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LABELED DOUBLE PANTS DECOMPOSITIONS

ANNA FELIKSON AND SERGEY NATANZON

To the memory of Vladimir Igorevich Arnold

Abstract. A double pants decomposition of a 2-dimensional surface
is a collection of two pants decomposition of this surface introduced by
the authors. There are two natural operations acting on double pants
decompositions: flips and handle-twists. It is shown by the authors that
the groupoid generated by flips and handle-twists acts transitively on
admissible double pants decompositions, where the class of admissible
decompositions has a natural topological and combinatorial description.
In this paper, we label the curves of double pants decompositions and
show that for all but one surfaces the same groupoid acts transitively on
all labeled admissible double pants decompositions. The only exclusion
is a sphere with two handles, where the groupoid has 15 orbits.
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Introduction

Consider a 2-dimensional orientable surface S of genus g with n holes. A pants
decomposition of S is a decomposition into 3-holed spheres (called “pairs of pants”).
In [2] we considered double pants decompositions of surfaces as a union of two pants
decompositions (with an additional assumption that the homology classes of the
curves contained in the double pants decomposition generate the whole homology
lattice H1(S, Z)). We introduced a simple groupoid acting on double pants decom-
positions (the groupoid is generated by transformations of two types called flips and
handle-twists, each flip or handle-twist changing only one curve of double pants
decomposition) and proved that this groupoid acts transitively on all admissible
double pants decompositions. The class of admissible double pants decompositions
has a simple combinatorial definition (see Definition 1.10 below) as well as a nice
description in terms of Heegaard splittings of 3-manifolds.

More precisely, for each pants decomposition P of S one may construct a han-
dlebody S+ such that S is the boundary of S+ and all curves of P are contractible
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inside S+. A union of two pants decompositions of the same surface define two dif-
ferent handlebodies bounded by S, attaching this handlebodies along S one obtains
a Heegaard splitting of some 3-manifold. This connection of two pants decomposi-
tions to a Heegaard splitting was investigated in a row of papers ([1], [6], [8] and
many others, see [3] for further references). The two pants decompositions are
considered usually as two vertices in a pants complex, using as the main tool the
Hempel distance.

The admissible double pants decompositions defined in [2] are exactly ones re-
sulting in Heegaard splittings of a 3-sphere. So, the transitive action of flip and
handle-twists groupoid on admissible double pants decompositions may be inter-
preted as an action on Heegaard splitting of 3-sphere.

In this paper we consider double pants decompositions with curves labeled by
distinct integer numbers. We define a trivial action of flips and handle-twists on the
labels: all labels are preserved by these transformations, in particular, the label of
the flipped or twisted curve coincides with its initial label. We consider the action
of the flip-twist groupoid generated by flips and handle-twist on labeled admissible
double pants decompositions and obtain the following theorem:

Theorem A. (Main Theorem) The flip-twist groupoid acts transitively on labeled

admissible double pants decompositions of Sg,n, 2g + n > 2, unless (g, n) = (2, 0).
The action of flip-twist groupoid on labeled admissible double pants decompositions

of S2,0 has 15 orbits.

Furthermore, we also may restrict ourselves to the case of one labeled pants
decomposition. It was shown by Hatcher and Thurston [5], [4] that there are two
types of transformations called flips and S-moves which are sufficient to connect
all pants decompositions in the unlabeled case. We extend the statement to the
labeled case:

Theorem B. The groupoid generated by flips and S-moves acts transitively on

labeled pants decompositions of Sg,n, 2g + n > 2.

The paper is organized as follows. In Section 1, we recall from [2] the definitions
concerning double pants decompositions and flip-twist groupoid. We also introduce
the notion of labeled double pants decomposition and define the action of flip-
twist groupoid on the labels. For the aims of proofs we consider also a notion
of strictly labeled double pants decompositions for which the action of flip-twist
groupoid is unable to intermix the labels of one pants decomposition with the
labels of another. In Section 2, we consider labeled pants decomposition and prove
Theorem B. In Section 3, we prove transitivity of flip-twist groupoid on strictly
labeled decompositions (to be exact, the groupoid acts transitively unless (g, n) =
(2, 0) and has 6 orbits otherwise). Finally, in Section 4, we use the result of Section 3
to prove the Main Theorem.

