∂uε

∂t
+ 〈∇, f(uε)〉 = oD′(1),

uε

∣∣∣∣
t=0

− u0 = oD′(1), ε → 0.

Observe that a sequence of solutions obtained by the standard vanishing viscosity

approximation of (1.2) is a special case of the weak asymptotic solution. Indeed, in the

framework of the vanishing viscosity approach, we consider the following sequence of

equations:
∂uε

∂t
+ 〈∇, f(uε)〉 = ε∂xxuε,

and, clearly, ε∂xxuε = oD′(1). Using the vanishing viscosity approximation, we obtain a

sequence of functions, say (uε), which converges toward an entropy admissible solution

to (1.2), (1.3) (the initial data can be an arbitrary bounded function), but we cannot

write down explicit formulas for (uε). Using the weak asymptotic method, we have

more freedom in choosing the regularization terms, and we are able to obtain explicit
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formulas for the appropriate sequence of solutions to the regularized problem, but, first,

we cannot be sure that the sequence will converge toward an entropy admissible solution

of (1.2), (1.3), and second, we need additional assumptions on the flux and initial data.

In order to overcome the first obstacle, we start from Lipschitz continuous initial data and

construct a solution along characteristics. In the case considered in this contribution, we

have the possibility of choosing an appropriate regularization which enables us to modify

characteristics so that they become nonintersecting but still to approximate the process

described by the conservation law accurately enough. Thus, we will necessarily obtain

an entropy admissible solution in the limit (see Theorem 3.3).

The following theorem defines so called ”switch” functions Bi : R → (0, 1), i = 1, 2,

which are very important objects in the method.

Theorem 2.3 ([7, 3]). Suppose that the functions ωi ∈ C∞(R), i = 1, 2, satisfy

lim
z→+∞

ωi(z) = 1, lim
z→−∞

ωi(z) = 0 and dωi(z)
dz ∈ S(R), where S(R) is the Schwartz

space of rapidly decreasing functions.

The functions Bi ∈ C∞(R), i = 1, 2, defined for any ρ ∈ R by

B1(ρ) =

∫
ω̇1(z)ω2(z + ρ)dz and B2(ρ) =

∫
ω̇2(z)ω1(z − ρ)dz, (2.1)

satisfy

B1(ρ) +B2(ρ) = 1,

lim
τ→−∞

τNB1(τ ) = 0, lim
τ→∞

τNB2(τ ) = 0 ⇒ lim
τ→±∞

τNB1(τ )B2(τ ) = 0.

The functions ωi, i = 1, 2, can be chosen so that

B2(z) = 1−B1(z) ≡ 0, z < 0. (2.2)

In the sequel, by t∗(s), s ∈ Rd−1, we denote the moment of intersection of charac-

teristics (1.4) emanating from the fibre connecting x = X(0, s) and x = X(τ̂0(s), s),

s ∈ Rd−1, respectively, where X is given by (1.9). From (1.5) and (1.6), it follows that

t∗(s) =
1

K(s)
. (2.3)

We shall also write

τ =
t− t∗(s)

ε
, Bi = Bi(

t− t∗(s)

ε
), Ḃi = (Bi(τ ))

′
τ , i = 1, 2.

Now, we can motivate the approximate problem that we shall solve. First, recall that

our aim is to find a globally defined smooth approximate solution to (1.2), (1.3). To

do this we have to avoid the intersection of characteristics. A natural idea is to smear

the discontinuity line corresponding to every fibre, i.e. to take an ε-neighborhood of the

discontinuity line and to dispose of characteristics in that neighborhood in a way that

they do not intersect, but, as ε → 0, all of them lump together into the discontinuity

line. Along such lines, the approximate solution to our problem will remain constant.

Such lines we call the “new characteristics” (see Figure 6).

In order to accomplish this idea, we shall use the switch functions Bi, i = 1, 2, from

Theorem 2.3. Namely, notice that B1(
t−t∗(s)

ε ) = 1 − B2(
t−t∗(s)

ε ) is close to zero for
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�

�

the fibre corresponding to s0 ∈ Rd−1

t∗(s0)

�

∼ ε

t

................

