

The detection of corporate fraud in russian firms

M.A. SHTEFAN - D.A. BYKOVA*

ABSTRACT: In this paper we analyze the impact of financial and non-financial performance of Russian companies on the likelihood of corporate fraud. By constructing a regression model it was proven that the main factor indicating the presence of fraud in the company is an increase of the relationship between Sales General and Administration costs and amount of sales. The results of the study can be used as a basis for development of a methodology to identify and prevent fraud.

Introduction

The problem of identifying, capturing and prevention of corporate fraud exists not only in Russia but in all the world. In 2011 the economic crimes affected 37% of Russian firms, while in the countries of Central and Eastern Europe this index was 30% and in the "Great Seven" – 31%. At the average in the world 34% of companies were subject to corporate fraud⁽¹⁾. The main consequence of corporate fraud is a significant increase in investment risks and, as a result, a sharp deterioration of the macroeconomic situation in the world. Obviously it is necessary to improve existing methods of detection and prevention of corporate fraud, to develop new effective tools. Especially this problem is important for the Russian market, which depends on foreign capital in a significant degree. Development of a model to identify and prevent corporate fraud in Russian firms will increase their investment attractiveness and will give a boost to their potential development.

1. Literature review and research hypothesis

The best known method of detection and prevention of corporate fraud is a method proposed in 1997 by Messod Beneish⁽²⁾. The main hypothesis of M. Beneish was a correlation between symptoms of fraud and eight ratios formed on the basis of the financial statements, a list of which is presented in the table 1.

The Beneish model was tested on the sample of American companies forming accounting (financial) statements in accordance with the requirements of U.S. standards - Generally Accepted Accounting Principles (GAAP). It is interesting to consider the possibility of applying of above mentioned techniques to Russian companies, which form the financial statements in accordance with Russian standards, which significantly differ from GAAP that impose rather different disclosure requirements and principles of valuation of assets, of

^{*} Articolo ad invito.

⁽¹⁾ Official site of PricewaterhouseCoopers. URL: http://www.pwc.ru/.

⁽²⁾ Beneish M. D. Detecting GAAP Violations: Implications for Assessing Earnings Management among Firms with Extreme Financial Performance / M. D. Beneish // Journal of Accounting and Public Policy. − 1997. − № 3. − P. 30-36.

liabilities and of capital. The answer to this question we will try to find with the help of econometric methods.

Table 1 - The set of variables of Beneish model assessing likelihood of fraud

Name	Symbol	Formula*	Notes
1	2	3	4
1.Days Sales	DSRI	DSRI =	A large increase in days sales in
in Receiv-		receivables _t / sales _t	receivables could be the result of
ables Index		$receivables_{t-1} / sales_{t-1}$	a change in credit policy to spur
			sales in the face of increased
			competition, but disproportion- ate increases in receivables rela-
			tive to sales may also be sugges-
			tive of revenue inflation.
			At the average DSRI of "hon-
			est" firms is 1.031, while ma-
			nipulators are characterized by
			42% increase of the ratio –
	01.67		1.465.
2.Gross	GMI		GMI indicates whether the share
Margin			of gross margin profit remains in sales o no. When GMI is greater
Index			than 1, it shows that gross mar-
		GMI =	gins have deteriorated.
		$(sales_{t-1}-COGS_{t-1})/sales_{t-1}$	At the average GMI of "honest"
		(salest-COGSt)/ salest	firms is 1.014, while manipula-
			tors are characterized by 18%
		where COGS - Costs of	increase of the ratio – 1.193.
		Goods Sold.	
3.Asset	AQI	AQI=	If AQI is greater than 1 it indi-
Quality		_ CurrentAssetst+PPEt	cates that the firm has potentially
Index		TotalAssetst	increased its involvement in cost
		1 - CurrentAssetst-1+PPEt-1	deferral. An increase in asset re-
		Total Assets _{t-1}	alization risk indicates an in-
			creased propensity to capitalize
		where PPE - property plant	and thus defer costs.
		and _	At the average AQI of "honest" firms is 1.039, while manipula-
		equipment.	tors are characterized by 21%
			increase of the ratio – 1.254.
4.Sales	SGI		While sales growth is not itself a
Growth		$SGI = \frac{sales_t}{}$	measure ofmanipulation, growth
Index		sales _{t-1}	companies are likely to find-