Acknowledgments. We are grateful to Robert Penner for suggestion to consider
the orbits of labeled double pants decompositions. We also thank the anonymous
referee for careful reading of the paper and helpful comments.
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1. Double Pants Decompositions

In this section we introduce double pants decompositions and their transforma-
tions.

1.1. Pants decompositions. Let S = Sg,n be an oriented closed surface of genus
g > 0 with n holes. A curve c on S is an embedded closed non-contractible non-
self-intersecting curve considered up to a homotopy of S.

Given a set of curves we always assume that there are no “unnecessary intersec-
tions”, so that if two curves of this set intersect each other in k points then there
are no homotopy equivalent pair of curves intersecting in less than k points.

For a pair of curves c1 and c2 we denote by |c1 ∩ c2| the number of (geometric)
intersections of c1 with c2.

Definition 1.1 (Pants decomposition). A pants decomposition of S is a set of (non-
oriented) mutually disjoint curves P = {c1, . . . , cm} decomposing S into pairs of
pants (i.e., into spheres with 3 holes).

It is easy to see that any pants decomposition of a surface Sg,n consists of m =
3g−3+n curves. To simplify formulas we will always write m instead of 3g−3+n.

Note that we do allow self-folded pants, two of whose boundary components are
identified in S. A surface which consists of one self-folded pair of pants will be
called a handle.

Definition 1.2 (Lagrangian plane of pants decomposition). Let P = {c1, . . . , cm}
be a pants decomposition. A Lagrangian plane L(P ) ⊂ H1(S, Z) is a subspace
spanned by the homology classes of ci, i = 1, . . . , m (here ci is taken with any
orientation).

Definition 1.3 (Flip). Let P = {c1, . . . , cm} be a pants decomposition. Define a
flip of P in the curve ci as a replacing of a regular curve ci ⊂ P by any curve c′i
satisfying the following properties:

• c′i does not coincide with any of c1, . . . , cm;
• |c′i ∩ ci| = 2;
• c′i ∩ cj = ∅ for all j 6= i.

See Fig. 1.1 for an example of a flip. Clearly, an inverse operation to a flip is also
a flip (so that the set of flips compose a groupoid acting on pants decompositions).

c′

c

Figure 1.1. Flips of pants decomposition.
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1.2. Double pants decompositions.

Definition 1.4 (Lagrangian planes in general position). Two Lagrangian planes

L1 and L2 are in general position if L1 ∩ L2 = 0 and H1(S, Z) = 〈L1, L2〉, where
〈L1, L2〉 is the sublattice spanned by L1 and L2.

See Fig. 1.2 for an example of two pants decompositions spanning a pair of
Lagrangian planes in general position.

Pa Pb

Figure 1.2. Pair of pants decompositions (Pa, Pb).

Definition 1.5 (Double pants decomposition). A double pants decomposition DP =
(Pa, Pb) is a pair of pants decompositions Pa and Pb of the same surface such that
the Lagrangian planes La = L(Pa) and Lb = L(Pb) spanned by these pants decom-
positions are in general position.

There are several natural transformations on the set of double pants decompo-
sitions:

• flips of Pa;
• flips of Pb;
• handle-twists (see Definition 1.6 below).