Fig. 6. The new characteristics issuing from the fibre corresponding
to s0 ∈ Rd−1. The distance between the rear most new character-
istics is of order ε for t > t∗(s). The new characteristics are non-
intersecting.

t < t∗(s), and close to one for t > t∗(s). Next, notice that for t < t∗(s) we will have the

classical solution to (1.2), (1.3), while for t > t∗(s), a shock wave is formed. Therefore, it

is natural to consider the following family of problems (compare with [8, Theorem 10]):

∂tuε + B2(
t− t∗(s)

ε
)〈∇, f(uε)〉+B1(

t− t∗(s)

ε
)

d∑
i=1

ci
∂uε

∂xi
= 0, (2.4)

uε|t=0 = u0(x), (2.5)

where s = s(x) ∈ Rd−1, x ∈ Rd, are the last d− 1 variables of the inverse of the function

(τ̂ , s) 
→ X(τ̂ , s) given by (1.9), and c = (c1, . . . , cd) ∈ Rd is a constant to be determined

in the next section. For simplicity, we shall also assume that Bi, i = 1, 2, satisfy (2.2).

Notice that for t < t∗(s), we have B2 ∼ 1 and B1 ∼ 0, which means that (1.2) and

(2.4) coincide in the direction of an appropriate fibre when t < t∗(s). On the other

hand, for t > t∗(s), we have B2 ∼ 0 and B1 ∼ 1, which means that the nonlinear part

of (2.4) disappears and the equation is governed by the linear part
∑d

i=1 ci
∂uε

∂xi
in the

direction of an appropriate fibre. It is well known that the linear part will not affect

the profile of the corresponding initial data. In this case, the profile is a shock wave

with the states UL and UR, i.e. the function u at the point of gradient catastrophe

(t∗(s), f ′(UL)t
∗(s)+χL(s)) ∈ R+ ×Rd. Since the variation |UL −UR| is small, the form

of a solution uε to (2.4), (2.5) will also not have an influence on the formed shock wave.

We will find the weak asymptotic solution to problem (2.4), (2.5) by using the usual

method of characteristics. Since the characteristics issuing from ΩL and ΩR bear the

same information, we can allow their intersection, Thus, we are interested only in the

characteristics issuing from Ω0.

The system of characteristics corresponding to (2.4), (2.5) has the following form:

dXi

dt
= B2f

′
i(uε) +B1ci, Xi(0) = xi0,

duε

dt
= 0, uε(0) = u1(x0), x0 ∈ Ω0,

(2.6)
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where Bi = Bi(
t−t∗(s)

ε ), i = 1, 2. It is easy to find the solution to the latter system:

X(t, x0) = x0 + f ′(u1)

∫ t

0

B2dt
′ + c

∫ t

0

B1dt
′, (2.7)

where Bi = Bi(
t′−t∗(s)

ε ), i = 1, 2. In order to show that the characteristics from (2.7)

determine the solution to (2.4), (2.5) we need to prove that the Jacobian J = det ∂X
∂x0

> 0

along the entire temporal axis. Indeed, if this is the case, then there exists the inverse

function x0 = x0(X, t, ε) of the function X. Then, the classical solution to (2.4), (2.5) is

given by u1(x0(x, t, ε)) (again, we do not consider domains where the solution is constant).

According to assumptions (1.12), the transformation x0 = x0(τ̂ , s) is regular. There-

fore, in order to prove global solvability of (2.4), (2.5), it is enough to prove that

det
(
∂X
∂τ̂ ,

∂X
∂s

)
> 0 along the entire temporal axis. We shall prove the latter fact un-

der conditions which are necessarily fulfilled if |UL − UR| is small enough (see Remark

2.5).

Lemma 2.4. Assume that UL and UR are such that for any (τ̂ , s) ∈
⋃̇

s∈Rd−1 [0, τ̂0(s)]×{s}
and any t ∈ R+,

det(
∂x0

∂τ̂
,
∂x0

∂s
+ (f ′(u1)− c)∇st

∗(s)B1(
t− t∗(s)

ε
)) ≥ α det(

∂x0

∂τ̂
,
∂x0

∂s
), (2.8)

for an α > 0.

The Jacobian det(∂X∂τ̂ ,
∂X
∂s ) of the characteristics (2.7) computed with respect to the

variables (τ̂ , s) satisfies:

det

(
∂X

∂τ̂
,
∂X

∂s

)
> 0, (τ̂ , s) ∈

⋃̇
s∈Rd−1

[0, τ̂0(s)]× {s}. (2.9)

Proof. Consider the first column of the matrix
(
∂X
∂τ̂ ,

∂X
∂s

)
, where X is given by (2.7),

∂X

∂τ̂
=

∂x0

∂τ̂
+ f ′′(u1)

∂u1

∂τ̂

∫ t

0

B2dt
′, (2.10)

where we abbreviate B2 = B2(
t′−t∗(s)

ε ). According to (1.8), we have for x0 ∈ Ω0:

∂u1(x0)