	DEN		themselves under pressure to manipulate in orderto keep up appearances. At the average SGI of "honest" firms is 1.134, while manipulators are characterized by 42% increase of the ratio –1.607.
5.Depre- ciation In-	DEPI		A slower rate of depreciation (a DEPI > 1) maymean that a firm
dex			is revising useful lives. The purpose of these changes
		DEPI =	may be associated with an in-
		Depreciation _{t-1} Depreciation _t	crease in earnings for the period.
(C.1	SGAI	Depreciation _{t-1} + PPE _{t-1} Depreciation _t + PPE _t	Consequents that are least a second in
6.Sales General	SGAI	SGAI =	Suggests that analysts would interpret adisproportionate in-
and Admin-		SGAEmpensest/salest SGAEmpensest_1/salest_1	crease in sales as a negative
istrative		SGA Expenses	signal about the firm's future
Expenses		-	prospects.
Index		where - Sales General and	
		Administrative Expenses.	
1	2	3	4
7. Leverage Index	LVGI	$\begin{array}{c} LVGI = \\ \frac{LTD_{C} \operatorname{CurrentLiabilities}_{C-1}}{\operatorname{Total Assetz}_{k}} / \frac{LTD_{C-1} \operatorname{CurrentLiabilities}_{C-1}}{\operatorname{Total Assetz}_{k}} \end{array}$	A LVGI greater than 1 indicates an increase in leverage. The vari- able is included to capture debt covenants incentives for earnings
8. Accruals	TATA	where LTD – Long-term Debt.	manipulation. Changes in leverage in the firms' capital structure could be associated with the stock market effect of default. In order to raise the market value of the shares, the management company may artificially reduce the value of financial instruments. This ratio helps to identify the

* Year t refers the first year in which earnings manipulation occurs

We applied a regression analysis in order to establish a relationship between a dependent variable and independent ones. As the quantity characterizing the likelihood of corporate fraud, i.e. the dependent variable in the model, we use a dichotomous variable coded 1 for companies found guilty of economic crimes and 0 otherwise. The latent variable underlying a binary variable, we designate fraud*. It seems problematic to use non-dichotomous variable, which could allow to make a full and qualitative forecast of fraud in a company, due to the lack of necessary information.

As financial indicators that signal the presence of corporate fraud, we will use the following ratios proposed in the model of M. Beneish:

- DSRI Days Sales in Receivables Index,
- GMI Gross Margin Index,
- AQI Asset Quality Index,
- SGI Sales Growth Index,
- SGAI Sales General and Administrative Expenses Index,
- LVGI Leverage Index.

Indicators TATA (Total Accruals to Total Assets) and DEPI (dynamic Depreciation Index) were excluded from the model due to the lack of information in financial statements of Russian firms considered necessary for their calculation.

Moreover, we added to the regression model non-financial indicators. From our point of view, not only quantitative but also qualitative indicators, such as a legal form, conditions of the environment and others, could signal the presence of corporate fraud in acompany. Therefore, we consider it advisable to use in the regression model a binary variable that characterizes an organizational form of a company - orgform. This variable takes the value 1 if a company is characterized as a joint-stock one and 0 otherwise. We consider joint-stock companyas of lower risk of fraud because of the separation between the owners and managers, who tend to be different people. An increase of control functions in such a way reduces the possibility of fraud by managers and employees of firms.

We also propose to use the second additional variable, a parameter region, calculated as the ratio of the number of economic crimes in the region, in which the analyzed company operates, to the total number of organizations registered in this region by the Federal Tax Service (Russia). This index, reflecting the criminal statistics in the region, characterizes the environment in which an organization functions, the general atmosphere and the frequency of fraud commitments by other firms that may influence the decisions of potential transgressors, members of a firm. It is likely that in regions with a higher incidence of economic crimes potential fraudsters can choose to stick to the law-abiding behavior line. We can assume that in the above mentioned circumstances supervisors must show greater vigilance and, as a result, the probability to be detected for transgressors increases.

Thus, the hypothesis of our study is a systematic relation between the probability of corporate fraud and a number of qualitative characteristics and financial statement variables calculated for Russian firms.

2. Dataset, variables and method

The regression model of the dependence of the probability of corporate fraud in Russian companies on qualitative and quantitative (financial) indicators of their activity is as follows:

fraud* =
$$\alpha 0$$
 + $\beta 0$ *DSRI + $\beta 1$ *GMI + $\beta 2$ *AQI + $\beta 4$ *SGI + $\beta 5$ *SGAI + $\beta 6$ *LVGI+ $\beta 7$ *orgform+ $\beta 8$ *region + $\epsilon i(1)$

To test the hypothesis it was necessary to form an array of data, the main stages of this process were:

1. Sampling of companies whose employees committed fraud, and guilt was determined by court during the period from 2009 to 2011. As a source of information we used the site of unified decisions database of general jurisdiction courts of the Russian Federation⁽³⁾.