Definition 1.6 (Handle-twists). For a double pants decomposition DP = (Pa, Pb)
we define an additional transformation which may be performed if P1 and P2 contain
the same curve ai = bi separating the same handle h, see Fig. 1.3(b). Let a ⊂ h

(b ⊂ h) be the unique curve in h from Pa (Pb, resp.). Then a handle-twist Ta(b)
(respectively, Tb(a)) is a Dehn twist along a (respectively, b) in any of two directions
(see Fig. 1.3(b)).

a b

a′

b′

(a) (b)

ai = bi

Figure 1.3. Handle-twists: (a) Double self-folded pair of pants;
(b) The same pair of pants after a handle-twist Ta(b)

Notice that both flips and handle-twists are reversible transformations, hence
flips and handle-twists generate a groupoid acting on the set of double pants de-
compositions.
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Definition 1.7 (Flip-twist groupoid). A flip-twist groupoid FT is a groupoid gen-
erated by flips and twists.

Definition 1.8 (Double curve). A curve c ∈ (Pa, Pb) is called double if c ∈ Pa∩Pb.

Definition 1.9 (Standard decomposition). A double pants decomposition (Pa, Pb)
is standard if there exist g double curves c1, . . . , cg ∈ (Pa, Pb) such that ci cuts
out of S a handle hi.

Pa Pb

Figure 1.4. A standard double pants decomposition (Pa, Pb).

Definition 1.10 (Admissible decomposition). Let us say that a double pants de-
composition (Pa, Pb) is admissible if it is possible to transform (Pa, Pb) to a stan-
dard double pants decomposition by a sequence of flips.

The following theorem is the main result of [2].

Theorem 1.11 [2]. A flip-twist groupoid acts transitively on admissible double

pants decompositions of S = Sg,n (for any (g, n) such that 2g + n > 2).

1.3. Labeled double pants decompositions. We say that a pants decompo-
sition P = {c1, . . . , cm} is labeled if each curve ci ∈ P is labeled by a number
xi ∈ {1, . . . , m}, xi 6= xj for i 6= j, in other words we assign to the curves of
P distinct numbers {1, . . . , m}. A labeled pants decomposition will be denoted
P = {c1, . . . , cm}l (with index l).

Similarly, a double pants decompositionDP = (Pa, Pb) = {c1, . . . , cm; cm+1, . . . ,

c2m} is labeled if each curve ci ∈ DP is labeled by a number xi ∈ {1, . . . , 2m}. The
notation for the labeled double pants decomposition will also contain the index l:
DP = {c1, . . . , cm; cm+1, . . . , c2m}l.

In unlabeled version of double pants decomposition we consider {c1, . . . , cm}
as a set without any additional structure, so we do not distinguish between two
pants decompositions shown in Fig. 1.5. In labeled version {c1, . . . , cm}l these two
decompositions are considered as different: they differ by their labelings (in figures,
we show the labelings by the numbers written near the curves).

Flips and handle-twists preserve labelings, i.e., the new curve carries the same
number as the deleted one had. In case of a double curve c = ci = cj ∈ DP we
assign two labels xi and xj to the same curve. Flipping the double curve we can
not differ between the labels, so for any given topological flip f of a double curve
we define two labeled flips f1 and f2: both result in the same set of curves on the
surface as f does, but the curve c is labeled by xi after f1 and by xj after f2.
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In [2] we have proved transitivity of flip-twist groupoid on admissible double
pants decompositions. It is natural to ask if this groupoid act transitively on
labeled admissible double pants decompositions.

11 22 33

Figure 1.5. These two labeled decompositions are different. The
numbers in the figure

1.4. Strictly labeled double pants decompositions. In a labeled double pants
decomposition the two labels of a double curve are unordered: we do not know
which of these labels belongs to which of the two pants decompositions. It would
be convenient for the proof of our theorem to define also strictly labeled double
pants decompositions where each label of a double curve remembers to which of
two pants decompositions it belongs (so that flips and twists do not intermix labels
of Pa with labels of Pb).

A double pants decomposition DP = (Pa, Pb) = {c1, . . . , cm; cm+1, . . . , c2m} is
strictly labeled if each curve ci ∈ Pa is labeled by a number xi ∈ {1, . . . , m} and
each curve ci ∈ Pb is labeled by a number xi ∈ {m + 1, . . . , 2m}. In other words,
instead of the whole permutation group S2m the set of labels is permuted only by
Sm ×Sm. In the strictly labeled case we write {c1, . . . , cm; cm+1, . . . , c2m}sl, with
index sl.