∂τ̂
= −K(s),

∂x0

∂τ̂
= f ′′(u1),

and thus, from (2.10):

∂X

∂τ̂
= (1−K(s)

∫ t

0

B2dt
′)
∂x0

∂τ̂
. (2.11)

Notice that since we assumed B2(z) = 0, z ≤ 0 (see (2.2)), it follows that

1−K(s)

∫ t

0

B2dt
′ ≥ 1−K(s)

∫ t∗

0

B2dt
′ > 0, (2.12)

since t∗(s) = 1/K(s) and B2(z) < 1 on a nonzero subset of (−∞, 0).
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Now, we pass to the columns ∂X
∂s . From (2.7), we have

∂X

∂s
=

∂x0

∂s
+ f ′′(u1)

∂u1

∂s

∫ t

0

B2dt
′

+ f ′(u1)∇st
∗(s)

∫ t

0

1

ε
Ḃ2dt

′ + c∇st
∗(s)

∫ t

0

1

ε
Ḃ1dt

′.

From here, having in mind the change of variables t′−t∗(s)
ε = z =⇒ dt′ = εdz and using

Ḃ2 = −Ḃ1, we obtain

∂X

∂s
=

∂x0

∂s
+ f ′′(u1)

∂u1

∂s

∫ t

0

B2dt− f ′(u1)∇st
∗(s)B1 + c∇st

∗(s)B1. (2.13)

Now, we are able to estimate the determinant J = det
(
∂x
∂τ̂ ,

∂x
∂s

)
. We have from (2.11),

(2.12) and (2.13):

J = det

(
∂X

∂τ̂
,
∂X

∂s

)
(2.14)

= (1−
∫ t

0

B2dt
′) det

(
f ′′(u1),

∂x0

∂s
+f ′′(u1)

∂u1

∂s

∫ t

0

B2dt
′−(f ′(u1)−c)∇st

∗(s)B1

)

= (1−
∫ t

0

B2dt
′) det

(
f ′′(u1),

∂x0

∂s
− (f ′(u1)− c)∇st

∗(s)B1

)
(2.8)

≥ α(1−
∫ t

0

B2dt
′) det(

∂x0

∂τ̂
,
∂x0

∂s
) > 0

according to (1.12) and (2.12).

This concludes the proof. �
Remark 2.5. Notice that, by relying on the continuity of the function det, the bound-

edness of the functions ∇st
∗ and B1, the fact that UR < u1 < UL, and since we assumed

det
(
∂x0

∂τ̂ , ∂x0

∂s

)
≥ c > 0, if |UL −UR| are sufficiently small, then (2.8) is satisfied. Indeed,

notice that

f ′(u1)− c = f ′(u1)−
f(UL)− f(UR)

UL − UR
= f ′(u1)− (f ′

1(ũ1), f
′
2(ũ2), . . . , f

′
d(ũd))

= ((u1 − ũ1)f
′′
1 (û1), (u1 − ũ2)f

′′
2 (û2, . . . , (u1 − ũd)f

′′
d (ûd)),

for values ũi ∈ [UR, UL] and ûi ∈ [min{ui, ũi},max{ui, ũi}] ⊂ [UR, UL], i = 1, . . . , d,

according to the Lagrange mean value theorem. From here, it further follows that

‖f ′(u1)− c‖ ≤ C|UL − UR|, (2.15)

where ‖·‖ denotes the Euclidean norm and C a constant such that C ≥ max
UR≤u≤UR

|f ′′(u)|.
Now, using continuity of the function det, we conclude that

det

(
∂x0

∂τ̂
,
∂x0

∂s
+ (f ′(u1)− c)∇st

∗(s)B1(
t− t∗(s)

ε
)

)

= det(
∂x0

∂τ̂
,
∂x0

∂s
) +O(‖f ′(u1)− c‖),
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since B1 and ∇st
∗ are bounded functions. From here and (2.15), we conclude that

det

(
∂x0

∂τ̂
,
∂x0

∂s
+ (f ′(u1)− c)∇st

∗(s)B1(
t− t∗(s)

ε
)

)

= det

(
∂x0

∂τ̂
,
∂x0

∂s

)
+ |UL − UR|O(1).

(2.16)

Since, according to (1.12), det(∂x0

∂τ̂ , ∂x0

∂s ) ≥ c > 0, it follows that for any 0 < α < 1 we

can choose |UL − UR| small enough so that |UL − UR|O(1) < α det(∂x0

∂τ̂ , ∂x0

∂s ). For such

chosen Ul and UR, we have from (2.16):

det

(
∂x0

∂τ̂
,
∂x0

∂s
+ (f ′(u1)− c)∇st

∗(s)B1(
t− t∗(s)

ε
)

)
> (1− α) det

(
∂x0

∂τ̂
,
∂x0

∂s

)
,

implying that (2.8) is satisfied.

