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THE SHORT ENVELOPE SOLITON DYNAMICS IN INHOMOGENEOUS
DISPERSIVE MEDIA WITH ALLOWANCE FOR STIMULATED SCATTERING
BY DAMPED LOW-FREQUENCY WAVES

N.V.Aseeva, ∗ E.M.Gromov, and V.V.Tyutin UDC 537.86

We consider the soliton dynamics in terms of the extended nonlinear Schrödinger equation taking
into account the inhomogeneous linear second-order dispersion (SOD) and stimulated scattering
by damped low-frequency waves (SSDW). It is shown that the wave number downshift due to
SSDW is compensated by an upshift due to the SOD decrease on the spatial coordinate. A new
class of stationary nonlinear localized solutions (solitons) arising as an equilibrium of SSDW
and decreasing spatial SOD is found analytically within the framework of the extended inho-
mogeneous nonlinear Schrödinger equation. A regime of the dynamic equilibrium of SSDW and
inhomogeneous dispersive medium with the soliton parameters periodically varied in time is found.
Analytical and numerical results are in good agreement for this regime.

1. INTRODUCTION

Interest in the solitons is due to their ability to maintain their shape for a long time. Soliton solutions
arise in many problems of modeling the dynamics of intense wave fields in the dispersive media, including
optical pulses in fiber-optic communication lines, electromagnetic waves in the plasma, surface waves on
deep water, etc. [1–4].

The dynamics of extended high-frequency wave packets is described in the second approximation of
the theory of dispersive nonlinear waves allowing for terms of the second order of smallness, including the
second-order linear dispersion and the cubic nonlinearity. The basic model equation of this approximation
is the nonlinear Schrödinger equation (NSE) [5, 6], in which the soliton solution results from an equilibrium
of the dispersion spreading of the wave packet and its nonlinear compression.

The dynamics of sufficiently short high-frequency wave packets is described by the third approxi-
mation of this theory, which allows for third-order terms [1], namely, nonlinear dispersion [7], stimulated
Raman scattering [8–10], and third-order linear dispersion. The basic model equation in this approximation
is the nonlinear Schrödinger equation of the third order (NSE-3) [10–14].

A class of stable short solitons resulting from an equilibrium of the third-order linear dispersion and
the nonlinear dispersion was found in [15–17] within the framework of the NSE-3 without the stimulated
scattering. It was shown in [18] that an arbitrary initial distribution in terms of the NSE-3 with the
stimulated scattering neglected evolves to a system of these short solitons. More recently, similar solutions
within the NSE-3 without the stimulated scattering were found in [19–23]. Stationary difference waves
resulting from an equilibrium of nonlinear dispesion and stimulated scattering were found in [24, 25] within
the NSE-3 without the third-order linear dispersion.

Stimulated Raman scattering is due to excitation of the temporal modes by an external field in the
atomic and molecular systems. The temporal-mode frequency Ω is related to the frequencies ω1 and ω2 as
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follows: ω1 − ω2 = Ω. In the extended nonlinear Schrödinger equation, this scattering is described by an
additional term with the time delay of a nonlinear Kerr response. For the localized nonlinear wave packets
(solitons), taking into account stimulated Raman scattering leads to a downshift of the soliton frequency
[8–10] and, as a consequence, loss of its stability and a decay. The influence of stimulated scattering on the
dynamics and stability of solitons is described in detail in [3, 26], where the dynamics of short solitons was
described by the NSE-3 with allowance for stimulated Raman scattering. The possibility of compensation
for the Raman frequency shift in the extended communication lines with variable frequency characteristics
was studied in [27]. Compensation for the stimulated Raman scattering by the linear radiation field from the
soliton core region was considered in [28]. Compensation for the Raman scattering in the inhomogeneous
media was considered in the following cases: in the media with periodic linear dispersion of the second order
[29, 30], in the media with biased inflection point of the dispersion characteristic [31], and in the media with
decreasing dispersion [32].

In this paper, we study the dynamics of intense high-frequency wave packets in the linear inhomoge-
neous dispersive media with allowance for stimulated scattering by damped low-frequency waves. In the third
approximation of dispersion theory (for sufficiently short wave packets), the initial system of two equations
is reduced to an inhomogeneous extended nonlinear Schrödinger equation with a nonlocal antisymmetric
Kerr response due to stimulated scattering by damped low-frequency waves. Unlike the stimulated Raman
scattering, this scattering leads to a downshift of the spatial spectrum of the soliton wave numbers. Such an
effect is due to the excitation of damped spatial modes with the wave number χ by an external field with the
wave numbers k1 and k2 related by k1 − k2 = χ. Essentially, this scattering is a counterpart of stimulated
Raman scattering or spatial stimulated Raman scattering. At the same time, spatial inhomogeneity of the
dispersion also leads to the wave number variation of a high-frequency wave packet. Equilibrium of the
spatial stimulated Raman scattering and the decreasing dispersion leads to the stabilization of the spatial
spectrum of the soliton wave numbers.