The flips and handle-twists preserve the labeling, i.e., the new curve carries the
same number as the deleted one had. In case of a double curve c = ci = cj ∈ DP

we do not mix ci with cj since one of these curves belong to Pa and another belong
to Pb. This means that if ci ∈ Pa and we make a flip of ci, then the new curve
f(ci) ∈ Pa has the same label as ci, not as cj . So the labels assigned to one
component always stay together.

We will first work with strictly labeled double pants decompositions and then in
Section 4 extend the results to the labeled double pants decompositions.

2. Transitivity for Labeled Pants Decompositions

Let P be a pants decomposition of a surface S = Sg,n It was shown in [5] and [4]
that P may be transformed to any other pants decomposition of S via a sequence
of flips and S-moves, where an S-move is defined as in Fig. 2.1. In this section we
show that the groupoid generated by flips and S-moves acts transitively on labeled
pants decompositions.

First, we will prove transitivity for the case of sufficiently large surfaces, namely
for Sg,n satisfying 2g + n > 4, or in other words, for the surfaces whose pants
decomposition contain at least three pairs of pants.
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c1 c′
1

Figure 2.1. S-move: if some handle h is separated by by a curve
c ∈ P then a curve c1 ∈ P contained in h may be exchanged by
any curve c′1 such that |c1 ∩ c

′

1| = 1.

Lemma 2.1. Let P be a pants decomposition of a surface Sg,n, 2g + n > 4. If

c1, c2 ∈ P are two curves in the boundary of the same pair of pants then the label

of c1 may be swapped with the label of c2 by a sequence of flips.

Proof. Let p be a pair of pants containing both c1 and c2 as boundary components.
First, we will assume that p is not self-folded, i.e., that p is not a handle cut out
by c1 or c2 (the case of the handle will be derived from this case at the end of the
proof).

Let p1 and p2 be the adjacent pairs of pants (ci = p ∩ pi). There are two
possibilities: either p1 and p2 are two distinct pairs of pants or they coincide.

If p1 6= p2 then the labels on c1 and c2 are swapped by a sequence of 5 flips
shown in Fig. 2.2 (usually called “pentagon relation”). Notice that some of five
boundary components of the “pentagon” may be identified, but this does not affect
the procedure.

1

1

1

1

1

1

2

22
2

2 2

Figure 2.2. “Pentagon relation” exchanges the labels

Suppose that p1 = p2. Since S contains at least 3 pairs of pants, there exists a
pair of pants p3 such that p∪ p1∪ p3 looks as shown in Fig. 2.3, left (up to possible
interchange of p and p1 and possible identification of some boundary components).
Then after one flip we obtain a configuration on Fig. 2.3, right, which suits to the
case p1 6= p2 considered above.
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1 1 22

pp

p1 = p2

p1 p2

p3

(a) (b)

Figure 2.3. Reduction of the case p1 = p2 to the case p1 6= p2

Now, we are left to consider the case when p is a self-folded pair of pants, i.e.,
a handle cut out by c1 or c2, say by c1. Then we apply a flip f to the curve c1
obtaining a non-self-folded pair of pants p′ with c2, f(c1) and some curve c3 in the
boundary. As it is proved above, there exists a sequence ψ of flips which swaps the
labeles of c2 and f(c1). Applying the flip f−1 to f(c1), we will obtain a sequence
f−1ψ of flips which swaps the labels of c1 and c2. �

Corollary 2.2. Let P be a labeled pants decomposition of S = Sg,n, where 2g+n >
4. Then flips act transitively on labeling of P .

