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Rheology of liquid n-triacontane: Molecular

dynamics simulation

N D Kondratyuk, G E Norman and V V Stegailov

Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13
Bldg 2, Moscow 125412, Russia

E-mail: kondratyuk@phystech.edu

Abstract. Molecular dynamics is applied to calculate diffusion coefficients of n-triacontane
C30H62 using Einstein–Smoluchowski and Green–Kubo relations. The displacement 〈∆r

2〉(t)
has a subdiffusive part 〈∆r

2〉 ∼ t
α, caused by molecular crowding at low temperatures. Long-

time asymptotes of 〈v(0)v(t)〉 are collated with the hydrodynamic tail t−3/2 demonstrated for
atomic liquids. The influence of these asymptotes on the compliance of Einstein–Smoluchowski
and Green-Kubo methods is analyzed. The effects of the force field parameters on the diffusion
process are treated. The results are compared with experimental data.

1. Introduction

Diffusion processes in materials are of a great interest for researchers during the recent decades.
Molecular dynamics (MD) methods are applicable for such problems because they allow to get
transport properties from the atomic motion. There are two equivalent methods for calculation
of the diffusion coefficient: by Einstein–Smoluchowski (E–S) and Green–Kubo (G–K) [1]. The
first one uses a mean-square displacement (MSD) of the particles, the second takes an integral of
velocity autocorrelation function (VACF). Both methods are widely used [2–8] and show a good
agreement in the case of atomic and simple molecular liquids [9,10]. The correct calculation of the
diffusion in polyatomic molecular systems faces difficulties: the G–K method gives overestimated
values in comparison with E–S [11–13]. The reason of this discrepancy is not understood yet.
Viscosity calculations using the G–K method also face problems with convergence. A time
composition method is proposed to avoid such problems in [14] and succesfully applied in [15].

The long-time tail of VACF reflects the physical nature of the system. It decays exponentially
in Brownian gases. VACF has two asymptotic exponential regimes in nano-particle liquids [16].
The oscillation behavior of VACF is obtained for an ion movement in a liquid [17]. A
hydrodynamic power law t−3/2 is predicted in the case of atomic liquids and dense gases [18]. It
is a result of the collective motions. Simulations for Lennard-Jones liquids prove this fact [19,20].

The VACF asymptotes are not discussed enough for systems of complex molecules. The first
simulation results on diffusion for n-alkanes are obtained in [21]. The united-atom approach
with frozen bond and angle values is used to simulate n-butane liquid. The rotation of the
end atoms around the central bond (dihedral interaction) is adjusted to the experimental data
that are available on that moment. Authors use both calculation methods, the G–K method
gives the overestimated values of diffusion. The more complicated form of the united-atom force
field (with angle intermolecular interactions) is used for understanding the nature of diffusion
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in n-pentane and n-decane in [22, 23]. They show that diffusion in n-alkanes depends on the
dihedral interactions (by varying CHx–CH2–CH2–CHx torsion barriers) and hypothesize that
the molecule flexibility determines the decay of the VACF.

The comparison with experiment is a part of the discussion about simulation results and
demonstrates whether the model used is applicable. Authors [10] show a good agreement of
calculated H2 diffusion coefficient solvated in water with experimental values. Such accurate
estimates are made for atomic liquids [9]. However, there are not many works on diffusion in
complex molecular liquids, in which comparisons with experimental data are provided [5].

Here, n-triacontane C30H62 is used for studying the diffusion in complex liquids. The structure
of the paper is the following. The basic relations, model, equilibration and averaging techniques
are considered in the second section. The results of the calculation, the influence of the force field
parameters on the diffusion processes are presented in the third section. The VACF asymptotic
tails and the convergence of both methods to experimental values are discussed in the fourth
section. The results are assumed to be the step toward supplementing for the macroscopic
models [24,25].

2. Simulation technique

2.1. Basic relations

The self-diffusion coefficient D can be obtained from the long-time behavior of the center of
mass (COM) mean-squared displacement 〈∆r2〉 using the well-known E–S relation [1]:

〈∆r2〉 = 6Dt. (1)

It is given also by the theoretically equivalent G–K integral formula [1]:

D =

∫

∞

0

Cvdt/3, (2)

where Cv is a molecule COM velocity autocorrelation function:

Cv(t) = 〈v(0)v(t)〉. (3)

The angle brackets in equations (1) and (3) mean the averaging over canonical ensemble.