In this paper, within the extended nonlinear Schrödinger equation with antisymmetric nonlinear Kerr
response, we found analytically a new class of solitons resulting from an equilibrium of stimulated scattering
by damped low-frequency waves and the dispertion decrease on the spatial coordinate. The regime of the
dynamic equilibrium of stimulated scattering and decreasing dispersion, in which the soliton parameters
vary periodically with time, is also found.

2. INITIAL SYSTEM AND THE BASIC EQUATION

Consider the dynamics of the intense high-frequency wave packet U(ξ, t) exp(iωt−ikξ) in a nonlinear,
inhomogeneously dispersing medium with allowance for the interaction with low-frequency damped waves.
As the initial system, we consider a system of two model unidirectional nonlinear equations of the Zakharov
type [33–35]:

2i
∂U

∂t
+

∂

∂ξ

[
q(ξ)

∂U

∂ξ

]
− ρU = 0; (1)

∂ρ

∂t
+
∂ρ

∂ξ
− μ

∂2ρ

∂ξ2
= −∂|U |2

∂ξ
. (2)

Here, ρ is the low-frequency disturbance of the medium parameters, q(ξ) is the second-order linear dispersion
coefficient, and μ is the high-frequency loss coefficient for low-frequency waves. In particular, this system
describes the dynamics of intense electromagnetic or Langmuir waves in an isotropic plasma with allowance
for their interaction with damped ion-acoustic waves.

In the second approximation of the nonlinear-wave dispersion theory, the nonlinear response of the
medium is local, ρ = −|U |2, and the envelope of the high-frequency wave packet is described by a nonlinear
Schrödinger equation. In the third approximation of the nonlinear-wave dispersion theory in describing short
high-frequency wave packets (kΔ � μ, where Δ and k are the length and the additional wave number of the
wave packet, respectively), the nonlinear response of the medium contains a nonlocal nonsymmetric term
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stipulated by the decay of low-frequency wave packets due to low-frequency waves: ρ = −|U |2−μ∂|U |2/∂ξ.
In this approximation, the model equation for the wave packet envelope is as follows:

2i
∂U

∂t
+

∂

∂ξ

[
q(ξ)

∂U

∂ξ

]
+ 2αU |U |2 + μU

∂(|U |2)
∂ξ

= 0. (3)

The last term in Eq. (3) describes the stimulated scattering of a high-frequency wave field by damped low-
frequency waves and is a spatial counterpart of the stimulated Raman scattering (spatial stimulated Raman
scattering).

3. ANALYTICAL RESULTS

We now apply the method of integrals for solution of Eq. (3). Under zero conditions on the infinity,
U
∣∣
|ξ|→∞ → 0, Eq. (3) has the following moments of the distribution:
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Here, U = |U | exp(iϕ), and K = ∂ϕ/∂ξ is the additional wave number of the wave packet. To close up
Eqs. (4)–(8), the spatial distribution of the wave number K should be related to the parameters of the wave
packet envelope and the inhomogeneity of the medium. For this we assume that the scales of the dispersion
inhomogeneity and variation in the local wave number K are much greater than the scale of inhomogeneity
of the wave packet envelope, i. e., Dq,K � D|U |. Thus, the spatial distribution of the wave number K in the

vicinity of the “center of mass” of the wave packet ξ̄ = N−1
∫ +∞
−∞ ξ |U |2 dξ, where N =

∫ +∞
−∞ |U |2 dξ, can be

approximated by the relationship K(ξ) = K(ξ̄)+ (∂K/∂ξ)ξ̄ (ξ− ξ̄). The gradient of the wave number in the
“center of mass” of the wave packet can be found from the imaginary part of Eq. (3) under the condition
(∂|U |/∂ξ)ξ̄ = 0: (

∂K

∂ξ

)
ξ̄

= −
(

2

q |U |
∂|U |
∂t

+
1

q

dq

dξ
K

)
ξ̄

. (9)

For the wave packets whose amplitude and length are connected by a soliton-like relationship, we
obtain, in view of Eqs. (4) and (9), that K(ξ, t) = K(ξ̄, t) ≡ k(t). The system of equations (4)–(8) in this
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case becomes closed.