Proof. The statement follows immediately from Lemma 2.1 and the fact that S is
connected. �

It is clear that Corollary 2.2 together with transitivity of flips and S-moves on
unlabeled pants decompositions imply transitivity on the labeled pants decompo-
sitions. So, we are left to consider only finitely many surfaces Sg,n satisfying the
inequality 2g + n 6 4, i.e., S0,3, S0,4, S1,1, S1,2 and S2,0. Notice that pants de-
compositions of surfaces S0,3, S0,4 and S1,1 contain at most one curve, so there is
nothing to prove in these cases. A pants decomposition of S1,2 contains two curves
whose labels could be swapped as in Fig. 2.4. So, the only question left concerns
S2,0. A pants decomposition of S2,0 contains 3 curves. After at most one flip we
may assume that all three curves are homologically non-trivial. Then we cut S2,0

along one of the curves and use the procedure described above for S1,2 to swap the
labels of the other two curves. Thus, we have all transpositions of the labels on P ,
and hence, all permutations.

We summarize the results of this section in the following theorem:

Theorem 2.3. For any surface Sg,n, 2g+n > 2 flips and S-moves act transitively

on labeled pants decompositions of S.

3. Transitivity for Strictly Labeled Double Pants Decompositions

Our next step is to prove transitivity of flip-twist groupoid on the strictly labeled
double pants decompositions.

Theorem 3.1. Let DP and DP ′ be two strictly labeled admissible double pants

decompositions of S = Sg,n, where 2g+n > 4. Then there exists a sequence of flips

and handle-twists transforming DP to DP ′.
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1
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1

2

2
2

2

2

2

2

S1

S1

F2

F2

F2

F2

Figure 2.4. Exchange of labels in S1,2

Proof. By Theorem 1.11 there exists a sequence ψ of flips and handle-twists which
takes DP = (Pa, Pb) to DP

′ = (P ′

a, P
′

b) as an unlabeled decomposition. There are
two possibilities: either ψ takes Pa to P ′

a and Pb to P
′

b or ψ changes the components
Pa and Pb.

Suppose that ψ(Pa) = P ′

a, ψ(Pb) = P ′

b. Then we apply Corollary 2.2 to take
labeling of ψ(Pa) and ψ(Pb) to labeling of P ′

a and P ′

b respectively.

i

i

i

i
j

j jj

Figure 3.1. Exchange of labels in a handle via 3 handle-twists

Suppose that ψ(Pa) = P ′

b, ψ(Pb) = P ′

a. Consider a sequence of flips and handle-
twists ϕ which takes (P ′

a, P
′

b) to a standard double pants decomposition (it does
exists by Theorem 1.11). In a standard double pants decomposition we may swap
the curve of Pa with the curve of Pb in each handle separately: see Fig. 3.1. �

In view of Corollary 2.2, we are left to consider only finitely many surfaces Sg,n

satisfying the inequality 2g + n 6 4, i.e., S0,3, S0,4, S1,1, S1,2 and S2,0. Below, we
consider these five surfaces one by one.

3.1. Surfaces S0,3, S0,4 and S1,1. A pants decomposition of any of the surfaces
S0,3, S0,4 and S1,1 consists of at most one curve, so the transitivity of flip-twist
groupoid on strictly labeled pants decompositions follows trivially from the unla-
beled version.

3.2. Surface S1,2. A pants decomposition of S1,2 consists of two curves, a double
pant decomposition consists of two pairs of curves. Clearly, it is sufficient to check
that there exists a sequence of flips and handle-twists which exchanges the labels of
two curves of Pa and preserves the labels of Pb. This sequence is shown in Fig. 3.2.
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1

1

1 1

1

1

112

2

2
2

3

3

3 3

33

4

4
4

4

4 4

2, 32, 3

2, 42, 4

F2

F2

F2

F2

F3

F3

F4

F4

T3

T4

Figure 3.2. Changing the labels of Pa and preserving the labels
of Pb (Fi stays for a flip of i-th curve, Ti stays for a handle-twist
along i-th curve)