2.2. Model

The interaction in the n-triacontane liquid can be subdivided into intramolecular and
intermolecular parts. The first part describes interactions between atoms of the same molecule.
It contains bonded, angle and torsion interactions as well as Lennard-Jones and Coulumb
(figure 1),

E = Ebond + Eangle + Etorsion +ELJ + ECoul. (4)

The form of these terms and their parameterization depend on the model of the force field. The
open potential for liquid simulations–all atom (OPLS-AA) [26] is used in this work. The bonded
and angle interactions have harmonic forms:

Ebond = Kb(R −R0)
2, (5)

Eangle = Ka(θ − θ0)
2, (6)

where Ka and Kb are energy constants, R and θ are a bond-length and angle, R0 and θ0 are an
equilibrium bond-length and an angle. The torsional interaction is presented via the sum of the
cosines of dihedral angle φ with different periodicities (that reflect atom hybridization):

2Etorsion = K1(1 + cos(φ)) +K2(1− cos(2φ)) +K3(1 + cos(3φ)) +K4(1− cos(4φ)), (7)
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Figure 1. The fragment of the n-triacontane molecule C30H62, where examples of all the
intramolecular interactions are shown: bonded (red 1-2), angle (blue 1-3), torsion (green 1-4),
Lennard-Jones (dashed 1-4 and others) and Coulomb (1-4 and others). Lennard-Jones and
Coulomb forces act between 1-4 neighbors with 0.5 weight factor. Hydrogen atoms have −0.06e
partial charge, carbon atoms have −0.12e partial charge in the methylene groups (CH2) and
−0.18e in the methyl groups (CH3).

where K1, K2, K3, K4 are energy constants that are obtained from the ab initio molecular
orbital calculations [26]. Non-bonded interactions in the molecule (between atoms, that are not
included in the bonded and angle interactions) are represented via the Lennard-Jones 6-12 form:

ELJ = 4ǫ
[

(σ/r)12 − (σ/r)6
]

, (8)

where ǫ is an energy constant, σ is a zero-crossing parameter, r is a distance between two
atoms. Electrostatic interactions have a form Cqiqj/r, where qi and qj are partial charges of
the i-th and j-th atoms, r is a distance between them. These parameters are obtained to
reproduce thermodynamic and structural properties of hydrocarbon liquids using Monte Carlo
statistical mechanics simulations [26]. The contribution of the long-range Coulumb interactions
is calculated using the particle-particle particle-mesh [27] method with a real space cutoff 12 Å.

The intermolecular part describes forces between atoms that belong to different molecules.
It consists of the Lennard-Jones and Coulumb parts.

2.3. Equilibration

The starting configuration is a gas of the 125 replicated n-triacontane molecules. The distance
between them is larger than the force field cutoff radius. At the first stage, the temperature is
set to 600 K. This temperature is needed to perform rapid molecule disorder. The molecules
get random orientations in the so called NVE ensemble [28] for 0.1 ns. The second stage is
a compression to the experimental density 0.77 g/cm3 [29] for 0.1 ns. The third stage is a
relaxation in the NPT ensemble for 2 ns (P ∼ 1 atm, T = 353 K). The average density at the
last 0.5 ns is chosen as the equilibrium value and corresponds to the experimental density at
353 K. The fourth stage is the relaxation in the NVT ensemble at the calculated density for 2
ns. The relative shape anisotropy parameter κ2 is used in addition to the main equilibration
parameters such as temperature, pressure and density. It reflects the information about the
average molecule conformation in the system (for details see [30]). The integration timestep is
1 fs. The MD simulations are carried out in the LAMMPS package [31].
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2.4. Averaging

The diffusivity simulation is performed for the system of 3375 molecules in the NVE ensemble.
This configuration is obtained by replicating the equilibrated system. The averages for equations
(1) and (3) are obtained from 1 ns equilibrated MD trajectories. The following technique is used.
The whole trajectory is divided into statistically independent parts. The duration of these
intervals τ should be more than the value of the memory time tm [28]. This time corresponds to
the moment when the numerical solution of the equations of motion forgets its initial conditions
due to the Lyapunov instability.

At the first step, the average is taken over the molecules:

〈∆r2〉(t) =

N
∑

i=1

(ri(t)− ri(0))
2/N, 〈v(0)v(t)〉 =

N
∑

i=1

vi(0)vi(t)/N, (9)

where N is the number of the molecules. The second step is the additional averaging over the
intervals that is achieved by a shifting of the zero time point:

〈∆r2〉(t) =

M
∑

τ=1

〈∆r2〉τ (t)/M, 〈v(0)v(t)〉 =

M
∑

τ=1

〈v(τ)v(t + τ)〉/M, (10)

where M is the number of such intervals.
The value of tm for the n-triacontane system is about 3 ps. The characteristic times, when

the asymptotic tails of the VACF can be obtained (∼ 5 ps), are a hundred times less than the
times, that are needed for the observing linear 〈∆r2〉(t) asymptote in the case of E–S (∼ 750 ps).
Consequently, the number of the intervals M , obtained from the same 1 ns trajectory, is about
60 in the E–S method (60 shifts of the zero time point for the value of 4 ps) and M = 300 in
the G–K method. In the section four it is shown that the G–K method requires more statistics
for the accurate calculation of the VACF.