In the sequel, we denote by Ωt
0 the set Ω0 shifted along the new characteristics X from

(2.7) for the time t (at the level t), i.e.

Ωt
0 = {y ∈ Rd : y = X(x0, t, ε), x0 ∈ Ω0}.

Furthermore, by Ωt
L we denote the set ΩL shifted along the standard characteristics

x = f ′(UL)t+ x0, x0 ∈ ΩL, until the intersection with Ωt
0. More precisely,

Ωt
L = {y ∈ Rd : y = f ′(UL)t+ x0, x0 ∈ ΩL, and ∃\t′ ∈ [0, t], f ′(UL)t

′ + x0 ∈ Ωt′

0 }.

Similarly, we let:

Ωt
R = {y ∈ Rd : y = f ′(UR)t+ x0, x0 ∈ ΩR, and ∃\t′ ∈ [0, t], f ′(UR)t

′ + x0 ∈ Ωt′

0 }.

τ̂

the new characteristics



the fibre corresponding to s0 ∈ Rd−1

�

�

Ωr
0 Ωr

R
Ωr

Lr

�

t

ΩL ΩR
Ω0

Fig. 7. Ωr
0, Ω

r
L and Ωr

R are the sets Ω0, ΩL and ΩR moved along
the new characteristics at the level t = r.

Notice that, since the characteristics are nonintersecting, we have

Rd = Ωt
0∪̇Ωt

L∪̇Ωt
R.

A simple corollary of Lemma 2.4 is the existence of the weak asymptotic solution to

the Cauchy problem (2.4), (2.5):
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Corollary 2.6. There exists a weak asymptotic solution to (2.4), (2.5).

Proof. It follows from Lemma 2.4 that there exists an inverse function x0(t, x, ε),

x ∈ Rd, of the function X(x0, t, ε), x0 ∈ Ω0, defined by (2.7).

Thus, the weak asymptotic solution to (2.4), (2.5) is given by:

uε(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
UL, x ∈ Ωt

L,

u1(x0(t, x, ε)), x ∈ Ω0
t ,

UR, x ∈ Ωt
R.

(2.17)

�

3. The weak asymptotic equivalence. We will show that the weak asymptotic

solution to (2.4), (2.5) is, at the same time, the weak asymptotic solution to (1.2), (1.3).

More precisely, the following theorem holds.

Theorem 3.1. Let (uε) be the weak asymptotic solution to (2.4), (2.5). Then:

∂tuε +B2〈∇, f(uε)〉+B1

d∑
i=1

ci
∂uε

∂xi
= ∂tuε + 〈∇, f(uε)〉+ oD′(1), ε → 0. (3.1)

Proof. Since 〈∇, f(uε)〉 = (B1 +B2)〈∇, f(uε)〉, (3.1) is equivalent to

B1〈∇, f(uε(t, ·))− cuε(t, ·)〉 = oD′(1).

Wemultiply this by ϕ ∈ C1
0 (R

d) and integrate overRd. We get after standard integration

by parts (the Gauss-Ostrogradskii formula):∫
Rd

B1〈∇, f(uε(t, x))− cuε(t, x)〉ϕdx (3.2)

= −
∫
Rd

〈∇(B1ϕ), f(uε(t, x))− cuε(t, x)〉dx

= −
∫
Ωt

L

〈∇(B1ϕ), f(UL)− cUL〉dx−
∫
Ωt

R

〈∇(B1ϕ), f(UR)− cUR〉dx

−
∫
Ωt

0

〈∇(B1ϕ), f(uε(t, x))− cuε(t, x)〉dx = o(1).

Consider the integral in the latter formula corresponding to the domain Ωt
R. Denote

by (Ωt
R)

C the complement of the set Ωt
R. Notice that (Ωt

R)
C = Ωt

L ∪ Ωt
0 and, using

integration by parts again,∫
Ωt

R

〈∇(B1ϕ), f(UR)− cUR〉dx =

∫
∂Ωt

R

〈B1ϕ(f(UR)− cUR), �n〉ds (3.3)

= −
∫
(Ωt

R)C
〈∇(B1ϕ), f(UR)− cUR〉dx

= −
∫
Ωt

L

〈∇(B1ϕ), f(UR)− cUR〉dx−
∫
Ωt

0

〈∇(B1ϕ), f(UR)− cUR〉dx.
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We conclude from (3.2) and (3.3):∫
Rd

B1〈∇, f(uε(t, x))− cuε(t, x)〉ϕdx

= −
∫
Ωt

L

〈∇(B1ϕ), f(UL)− f(UR)− c(UL − UR)〉dx

+

∫
Ωt

0

〈∇(B1ϕ), f(uε(t, x))− f(UR)− c(uε(t, x)− UR)〉dx = o(1).