In total in the analyzed data set we included 124 companies, regarding 62 of which there were instituted legal proceedings related to fraudulent activities of representatives of these firms. Most of fraud cases were carried out in the form of false reporting (Table 2). Asset misappropriation was relatively less reported in the companies of the sample. The most rarely observed fraud category in the chosen Russian firms was corruption.

\mathcal{N}_{2}	Fraud category	Percent
1	Fraudolent statements	54,84%
2	Asset misappropriation	28,55%
3	Corruption	16.61%

Table 2 - Sample structure according to fraud categories

2. Collection and compilation of information on financial and non-financial performance of the companies from the sample.

The main sources of information were:

- accounting (financial) statements of companies, are formed on the basis of which the formed the ratios proposed in the model of M. Beneish:DSRI, GMI, AQI, SGI, SGAI, LVGI,
- information on the legal form of the analyzed companies (from the independent rating agency Fira Pro),
- information on the statistics of economic crimes in regions of the Russian Federation from the site of the Federal Service of State Statistics and Information about state registration of legal entities by the Federal Tax Service.
- 3. Preparation of the data array, i.e. formation of financial and non-financial variables included in the model. The results of this step are shown in Table 3.

⁽³⁾Official site of unified decisions database of general jurisdiction courts of the Russian Federation

Table 3 - Financial and non-financial indicators of performance of Russian firms

N₂	fraud	orgform	DSRI	GMI	AQI	SGI	SGAI	LVGI	region
1	2	3	4	5	6	7	8	9	10
1	1	0	0	-0,12642	0	0,693545	0	1,737602	0,079233
2	1	0	0	1,266599	0	1,21609	0,698385	0,493784	0,075981
3	0	0	0,519526	1,099515	1,003414	1,332173	1,396548	1,21085	0,075981
4	1	0	1,965497	0,921024	2,255613	1,309001	0,852893	1,045853	0,075981
5	0	1	1,063427	1,674587	0,626478	1,241018	0	0,89213	0,042437
6	1	1	0,999409	0,168247	1,167306	1,0867	0	0,564753	0,053348
7	0	1	0,89049	0,816269	0,696558	1,315967	1,321298	1,710065	0,053348
8	1	0	1,154989	0,800816	0,747785	0,996516	1,168643	1,0021	0,053348
9	0	0	1,138027	0,572111	0	0,7066	1,699029	0,993167	0,053348
10	1	1	1,066817	-1,92765	1,099353	0,922042	0	0,992073	0,076663
11	0	0	0,600677	0,96899	0,929388	0,99375	0	0,266343	0,044267
12	1	0	0,54974	1,708567	1,306346	0,757621	0	1,732134	0,137964
13	1	0	2,022011	1,000565	0	0,46342	1,672114	1,048719	0,049149
14	0	0	0,774429	0,870665	0	1,159512	0	0,185526	0,003766
15	0	0	0,195146	0,508684	0	0,512438	0	0,431793	0,045681
16	1	0	1,084788	1	0,15394	0,954839	0	0,871086	0,057143
17	0	0	1,168682	1	0	1,942185	0	0,893465	0,061072
18	0	0	1,002053	1,065291	0	0,643325	0,573091	1,100731	0,065641
19	1	0	0	0,989368	0,950321	1,021057	1,08574	1,318443	0,039955
20	1	1	1,388858	0,88354	0,655688	0,809528	0,957549	0,686912	0,05013
21	1	0	0,446481	0,657283	0	2,054665	0	1,167861	0,044724
22	0	0	0,972697	0,654723	1,868843	0,746971	1,50294	0,947516	0,045681
23	0	1	0,571914	1,507552	0	1,718292	3,685831	0,206726	0,013415
24	1	0	0,233921	1,153919	0	0,812239	0,33344	0,06456	0,013415
25	0	0	0,738146	1,083604	0	1,413257	0,937144	3,512839	0,069672
26	1	0	1,481549	0,561489	0	1,252741	0	0,958864	0,013415
27	0	0	0,271739	0,332437	0	0,92	0	0,950781	0,03188
28	1	0	2,248399	0,867844	1,111027	0,470675	0	0,931997	0,03188
29	1	0	0,749209	1	0	1,101366	0,232811	0,891628	0,042437
30	0	0	0	0,816623	0	1,360237	0,628844	0,156307	0,078435
31	0	0	0,148858	1,245848	0,005821	1,168317	0	0,939259	0,053348
32	1	0	0,781324	-1,32167	1,187839	0,896045	0	0,996813	0,03188