3. Abnormal diffusion

The MSD in reference systems (such as Lennard-Jones gases and liquids) has two regimes:
ballistic (at the very beginning particle moves freely, 〈∆r2〉 = v2t2) and diffusive (〈∆r2〉 = 6Dt,
caused by stochastic collisions with neighbors). The ballistic part becomes diffusive continuously
in the atomic case.

The C30H62 MSD has an intermediate subdiffusive part (figure 2, the black line), where
〈∆r2〉 ∼ tα, α < 1. The situation, when the intermediate regime appears, is studied in many
theoretical and experimental works [2,4,8,32–34]. The effect of the diffusion slowing is obtained
using MD for ionic liquids in [33] and for hydrogen gas hydrates in [35], and using ab initio MD
for hydrogen molecules solvated in water [10]. It is assumed that such behavior can be explained
by the molecular crowding [32].

The torsion interactions play a major role in such crowding because they determine how easily
the molecule bends. To prove this fact, MD simulations are performed with the different H-C-C-
X energetic barriers in equation (7) for hydrogen atoms (0.5Ki and 2Ki, i =1-4). The molecule
velocities are rescaled to the initial temperature to compensate the changes of the system energy.
It is needed for performing the simulation with the same temperature and pressure as in the
case with the original parameters. The decrease of these barriers makes the diffusion faster
and the subdiffusion region shorter (the blue line in figure 2). The molecules are more flexible
and find the path through neighbors easier. The increase of the barriers has an opposite effect
(the red line): the motion of the molecule COMs slows down. The reason is that the molecules
are more rigid and it becomes difficult to change mutual orientations of the neighbors.
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Figure 2. The 〈∆r2〉 dependence on time for the different force field parameters. The black,
blue and red lines correspond to the normal, 0.5Ki and 2Ki H-C-C-X energetic barriers. The
red dash-dot line shows the LAMMPS method of the averaging. The grey dashed lines are the
long-range asymptotes of the MSD.

The averaging technique used is compared with the LAMMPS method (the solid and dash-
dot lines in figure 2 respectively). The difference is that LAMMPS uses only one zero time point
(the beginning of the MD trajectory) and corresponds to the first step of the technique that is
used in this work. It allows to compute the MSD on the fly. The accuracy of the LAMMPS
method is very sensitive to the amount of molecules. The second stage of our technique allows to
use the whole trajectory for the averaging and covers more microstates. Thus, the subdiffusion
part has some differences with the LAMMPS method (due to the better statistics), but the short
and long-range asymptotes coincide with each other in both methods.

The diffusion coefficients DE−S are obtained from the long-range linear asymptotes (the
grey dashed lines in figure 2). They are compared with the experimental value [36] (table 1).
OPLS-AA force field with the original parameters underestimates the diffusion coefficient. Such
deviation can be explained by the fact that the calibration of OPLS-AA is not based on the
values of diffusion.

4. VACF asymptotes

The molecules COM VACFs are calculated from exactly the same trajectories as the COM
MSDs (figures 3-5). The negative region of the VACF is typical for liquids and displays the fact,
that rebounding collisions are more frequent than scattering collisions in dense systems [37,38].
Cv(t) decays as t−3/2 at the long-time, that is also called hydrodynamic tail, which is typical
for all atomic and simple molecular liquids [18]. The reason of this asymptote is a collective
motion of particles.

The accurate calculation of the VACF tail is a non-trivial issue. Firstly, the size of the
system should be enough to exclude the influence of the periodic boundary conditions [39]. The
second condition is averaging over a sufficiently long trajectory because the values of Cv(t)/Cv(0)
become about 10−2 and the best accuracy is required.
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Figure 3. The normalized VACF in the OPLS-AA force field with the original parameters.
The VACF tail and asymptotes (the dashed lines) are showed in the top right corner. The line
color corresponds to figure 2.

Figure 4. The normalized VACF in the OPLS-AA force field with 0.5Etors. The VACF tail and
asymptotes (the dashed lines) are showed in the top right corner. The line color corresponds to
figure 2.

XXXI International Conference on Equations of State for Matter (ELBRUS2016) IOP Publishing
Journal of Physics: Conference Series 774 (2016) 012039 doi:10.1088/1742-6596/774/1/012039

6



Figure 5. The normalized VACF in the OPLS-AA force field with 2Etors. The VACF tail and
asymptotes (the dashed lines) are showed in the top right corner. The line color corresponds to
figure 2.