Choosing here

c =

(
f1(UR)− f1(UL)

UR − UL
, . . . ,

fd(UR)− fd(UL)

UR − UL

)
, (3.4)

we conclude that (3.2) is equivalent to∫
Rd

B1〈∇, f(uε(t, x))− cuε(t, x)〉ϕdx (3.5)

=

∫
Ωt

0

〈∇(B1ϕ), f(uε(t, x))− f(UR)− c(uε(t, x)− UR)〉dx = o(1).

Let us prove the second equality in (3.5). Denote for simplicity

G(uε(t, x)) = f(uε(t, x))− f(UR)− c(uε(t, x)− UR).

Then ∫
Ωt

0

〈∇(B1ϕ), G(uε(t, x))〉dx (3.6)

=

∫
Ωt

0

〈B1∇ϕ,G(uε(t, x))〉dx−
∫
Ωt

0

ϕ
Ḃ1

ε
〈∇t∗(s), G(uε(t, x))〉dx

=

∫
Ωt

0

〈B1∇ϕ,G(uε(t, x))〉dx−
∫
Ωt

0

ϕ
Ḃ1

ε
〈∇st

∗(s)
∂s

∂x
,G(uε(t, x))〉dx.

For the function X(t, x0(τ̂ , s), ε) from (2.7), introduce the following change of variables

in the latter integrals:

X=X(t, x0(τ̂ , s), ε) =⇒ det(
∂X

∂τ̂
,
∂X

∂s
)
(2.14)
= (1−K(s)

∫ t

0

B2dt
′) det(

∂x0

∂τ̂
,
∂x0

∂s
), (3.7)

where B2 = B2(
t′−t∗(s)

ε ). To proceed, it is convenient to notice the following:

1−K(s)

∫ t

0

B2dt
′ = 1−K(s)

(∫ t∗(s)

0

B2dt
′ +

∫ t

t∗(s)

B2dt
′

)

= 1−K(s)

∫ t∗(s)

0

(1−B1)dt
′ −K(s)

∫ t

t∗(s)

B2dt
′

= 1−K(s)t∗(s) +K(s)(

∫ t∗(s)

0

B1dt
′ +

∫ t

t∗(s)

B2dt
′)

= K(s)(ε

∫ 0

−t∗(s)/ε

B1(z)dz + ε
τ

t− t∗(s)

∫ t

t∗(s)

B2dt
′),
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where in the last step we introduced the change of variables t′−t∗(s)
ε = z, and, as usual,

denoted τ = t−t∗(s)
ε . Thus, from here and (3.7), we conclude that

det(
∂X

∂τ̂
,
∂X

∂s
) = ετO(1) det(

∂x0

∂τ̂
,
∂x0

∂s
), τ → ∞. (3.8)

We get from here and (3.6) (the · in the formula below stands for x0(τ̂ , s) for x0 from

(1.12)):∫
Ωt

0

〈∇(B1ϕ), G(uε(t, x))〉dx (3.9)

(3.8)
=

∫
ΓL

∫ τ̂0(s)

0

ετO(1)B1〈∇ϕ,G(u1(x0(t, ·, ε)))〉 det(
∂x0

∂τ̂
,
∂x0

∂s
)dτ̂ds

+

∫
ΓL

∫ τ̂0(s)

0

τO(1)Ḃ1ϕ〈∇st
∗(s)

∂s

∂x
,G(u1(x0(t, ·, ε)))〉 det(

∂x0

∂τ̂
,
∂x0

∂s
)dτ̂ds

= O(ε) +

∫
ΓL

∫ τ̂0(s)

0

τO(1)Ḃ1ϕ〈∇st
∗(s)

∂s

∂x
,G(u1(x0(t, ·, ε)))〉 × det(

∂x0

∂τ̂
,
∂x0

∂s
)dτ̂ds,

where, as usual, Bi = Bi(
t−t∗(s)

ε ) = Bi(τ ), i = 1, 2. So, we see that it remains to estimate

∫
ΓL

∫ τ̂0(s)

0

τO(1)Ḃ1ϕ〈∇st
∗(s)