33 1 0 0 1,062147 0,977923 0,94847 1,171324 0,726545 0,078435 34 0 0 0,589189 0,553256 0,01044 1,363144 1,532567 0,919801 0,003766 35 1 0 0 0,578694 0 0,440721 2,44529 1,025327 0,044267 37 1 1 1,268168 0,86213 1,054779 1,16883 0,951823 1,018349 0,03188 38 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 39 1 1 1,624977 3,060821 0,433636 1,354624 0 1,038703 0,119522 41 1 1 1,624977 3,060821 0,433636 1,3579162 0 1,038703 0,119522 41 1 1 1,262467 0,048915 0,498905 0,952888 0,725026 0,044724 42 <	1	ı i	i	Ī	Ī	Ī	Ī	ı	1	ı i
35 1 0 0 0,578694 0 0,88182 1,676375 1,100682 0,03188 36 0 0 1,169872 0,979156 0 0,440721 2,449529 1,025327 0,044267 37 1 1 1,268168 0,86213 1,054779 1,108883 0,951823 1,018349 0,03188 38 0 0 0,683418 0,351882 3,257529 1,40639 2,566849 0,50825 0,042437 39 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 40 0 0 0,994846 2,769466 2,87453 1,487649 0 1,038703 0,119524 41 1 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 43 1 0 1,192266 -0,04854 6,468855 0,76997 0 1,238849 0,137664 4	33	1	0	0	1,062147	0,977923	0,94847	1,171324	0,722654	0,078435
36 0 0 1,169872 0,979156 0 0,440721 2,449529 1,025327 0,044267 37 1 1 1,268168 0,86213 1,054779 1,108883 0,951823 1,018349 0,03188 38 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 39 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 40 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 41 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 42 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 43 1 1 1,02266 0,04846 4,08855 0,76997 0 1,238849 0,137964	34	0	0	0,589189	0,553256	0,01044	1,363144	1,532567	0,919801	0,003766
37 1 1 1,268168 0,96213 1,054779 1,108883 0,951823 1,018349 0,03188 38 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 39 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 40 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 41 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 42 0 1 0,877421 2,519594 0,045915 0,899805 0,752588 0,725026 0,044724 43 1 1 1,628168 0,86213 1,054779 1,10883 0,91823 1,018349 0,137964 44 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 <	35	1	0	0	0,578694	0	0,88182	1,676375	1,100682	0,03188
38 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 39 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 40 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 41 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 42 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 43 1 0 1,192266 -0,04854 6,408855 0,76997 0 1,23849 0,137964 44 1 1 1,268168 0,86213 1,054797 1,10883 0,951823 1,018349 0,04396 45 0 0 0,684418 0,351882 2,257529 1,640639 2,566849 0,590825 0,042437 <	36	0	0	1,169872	0,979156	0	0,440721	2,449529	1,025327	0,044267
39 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 40 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 41 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 42 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 43 1 0 1,192266 -0,04854 6,408855 0,76997 0 1,238849 0,137964 44 1 1 1,268168 0,86213 1,054779 1,108833 0,951823 1,018349 0,03188 45 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 46 1 1 1,624977 3,060821 0,433636 1,354624 0 1,118651 0,043964	37	1	1	1,268168	0,86213	1,054779	1,108883	0,951823	1,018349	0,03188
40 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 41 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 42 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 43 1 0 1,192266 -0,04854 6,408855 0,76997 0 1,238849 0,137964 44 1 1 1,268168 0,86213 1,054779 1,108883 0,951823 1,018349 0,03188 45 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 46 1 1 1,624977 3,060821 0,433636 1,354624 0 1,10837 0,119522 48 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107	38	0	0	0,683418	0,351882	3,257529	1,640639	2,566849	0,590825	0,042437