2
dk

dt
= −μL0

N0
l − q′(ξ̄)z; (10)

dz

dt
= −μL0

N0
kl − 3kq′(ξ̄)z + 2k3q′(ξ̄); (11)

dl

dt
= −3kq′(ξ̄)l; (12)

dξ̄

dt
= kq(ξ̄). (13)

Here, q′(ξ̄) = (∂q/∂ξ)ξ̄ is the dispersion gradient in the “center of mass” of the wave packet, n = N/N0,

l = L/L0, z = Z/N0, Z ≡ ∫ +∞
−∞ |∂U/∂ξ|2 dξ and L ≡ ∫ +∞

−∞ (∂|U |2/∂ξ)2 dξ are the integrals of the wave
packet and N0 = N(0), Z0 = Z(0) and L0 = L(0) are the integrals of the wave packets at a zero time. The
equilibrium state of system (10)–(13) is reached under the condition

k = 0, μL0 = −q′(ξ̄0)Z0. (14)

In the equilibrium state, the spatial stimulated Raman scattering is compensated by the dispersion
decrease. For analysis of system (10)–(13) outside the equilibrium state, we consider the case of exponential
spatial dependence of the dispersion q = q0 exp(−ξ/D). Using the replacements θ = tq0/D and η = ξ̄/D,
we reduce system (10)–(13) to the following form:

2
dk

dθ
= z exp(−η)− rl; (15)

dz

dθ
= [3z exp(−η)− rl − 2k2 exp(−η)] k; (16)

dl

dθ
= 3kl exp(−η); (17)

dη

dθ
= k exp(−η), (18)

where r ≡ μL0D/(q0N0). With allowance for the integral l = exp(3η), system (15)–(18) reduces to

2
dk

dθ
= z exp(−η)− r exp(3η); (19)

dz

dθ
= [3z exp(−η)− r exp(3η) − 2k2 exp(−η)] k; (20)

dη

dθ
= k exp(−η). (21)

System (19)–(21), in turn, has the integral

3
k2

z0
exp(−η)− λ [1− exp(3η)] + 3

(
1− k20

z0

)
[1− exp(η)] = 3

k20
z0
, (22)

where k0 = k(0), λ ≡ r/z0, and z0 ≡ Z0/N0. The curves in the parameter plane (k/
√
z0, η), which are

described by Eq. (22) for k0 = 0 and different values of λ, are given in Fig. 1.

Consider the solution of Eq. (3) in the form of a stationary wave U(ξ, t) = ψ(ξ) exp(iΩt) for the
exponental profile q(ξ) = q0 exp(−ξ/D):

q0 exp(−ξ/D)
d2ψ

dξ2
− q0
D

exp(−ξ/D)
dψ

dξ
+ 2αψ3 − 2Ωψ + μψ

d(ψ2)

dξ
= 0. (23)
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Fig. 1. The curves described by Eq. (22) for k0 = 0 and different values of λ.

Assume that the scale of the dispersion inhomogeneity is much greater than the scale of inhomogeneity of the
wave packet envelope, D � Lψ. With allowance for the smallness of the parameter ε ≈ Lψ/D ≈ μ� {α, q0},
we will seek the solution of Eq. (23) in the form ψ = ψ0 +ψ1, where ψ1 ∼ εψ0 � ψ0. Keeping terms of the
order of ε, we have

q0
d2ψ0

dξ2
+ 2αψ3

0 − 2Ωψ0 = 0; (24)

q0
d2ψ1

dξ2
+ (6αψ2

0 − 2Ω)ψ1 =
q0
D

d2ψ0

dξ2
ξ − 2

3
μ
d(ψ3

0)

dξ
+
q0
D

dψ0

dξ
. (25)

Equation (24) has a classical soliton solution ψ0 = A0/ cosh(ξ/Δ), where Δ =
√
q0/α, Ω = αA2

0/2.
Equation (25) after the replacements η = ξ/Δ and Ψ = ψ1D/(A0Δ) takes the form

d2Ψ

dη2
+

(
6

cosh2 η
− 1

)
Ψ =

2η

cosh3 η
− η

cosh η
+

5

4

μ

μ∗
sinh η

cosh4 η
+

sinh η

cosh2 η
, (26)

where μ∗ = −5q0/(8A
2
0D) is the high-frequency loss coefficient corresponding to the equilibrium state of
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Fig. 2. The distribution Ψ(η) for μ = μ∗ and different Ψ′(0).

system (19)–(21). For Ψ(0) = 0, Eq. (26) has an exact solution

Ψ(η) =
[
Ψ′(0)η − η2

4
tanh η +

μ

4μ∗
(tanh η) ln(cosh η)

]
sh η +

1

12

(
μ

μ∗
− 1

)
(tanh2 η) sinh η. (27)

For μ = μ∗ corresponding to an equilibrium of stimulated scattering and decreasing dispersion,
solution (27) is localized. In this case, asymptotic form (27) for a large argument is as follows: Ψ(η →
±∞) ≈ ±η2 exp(−|η|). The wave field distribution Ψ(η) for μ = μ∗ and different values of Ψ′(0) is shown
in Fig. 2. The solution Ψ(η) is antisymmetric. The solitons with antisymmetric “tails” also arise in the
well-known system of linearly coupled nonlinear Schrödinger equations [36].