∂s

∂x
,G(u1(x0(t, ·, ε)))〉 det(

∂x0

∂τ̂
,
∂x0

∂s
)dτ̂ds (3.10)

=

∫
|∇st∗|≤ε

∫ τ̂0(s)

0

τO(1)Ḃ1ϕ〈∇st
∗(s)

∂s

∂x
,G(u1(x0(t, ·, ε)))〉 det(

∂x0

∂τ̂
,
∂x0

∂s
)dτ̂ds

+

∫
|∇st∗|≥ε

τO(1)Ḃ1ϕ〈∇st
∗(s)

∂s

∂x
,G(u1(x0(t, ·, ε)))〉 det(

∂x0

∂τ̂
,
∂x0

∂s
)dτ̂ds.

Since∫
|∇st∗|≤ε

∫ τ̂0(s)

0

τO(1)Ḃ1ϕ〈∇st
∗(s)

∂s

∂x
,G(u1(x0(t, ·, ε)))〉 det(

∂x0

∂τ̂
,
∂x0

∂s
)dτ̂ds = O(ε),

(3.11)

we only need to estimate the last term on the right-hand side of (3.10). First assume,

without losing generality, that if |∇st
∗(s)| ≥ ε, then for a fixed k ∈ {1, . . . , d− 1},

∂sit
∗(s)

∂sk t
∗(s)

≤ C < ∞, i = 1, . . . , d− 1. (3.12)

It is clear that the latter holds at least locally, which is enough for further consideration

(we would involve the partition of unity argument if k would be different for different

neighborhoods).

Then, take the following change of variables:

yk =
t− t∗(s)

ε
= τ, yi = si, i �= k =⇒ det(

∂s

∂y
) =

ε

∂sk t
∗(s(y))

,
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and denote Y = y ({s : |∇t∗(s)| ≥ ε}). Then∫
|∇t∗|≥ε

∫ τ̂0(s)

0

τO(1)Ḃ1ϕ〈∇st
∗(s)

∂s

∂x
,G(u1(x0(t, ·, ε)))〉 det(

∂x0

∂τ̂
,
∂x0

∂s
)dτ̂ds (3.13)

=

∫
Y

∫ τ̂0(s(y))

0

ετO(1)ykḂ1(yk)ϕ〈
∇t∗(s)

∂skt
∗(s)

∂s

∂x
,G(u1(x0(t, ·, ε)))〉 det(

∂x0

∂τ̂
,
∂x0

∂s
)dτ̂dy

= O(ε),

according to (3.12).

Noticing that (3.13), (3.11) =⇒ (3.9) =⇒ (3.5) =⇒ (3.2), the proof of the theorem

is completed. �
The last issue that we need to deal with is the entropy admissibility of the weak solution

to (1.2), (1.3), which is obtained as a limit of the weak asymptotic solution. As expected,

for a solution constructed from regular initial data along the characteristics, the solution

obtained as a limit of the weak asymptotic solution is admissible (since characteristics

must run into the shock surface; see the Lax-Oleinik admissibility conditions [2]). First,

let us recall the notion of the entropy admissible weak solution introduced by S. N.

Kruzhkov in his famous paper [20].

Definition 3.2. We say that a weak solution to (1.2), (1.3) is entropy admissible if

for every nonnegative ϕ ∈ C∞
0 (R+ ×Rd) and every λ ∈ R, it follows that

∫∫
R×Rd

sgn±(u− λ)

(
(u− λ)

∂ϕ

∂t
+

d∑
i=1

(fi(u)− fi(λ))
∂ϕ

∂xi
)

)
dxdt ≥ 0, (3.14)

where

sgn+(u− λ) = (|u− λ|+)′u =

{
1, u > λ

0, u ≤ λ

and

sgn−(u− λ) = (|u− λ|−)′u =

{
0, u > λ,

−1, u ≤ λ.

The following theorem holds.

Theorem 3.3. Assume that 0 < UL −UR < δ for a small enough constant δ. Then, the

weak asymptotic solution (uε) to (1.2), (1.3) is given by (2.17). For every s ∈ Rd−1 and

t ≥ t∗(s), the a.e. pointwise limit of the weak asymptotic solution (uε) to problem (1.2),

(1.3) contains an admissible shock wave of the strength |UL − UR| which is formed at

the point X = f ′(UL)t
∗(s) + χL(s) at the moment t = t∗(s). The corresponding shock

surface moves by the law

x = f ′(UL)t
∗(s) + χL(s) +

f(UL)− f(UR)

UL − UR
(t− t∗(s)).