41 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 42 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 43 1 0 1,192266 -0,04854 6,408855 0,76997 0 1,238849 0,137964 44 1 1 1,268168 0,86213 1,054779 1,108883 0,951823 1,018349 0,03188 45 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 46 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 47 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,115522 48 1 1 3,87421 2,519594 0,045915 0,89805 0,952588 0,725026 0,044724 <	39	1	1	1,624977	3,060821	0,433636	1,354624	0	1,116851	0,043966
42 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 43 1 0 1,192266 -0,04854 6,408855 0,76997 0 1,238849 0,137964 44 1 1 1,268168 0,86213 1,054779 1,108883 0,951823 1,018349 0,03188 45 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 46 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 47 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 48 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 49 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724	40	0	0	0,994846	2,769646	2,876453	1,487649	0	1,038703	0,119522
43 1 0 1,192266 -0,04854 6,408855 0,76997 0 1,238849 0,137964 44 1 1 1,268168 0,86213 1,054779 1,108883 0,951823 1,018349 0,03188 45 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 46 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 47 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 48 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 49 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 50 1 0 0,679073 1,389449 1,762943 1,065224 0 1,134335 0,020482	41	1	1	3,326478	0,727581	2,872125	1,579162	0	1,073402	0,082107
44 1 1 1,268168 0,86213 1,054779 1,108883 0,951823 1,018349 0,03188 45 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 46 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 47 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 48 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 49 0 1 0,877421 2,519594 0,045915 0,898055 0,952588 0,725026 0,044724 50 1 0 0,679073 1,389449 1,762943 1,065224 0 1,134335 0,020482 51 0 0 1,163327 1,166578 1,655529 1,646177 0 1,407066 0,078321	42	0	1	0,877421	2,519594	0,045915	0,899805	0,952588	0,725026	0,044724
45 0 0 0,683418 0,351882 3,257529 1,640639 2,566849 0,590825 0,042437 46 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 47 0 0 0,994846 2,769646 2,874253 1,487649 0 1,037302 0,082107 48 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 49 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 50 1 0 0,679073 1,389449 1,762943 1,065224 0 1,134335 0,020482 51 0 0 1,163327 1,106578 1,555529 1,646177 0 1,407066 0,078321 52 1 0 1,668602 1,12262 0,99425 0,882612 0 1,047215 0,013415	43	1	0	1,192266	-0,04854	6,408855	0,76997	0	1,238849	0,137964
46 1 1 1,624977 3,060821 0,433636 1,354624 0 1,116851 0,043966 47 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 48 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 49 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 50 1 0 0,679073 1,389449 1,762943 1,065224 0 1,134335 0,020482 51 0 0 1,163327 1,106578 1,655529 1,646177 0 1,407066 0,078321 52 1 0 1,668602 1,12262 0,994625 0,882612 0 1,047215 0,013415 53 0 0 0,875703 1 1,504274 0,848525 1,006865 0,769102 0,013415 5	44	1	1	1,268168	0,86213	1,054779	1,108883	0,951823	1,018349	0,03188
47 0 0 0,994846 2,769646 2,876453 1,487649 0 1,038703 0,119522 48 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 49 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 50 1 0 0,679073 1,389449 1,762943 1,065224 0 1,134335 0,020482 51 0 0 1,163327 1,106578 1,655529 1,646177 0 1,407066 0,078321 52 1 0 1,668602 1,12262 0,994625 0,882612 0 1,047215 0,013415 53 0 0 0,875703 1 1,504274 0,848525 1,06665 0,769102 0,013415 54 1 0 3,556059 1,102943 0,008097 0,951615 1,157371 0,852328 0,013415	45	0	0	0,683418	0,351882	3,257529	1,640639	2,566849	0,590825	0,042437