3.3. Surface S2,0. This is the only surface where flip-twist groupoid does not act
transitively on strictly labeled admissible double pants decompositions. To investi-
gate this action we consider the double pants decompositions of the combinatorial
type shown in Fig. 3.3 (we call this type of double pants decomposition hexagonal).
This type of double pants decomposition may be characterized by the following
property: we have |ai ∩ bi+1| = 1, |bi ∩ ai+1| = 1, |ai ∩ bi| = 0, where indexes are
considered modulo 3. In other words, the curves [a1, b3, a2, b1, a3, b2] compose a
“hexagon” where the neighbours do intersect and other sides do not (here we use
the square brackets to show that the curves of the hexagonal decomposition are
ordered). More precisely, the curves of the hexagonal decomposition decompose
the surface S2,0 into 4 hexagons.

Our aim now is to label the curves [1, 4, 2, 5, 3, 6] and check which permutations
of these labels may be performed via flips and handle-twists.

Consider any of the four hexagons on S2,0 and read the labels on its sides in
a clockwise direction. The obtained sequence should be considered modulo cyclic
shifts of all labels and modulo reversing of the order. We obtain a cyclic order of
the labeling. Notice that the cyclic order does not depend on the choice of one of
the four hexagons (the choice of any of the two adjacent hexagons reverse the order
of the labels in the sequence, the choice of the hexagon opposite to the initial one
does not affects the order).
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Whenever we need to compare two labeling of the same hexagonal double pants
decomposition we always refer to the same hexagon on the surface, so that the
notions of rotation of the labels and reversing of the order of the labels make sense.
Comparing the cyclic orders of two distinct hexagonal decompositions we think of
the cyclic order modulo reversing of the order and cyclic shifts of the labels.

a1

a1

a2

a2

a3

a3

b1

b1

b2

b2

b3b3

Figure 3.3. A hexagonal double pants decomposition

Definition 3.2 (Hexagonal twist). Let [a1, b3, a2, b1, a3, b2] be a hexagonal double
pants decomposition. A hexagonal twist Tai

(or Tbi) is a Dehn twist along ai
(respectively, along bi), i = 1, 2, 3.

Lemma 3.3. (1) Any hexagonal twist is a composition of flips and handle-twists ;
(2) Any handle-twist is a composition of flips and hexagonal twists ;
(3) A hexagonal twist preserves the cyclic order in a hexagonal double pants

decomposition.

Proof. Parts (1) and (2) follow from the commutative diagram shown in Fig 3.4,
part (3) is evident. �

1 1

11

2 2

22

3

3

4 4

44

5 5

55

6

6

3,6

3,6

Hexagonal twist Handle-twist

flip of a3,

flip of a3,

flip of b3

flip of b3

Figure 3.4. Hexagonal twist as a composition of flips and handle-twists

Lemma 3.4. There exists a sequence of flips and handle-twists which takes the

hexagon [a1, b3, a2, b1, a3, b2] to [b2, a1, b3, a2, b1, a3] and the labels [1, 4, 2, 5, 3, 6]
to [6, 1, 4, 2, 5, 3].
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Proof. Consider the system [a1, b3, a2, b1, a3, b2] and apply five hexagonal twists
in a row, namely T2, T4, T3, T5, T1, where Ti is a twist in the curve labeled by i.
Then we return to the same set of curves, but the labels are shifted, see Fig. 3.5. �

1

1

1

111

22

2

2

22

3
33

333

4
44

44
4

5

5
5

555

6

66

6

6 6

T1

T2

T3

T4

T5

Figure 3.5. Rotation of the hexagon realized by 5 hexagonal twists.

Lemma 3.5. There exists a sequence of flips and handle-twists which takes the

hexagon [a1, b3, a2, b1, a3, b2] to [b2, a3, b1, a2, b3, a1] and the labels [1, 4, 2, 5, 3, 6]
to [6, 3, 5, 2, 4, 1].