The power of the tail is different in the original OPLS-AA model (figure 3). The interesting
fact is that it becomes closer to the classical value with the decrease of the torsion energetic
constants (figure 4). On the contrary, the increase of these barriers makes the power of the tail
larger (figure 5). These effects are connected with the flexibility of the molecules. The molecules
COMs move more freely in the force field with 0.5Ki and the nature of their movement becomes
closer to the Brownian. The molecular crowding takes place in the case of the higher H-C-C-X
barriers.

The G–K integral (2) is taken numerically till 3 ps and analytically after 3 ps using the
long-range tails (table 1):

D = (

∫ 3ps

0

Cv(t)dt+

∫

∞

3ps

Atβdt)/3 = Dnum +Da.

The analytical contribution Da plays a major role in the correct calculation of the diffusion
coefficient, because the numerical integration until the moment when the integral becomes a
constant gives an overestimated value. The reason is that stochastic fluctuations of the VACF
around zero at the long times interfere the real behavior. Thus, the sum over these fluctuations
is zero and the diffusion coefficient is much higher than the E–S value. The authors of [11–13]
face similar problems in ionic liquids.

The small change of the asymptotic tail power (within 0.1) causes a great change of
the integral (2). This fact makes the G–K method less applicable than E–S, because the
analytical contribution Da depends on this parameter. The errors are evaluated in the following
way. The maximum Dmax

a (that corresponds to the maximal suitable power) and minimum
Dmin

a (minimal suitable power) analytical integrals are calculated. The average contributions
Dave

a = (Dmin
a +Dmax

a )/2 are used to calculate the G–K integrals Dave
G−K = Dnum +Dave

a . The
errors are the differences between the average and the extreme values of the analytical integrals.
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Table 1. The numerical VACF integrals Dnum, the analytical contributions Dmax
a , Dmin

a

(with the corresponding powers βmax and βmin), the resulting Dave
G-K (Green–Kubo) and DE-S

(Einstein–Smoluchowski) obtained in the OPLS-AA force field with the different torsion
parameters Etors. The temperature is 358±8 K, the pressure is 1 atm.

Energy barrier Dnum Dmax
a (βmax) Dmin

a (βmin) Dave
G-K DE-S Experiment

0.5Etors 6.2 −3.3 (1.7) −4.7 (1.5) 2.2 ± 0.7 2.65 ± 0.10 —
Etors 4.2 −2.0 (2.2) −2.8 (1.9) 1.8 ± 0.4 1.65 ± 0.05 2.8 ± 0.14
2Etors 2.0 −1.7 (2.4) −2.0 (2.2) 0.2 ± 0.1 0.29 ± 0.03 —

The values of diffusion that are calculated using the G–K relation agree with the E–S values
within the method accuracy (table 1). The usage of the classical t−3/2 tail gives underestimated
value of diffusion in comparison with the E–S results. This convergence validates the non-
classical VACF tails that are discovered in this work for the n-triacontane liquid.

The increase of the MD trajectory duration (or of the molecules number) could improve the
accuracy of the G–K method but requires more computational resources.

5. Conclusions

The n-triacontane C30H62 liquid is used as an example for the molecular dynamics simulation of
the diffusivity in complex liquids using Einstein–Smoluchowski and Green–Kubo methods. The
dependence of the diffusion processes on the OPLS-AA force field parameters is treated.

(i) The diffusion in n-triacontane liquid is abnormal: the mean-squared displacement (MSD)
dependence on time has the subdiffusion region. This fact can be caused by the molecular
entanglement due to the molecule length.

(ii) The velocity autocorrelation function (VACF) asymptote is found to be t−β. β = 2.1 in the
OPLS force field with original parameterization. It differs from the hydrodynamic power
law t−3/2 predicted for atomic liquids.

(iii) The torsion interactions determine the flexibility of the molecules. The change of torsion
H-C-C-X energy barriers reflects on the MSD and VACF. Its increase makes the molecules
rigid and slows their movement. Thus, the subdiffusion region becomes longer and the value
of β becomes higher, up to 2.4. The decrease of the torsion constants lets molecules move
more freely and the subdiffusion region tends to disappear. The β value comes closer to
the classical limit 3/2.

(iv) The analytical contribution of the VACF tail to the Green–Kubo integral provides the
agreement of the diffusion coefficient with the Einstein–Smoluchowski values of the diffusion.
This result validates the unusual VACF asymptotes that are discovered for the C30H62

liquid.
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