Proof. From (1.6), we see that the initial data (1.3) corresponding to equation (1.2)

will evolve into the shock wave at the moment t∗(s) = 1
K(s) (see (1.5) and (1.6)). More

precisely, any characteristic issuing from the point x0 = x0(τ̂ , s) ∈ Ω0, where the function
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x0 is given by (1.11), will enter the shock surface at the moment t∗(s). The shock surface

then continues to move by the law

x = f ′(UL)t
∗(s) + χL(s) +

f(UL)− f(UR)

UL − UR
(t− t∗(s))

which is obtained by letting ε → 0 in (2.7) for t > t∗(s).

Next, notice that from the form of the weak asymptotic solution (2.17) and Theorem

3.1, it follows that it converges pointwisely a.e. toward a weak solution u ∈ L∞(R+×Rd)

to (1.2), (1.3). Actually, in a neighborhood of any (t, x) ∈ R+ ×Rd, the function u will

be either the shock wave with values UL and UR (if x0(t, x, ε) = x0(τ̂ , s) such that

t ≥ t∗(s), where x0 is given by (1.11)), or it will be the classical solution to (1.2), (1.3)

(if x0(t, x, ε) = x0(τ̂ , s) such that t < t∗(s), where x0 is given by (1.11)).

We shall prove that the weak solution u is entropy admissible in the sense of Definition

3.2 for the entropies | · −λ|+ (the situation with | · −λ|− is analogical). Since uε are

the Lipschitz continuous functions, from (2.4) we conclude that for an arbitrary ϕ ∈
C1

0 (R
+ ×Rd), it follows that

∫∫
R+×Rd

sgn+(uε − λ)

(
(uε − λ)

∂ϕ

∂t
+

d∑
i=1

(fi(uε)− fi(λ))
∂ϕ

∂xi

)
dxdt (3.15)

=

∫∫
R+×Rd

sgn+(uε−λ)
(
(uε−λ)

∂ϕ

∂t

+

d∑
i=1

(
(fi(uε)−fi(λ))

∂(B2ϕ)

∂xi
+ci(uε − λ)

∂(B1ϕ)

∂xi

))
dxdt

+

∫∫
R+×Rd

sgn+(uε − λ)

d∑
i=1

((fi(uε)− fi(λ))− ci(uε − λ))
∂(B1ϕ)

∂xi
dxdt

=

∫∫
R+×Rd

sgn+(u− λ)

d∑
i=1

((fi(uε)− fi(λ))− ci(uε − λ))
∂(B1ϕ)

∂xi
dxdt,

where ci =
[fi]
[u] = fi(UL)−fi(UR)

UL−UR
, i = 1, . . . , d. We are going to prove that

∫∫
R+×Rd

sgn+(uε−λ)
d∑

i=1

((fi(uε)−fi(λ))−ci(uε−λ))
∂(B1ϕ)

∂xi
dxdt ≥ o(1), (3.16)

for UL−UR > 0 small enough, which, combined with (3.15), will prove that the function

u is an entropy solution to (1.2), (1.3).
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Arguing in the completely same way as in the proof of Theorem 3.1, we reach to the

following estimate:

∫∫
R+×Rd

sgn+(uε − λ)
d∑

i=1

((fi(uε)− fi(λ))− ci(uε − λ))
∂(B1ϕ)

∂xi
dxdt (3.17)

=

∫
R+

∫
Ωt

L

[
sgn+(UL − λ)

d∑
i=1

((fi(UL)− fi(λ))− ci(UL − λ))

− sgn+(UR − λ)
d∑

i=1

((fi(UR)− fi(λ))− ci(UR − λ))
]∂(B1ϕ)

∂xi
dxdt+ o(1).

Next, notice that if λ > UL > UR or UL > UR > λ (recall that UL > UR; see (1.10)),

then the subintegral expression on the right-hand side of (3.17) is equal to zero, which

means that (3.16) is fulfilled with the equality sign. So, assume that UR < λ < UL.

Relation (3.17) reduces to

∫∫
R+×Rd

sgn+(uε − λ)

d∑
i=1

((fi(uε)− fi(λ))− ci(uε − λ))
∂(B1ϕ)

∂xi
dxdt (3.18)

=

∫
R+

∫
Ωt

L

[ d∑
i=1

((fi(UL)− fi(λ))− ci(UL − λ))
]∂(B1ϕ)

∂xi
dxdt+ o(1).