Proof. First, we make a flip in 3 and 6, and then apply hexagonal twists in 4, 2, 1,
5, 1, 4, see Fig. 3.6. �

Lemmas 3.4 and 3.5 show that each element of the dihedral group D6 acting
on the labels of hexagon [a1, b3, a2, b1, a3, b2] may be realized as a sequence of
flips and handle-twists (Lemmas 3.4 and 3.5 represent a rotation of order 6 and a
reflection of the hexagon, respectively).

In Lemma 3.7 we show that no other permutations of labels of the hexagon can
be realized by flips and handle-twists. For the proof we will consider H1(S, Z2).
Denote by [c]Z2

∈ H1(S, Z2) a Z2-homology class of the curve c. Notice that a
Z-homology class of c is defined only up to a change of sign (depending on the
orientation of c), however, the class [c]Z2

is well defined. In particular, if a, b, c are
three boundary curves of the same pair of pants, then [a]Z2

= [b]Z2
+ [c]Z2

.

Lemma 3.6. Let DP = [a1, b3, a2, b1, a3, b2] be a hexagonal double pants decom-

position of S2,0. Let ψ be a sequence of flips of Pa = {a1, a2, a3}l such that ψ(Pa)
contains no homologically trivial curves. Then [ψ(ai)]Z2

= [ai]Z2
, i = 1, 2, 3.

Proof. Label the curves a1, a2, a3 of Pa by numbers 1, 2, 3 respectively and con-
sider the sequence ψ as a composition of subsequences ψ1 ◦ · · · ◦ ψk, where ψi is a
composition of flips of the curve with the same label, while ψi and ψi+1 are com-
positions of flips of curves with different labels. It is easy to see that after applying
any subsequence ψ1 ◦ · · · ◦ ψj , 0 6 j 6 k the pants decomposition Pa turns in a
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F3

F6

11

1
1 1

111

2
2

2 2 2

2
22
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3

4
4

4 4 4

4
44

55

5
5
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66

6

T1

T1

T2

T4

T4

T5

Figure 3.6. Reflection of the hexagon [a1, b3, a2, b1, a3, b2].

decomposition without homologically trivial curves (otherwise ψj and ψj+1 can not
flip the curve with distinct labels). So, it is sufficient to prove the statement of the
lemma for one subsequence ψi.

Now, suppose that all flips in ψ1 change the curve labeled 1. Consider a pair of
pants p in ψ1(Pa) containing the curve ψ1(a1). Then the boundary of p consists of
curves ψ1(a1), a2 and a3 (notice that ∂p 6= ψ1(a1) ∪ ai, i = 2 or 3, since ψ1(a1) is
homologically non-trivial). This implies that

[ψ1(a1)]Z2
= [a2]Z2

+ [a3]Z2
= [a1]Z2

,

and the statement for ψ1 is proved. Applying this k times we obtain the lemma. �

Lemma 3.7. Let ϕ be a sequence of flips and handle-twists transforming the

hexagonal set of curves [a1, b3, a2, b1, a3, b2] to itself and permuting the labels

[1, 4, 2, 5, 3, 6] of these curves. Then the permutation coincides with some permu-

tation obtained by an action of the dihedral group D6 on the hexagon [a1, b3, a2, b1,
a3, b2].

Proof. Consider a sequence ϕ of flips and handle-twists transforming the set of
curves {a1, b3, a2, b1, a3, b2}sl to itself. By Lemma 3.3 any handle-twist is a com-
position of flips and hexagonal twists. So, ϕ is a composition of flips and hexagonal
twists. By Lemma 3.3 hexagonal twist does not changes cyclic order. We will
show that if a sequence of flips takes a hexagonal double pants decomposition to a
hexagonal one, then it either preserves the cyclic order or changes it to the opposite.
Then the statement of the lemma follows.