For μ �= μ∗, solution (27) is not localized, Ψ(η → ±∞) → ∞. Such a distribution of the function
Ψ(η) for the initial conditions Ψ′(0) = 0 and different values of μ is given in Fig. 3.

4. NUMERICAL SIMULATION

Consider the initial problem of the dynamics of a soliton-like wave packet U(ξ, t = 0) = sech ξ within
the framework of Eq. (3) (q(ξ) = exp(−ξ/10) and α = 1) from the viewpoint of numerical simulation. From
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Fig. 3. The distribution Ψ(η) for Ψ′(0) = 0 and different values of μ.

the analysis of system (19)–(21) one can find the equilib-

Fig. 4. The numerically obtained distribution of
|U | over |ξ| for 5 < t ≤ 150 at q(ξ) = exp(−ξ/10)
and μ = 1/16 (solid curve) and the soliton pro-
file of the nonlinear Schrödinger equation |U | =
1/cosh ξ (dotted line).

rium value of the coefficient μ for a given initial pulse,
namely, μ∗ = 1/16.

In the numerical calculations for μ = 1/16, the
initial wave packet evolves to a stationary localized dis-
tribution (solid curve in Fig. 4) with a zero wave num-
ber. This distribution coincides with the analytically ob-
tained solution of the system of equations (24) and (25)
for q0 = α = A0 = 1, D = 10, and μ = μ∗:

|U | =
{
1 +

1

40
(tanh ξ) ln(cosh ξ)− ξ2(tanh ξ)

]}
sh ξ.

For comparison, Fig. 4 shows a distribution of the soliton
solution envelope for the nonlinear Schrödinger equation
|U | = 1/cosh ξ (dotted curve). A small antisymmetric
deviation of the profile of the envelope from the profile of
a classical soliton is seen in the figure.

Deviation of the parameter μ from the equilibrium
value of μ∗ leads to a temporal variation in the soliton pa-
rameters (wave number and amplitude). Figure 5 shows
the spatial distribution of the absolute value of the en-
velope |U | and the local wave number K for μ = 1/32
at various time points. The distribution of the wave number in the soliton core region conforms to the
statements adopted in the analytical part of this study.
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Fig. 5. Spatial distribution of |U | (solid line) and the local wave number K (dotted line) for μ = 1/32 at the
times t = 40 (a) and t = 70 (b).

Figure 6 shows the temporal dynamics of the local wave number at the point of the maximum absolute
value of the wave packet envelope for q(ξ) = exp(−ξ/10) and different values of μ. The solid and dotted
curves correspond to the results of numerical calculations and the analytical solution of system (21)–(23),
respectively.

For μ < 3/16, which corresponds to the regime of the dynamic equilibrium of stimulated scattering
and decreasing dispersion, the numerical calculation results and the analytical consideration are well corre-
lated. For μ ≥ 1/16, the results do not coincide. This noncoincidence is due to the fact that the radiation
fields from the soliton core, which appear in the numerical calculations, were not taken into account in
the analytical consideration. Radiation fields lead to a decrease in the soliton core energy and, as a conse-
quence, a deviation of the numerically obtained wave numbers of the wave packet from the values obtained
by analytical solution of Eqs. (26) and (27).

5. CONCLUSIONS

In this paper, we consider the soliton dynamics within the framework of the extended Schrödinger
equation with inhomogeneous dispersion taking into account stimulated scattering by damped low-frequency
waves. The study was both analytical and numerical. It is shown that the spatial stimulated scattering
by damped low-frequency waves, which leads to a downshift of the spatial spectrum of the soliton wave
numbers, and the dispersion decrease on the spatial coordinate, which leads to an upshift of the soliton
spectrum, can be counterbalanced. A soliton solution resulting from this equilibrium is obtained in explicit
form. The regime of the dynamic equilibrium of stimulated scattering and inhomogeneous dispersion, in
which the soliton parameters vary in time periodically, is also found.

The soliton dynamics was considered neglecting the inhomogeneity of the cubic nonlinearity, group
velocity of the high-frequency component, nonlinear dispersion, and third-order linear dispersion. The
soliton dynamics with allowance for the effects stipulated by these summands will be examined elsewhere.
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