Applying the Gauss-Ostrogradskii formula, we conclude that

∫
R+

∫
Ωt

L

[ d∑
i=1

((fi(UL)− fi(λ))− ci(UL − λ))
]∂(B1ϕ)

∂xi
dxdt (3.19)

= (UL − λ)

∫
R+

∫
Γt
L

〈�nt, F (UL, λ)〉B1ϕds
′dt,

where Γt
L is the boundary of the set Ωt

L, �nt is the unit outer normal on Γt
L, and

F (UL, λ)

=

(
f1(UL)− f1(λ)

UL − λ
− f1(UL)− f1(UR)

UL − UR
, . . . ,

fd(UL)− fd(λ)

UL − λ
− fd(UL)− fd(UR)

UL − UR

)
.

Next, notice that �nt is actually normal on Γ0
L = ΓL translated along the new char-

acteristics at the level t. Since the set Γ0
L is given by Γ0

L = {x0 ∈ Rd : u1(x0) = UL},
we conclude that the normal on Γ0

L is given by �n0 = ∇u1(x0) (assume for simplicity

that ‖∇u1(x0)‖ = 1). Thus, �nt = ∇x0
u1(x0)

∣∣∣
x0=x0(t,x,ε)

, x ∈ Γt
L, where x0(t, x, ε) is the

inverse function of the new characteristics X given by (2.7) (the existence of the inverse
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function is proved in Lemma 2.4). Substituting such �nt into (3.19), we obtain

∫
R+

∫
Ωt

L

[ d∑
i=1

((fi(UL)− fi(λ))− ci(UL − λ))
]∂(B1ϕ)

∂xi
dxdt (3.20)

= (UL − λ)

∫
R+

∫
Γt
L

d∑
i=1

(
fi(UL)− fi(λ)

UL − λ
− fi(UL)− fi(UR)

UL − UR

)

× ∂u1

∂x0i

∣∣∣
x0=x0(t,x(s′),ε)

B1ϕds
′dt,

Using Taylor’s formula with the integral remainder term, we have for any i ∈ {1, . . . , d}:

fi(UL)− fi(λ)

UL − λ
= −f ′

i(UL) +
1

2
(UL − λ)f ′′

i (UL) +
1

2

1

UL − λ

∫ λ

UL

(λ− t)2f ′′′
i (t)dt,

fi(UL)−fi(UR)

UL−UR
=−f ′

i(UL)+
1

2
(UL−UR)f

′′
i (UL)+

1

2

1

UL−UR

∫ UR

UL

(UR−t)2f ′′′
i (t)dt.

Subtracting the latter terms and noticing that

1

2

1

UL − λ

∫ λ

UL

(λ− t)2f ′′′
i (t)dt− 1

2

1

UL − UR

∫ UR

UL

(UR − t)2f ′′′
i (t)dt

= O(|UR − λ|2 + |(UR − λ)(UL − λ)|),

we get

d∑
i=1

(
fi(UL)− fi(λ)

UL − λ
− fi(UL)− fi(UR)

UL − UR

)

=

(
d∑

i=1

f ′′
i (UL)

UR − λ

2
+O(|UR − λ|2 + |(UR − λ)(UL − λ)|)

)
.
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From here and (3.20), we conclude that∫
R+

∫
Ωt

L

[ d∑
i=1

((fi(UL)− fi(λ))− ci(UL − λ))
]∂(B1ϕ)

∂xi
dxdt

= −(UL − λ)(λ− UR)

∫
R+

∫
Γt
L

d∑
i=1

f ′′(UL)
∂u1

∂x0i

∣∣∣
x0=x0(t,x(s′),ε)

B1ϕds
′dt

+

∫
R+

∫
Γt
L

O(|(UL − λ)(UR − λ)2|+ |(UR − λ)(UL − λ)2|)B1ϕds
′dt

=− (UL − λ)(λ− UR)

∫
R+

∫
Γt
L

(
d∑

i=1

f ′′(u1)
∂u1

∂x0i

)∣∣∣
x0=x0(t,x(s′),ε)

B1ϕds
′dt

+

∫
R+

∫
Γt
L

O(|(UL − λ)(UR − λ)2|+ |(UR − λ)(UL − λ)2|)B1ϕds
′dt

=

∫
R+

∫
Γt
L

(
K(s)(UL − λ)(λ− UR)

+O(|(UL − λ)(UR − λ)2|+ |(UR − λ)(UL − λ)2|)
)
B1ϕds

′dt ≥ 0,

for UL − UR small enough. Above, we used u1(x0(t, x, ε)) = UL for x ∈ Γt
L (the second

equality) and (1.6) (the third equality).

Together with (3.18), this proves (3.16) and concludes the theorem. �
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