518 A. FELIKSON AND S. NATANZON

So, it is left to show that if a sequence of flips ϕ takes a hexagonal double pants
decomposition to a hexagonal one, then ϕ does not change the cyclic order. By
Lemma 3.6, ϕ preserves Z2-homology classes of all curves of Pa and Pb. This implies
that ϕ(ai) intersects ϕ(bj) if and only if ai intersects bj . So, the cyclic order of
curves [a1, b3, a2, b1, a3, b2] is either preserved by ϕ or reversed. �

Corollary 3.8. The action of flip and twist groupoid on strictly labeled admissible

double pants decompositions of S2,0 has 6 orbits.

Proof. Consider a hexagonal double pants decomposition. Notice that the labels
from the set {1, 2, 3} alternate with the labels from the set {3, 4, 5}, since curves
from the same pants decomposition do not intersect each other.

Now, the action of the dihedral group D6 is sufficient to put the labels 1, 2, 3
of Pa into required position. There are 6 possibilities left to put the labels 4, 5, 6.
Distinct possibilities result in distinct cyclic orders, so the obtained labeling are not
equivalent under the action of flip and twist groupoid. �

The results of Sections 3.1–3.3 may be summarized in the following theorem:

Theorem 3.9. The flip-twist groupoid acts transitively on strictly labeled admissible

double pants decompositions of Sg,n, 2g+ n > 2, unless (g, n) = (2, 0). The action

of flip-twist groupoid on strictly labeled admissible double pants decompositions of

S2,0 has 6 orbits.

4. Transitivity on Labeled Double Pants Decompositions

Now, we will extend Theorem 3.9 from the class of strictly labeled decompositions
to the class of labeled decompositions.

Instead of thinking that two labels x1 and x2 of a double curve c do not know
to which of Pa and Pb they do belong, we will add one more transformation, which
we will call switch: a switch in c just changes the places of xi and xj .

Theorem 4.1. The flip-twist groupoid acts transitively on labeled admissible double

pants decompositions of Sg,n unless (g, n) = (2, 0). The action of flip-twist groupoid

on labeled admissible double pants decompositions of S2,0 has 15 orbits.

Proof. First, consider all surfaces Sg,n, (g, n) 6= (2, 0). By Theorem 3.9 flip-twist
groupoid act transitively on strictly labeled double pants decompositions of these
surfaces. So, it is sufficient to check that applying flips, handle-twists and switches
in double curves we may arrive in a double pants decomposition DP = (Pa, Pb)
where the labels of Pa contain any given set of m numbers from {1, 2, . . . , 2m}.
Clearly, it is sufficient to check that we may change the places of two labels, assigned
to curves in Pa and Pb respectively. More precisely, if ci ∈ Pa, cj ∈ Pb, then we
may change the labels i and j of the curves ci and cj in the following way:

(1) find an admissible decomposition DP ′ with a double curve c (we can get
to DP ′ from DP by flips and handle-twists in view of Theorem 1.11);

(2) use transitivity of flip-twist groupoid on labeled double pants decomposi-
tions to get to the decomposition DP ′ with labels i and j on the double
curve c;
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(3) switch i and j;
(4) return to the decomposition DP with ci and cj labeled j and i respectively.

This implies that if (g, n) 6= (2, 0) then the flip-twist groupoid acts transitively
on labeled admissible double pants decompositions.

Now consider the case (g, n) = (2, 0). The switch of the labels on the double
curve in terms of hexagonal decomposition describes as exchange of the labels of
two opposite sides of the hexagon. This implies that under the action of flip-twist
groupoid the labels of opposite sides always remain the opposite. There are 15
possibilities to split 6 labels into 3 pairs (the label 1 may be paired with each of
5 other labels, for each of these 5 possibilities the smallest of the remaining labels
may be paired with any of 3 other labels).

Choose one of the possible pairings, for example, (1, 4), (2, 5), (3, 6). Using
switches we make the labels 1, 2, 3 mutually non-adjacent in the hexagon. Using
rotations and reflections as in Lemmas 3.4 and 3.5 we may put the labels 1, 2, 3
in any three mutually non-adjacent positions. The pairing then determines the
positions of all remaining labels. �
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