48 1 1 3,326478 0,727581 2,872125 1,579162 0 1,073402 0,082107 49 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 50 1 0 0,679073 1,389449 1,762943 1,065224 0 1,134335 0,020482 51 0 0 1,163327 1,106578 1,655529 1,646177 0 1,407066 0,078321 52 1 0 1,668602 1,12262 0,994625 0,882612 0 1,047215 0,013415 53 0 0 0,875703 1 1,504274 0,848525 1,006865 0,769102 0,013415 54 1 0 3,556059 1,102943 0,008097 0,951615 1,157371 0,852328 0,013415 55 0 0 0,912686 1,419177 0,010244 4,86369 0,874582 1,075269 0,020482	46	1	1	1,624977	3,060821	0,433636	1,354624	0	1,116851	0,043966
49 0 1 0,877421 2,519594 0,045915 0,899805 0,952588 0,725026 0,044724 50 1 0 0,679073 1,389449 1,762943 1,065224 0 1,134335 0,020482 51 0 0 1,163327 1,106578 1,655529 1,646177 0 1,407066 0,078321 52 1 0 1,668602 1,12262 0,994625 0,882612 0 1,047215 0,013415 53 0 0 0,875703 1 1,504274 0,848525 1,006865 0,769102 0,013415 54 1 0 3,556059 1,102943 0,008097 0,951615 1,157371 0,852328 0,013415 55 0 0 0,912686 1,419177 0,010924 4,86369 0,874582 1,075269 0,020482 56 1 0 1,573149 0,289097 0,001646 2,144109 0,054684 0,499807 0,020482	47	0	0	0,994846	2,769646	2,876453	1,487649	0	1,038703	0,119522
50 1 0 0,679073 1,389449 1,762943 1,065224 0 1,134335 0,020482 51 0 0 1,163327 1,106578 1,655529 1,646177 0 1,407066 0,078321 52 1 0 1,668602 1,12262 0,994625 0,882612 0 1,047215 0,013415 53 0 0 0,875703 1 1,504274 0,848525 1,006865 0,769102 0,013415 54 1 0 3,556059 1,102943 0,008097 0,951615 1,157371 0,852328 0,013415 55 0 0 0,912686 1,419177 0,010924 4,86369 0,874582 1,075269 0,020482 56 1 0 1,573149 0,289097 0,001646 2,144109 0,054684 0,499807 0,020482 57 0 0 0,691603 0,775899 0,515416 2,030125 1,016878 0,565352 0,081769	48	1	1	3,326478	0,727581	2,872125	1,579162	0	1,073402	0,082107
51 0 0 1,163327 1,106578 1,655529 1,646177 0 1,407066 0,078321 52 1 0 1,668602 1,12262 0,994625 0,882612 0 1,047215 0,013415 53 0 0 0,875703 1 1,504274 0,848525 1,006865 0,769102 0,013415 54 1 0 3,556059 1,102943 0,008097 0,951615 1,157371 0,852328 0,013415 55 0 0 0,912686 1,419177 0,010924 4,86369 0,874582 1,075269 0,020482 56 1 0 1,573149 0,289097 0,001646 2,144109 0,054684 0,499807 0,020482 57 0 0 0,691603 0,775899 0,515416 2,030125 1,016878 0,565352 0,082107 58 1 1 2,859241 0,860826 0,660021 1,137852 0,054413 1,206338 0,03188 </td <td>49</td> <td>0</td> <td>1</td> <td>0,877421</td> <td>2,519594</td> <td>0,045915</td> <td>0,899805</td> <td>0,952588</td> <td>0,725026</td> <td>0,044724</td>	49	0	1	0,877421	2,519594	0,045915	0,899805	0,952588	0,725026	0,044724
52 1 0 1,668602 1,12262 0,994625 0,882612 0 1,047215 0,013415 53 0 0 0,875703 1 1,504274 0,848525 1,006865 0,769102 0,013415 54 1 0 3,556059 1,102943 0,008097 0,951615 1,157371 0,852328 0,013415 55 0 0 0,912686 1,419177 0,010924 4,86369 0,874582 1,075269 0,020482 56 1 0 1,573149 0,289097 0,001646 2,144109 0,054684 0,499807 0,020482 57 0 0 0,691603 0,775899 0,515416 2,030125 1,016878 0,565352 0,082107 58 1 1 2,859241 0,860826 0,660021 1,137852 0,054413 1,206338 0,03188 59 1 1 0 0 0,94994 0 0 0,731681 0,042437 <	50	1	0	0,679073	1,389449	1,762943	1,065224	0	1,134335	0,020482
53 0 0 0,875703 1 1,504274 0,848525 1,006865 0,769102 0,013415 54 1 0 3,556059 1,102943 0,008097 0,951615 1,157371 0,852328 0,013415 55 0 0 0,912686 1,419177 0,010924 4,86369 0,874582 1,075269 0,020482 56 1 0 1,573149 0,289097 0,001646 2,144109 0,054684 0,499807 0,020482 57 0 0 0,691603 0,775899 0,515416 2,030125 1,016878 0,565352 0,082107 58 1 1 2,859241 0,860826 0,660021 1,137852 0,054413 1,206338 0,03188 59 1 1 0 0 0,94994 0 0 0,731681 0,042437 60 1 0 2,048455 3,694051 0 0,553786 0 0,998256 0,051769 61<	51	0	0	1,163327	1,106578	1,655529	1,646177	0	1,407066	0,078321
54 1 0 3,556059 1,102943 0,008097 0,951615 1,157371 0,852328 0,013415 55 0 0 0,912686 1,419177 0,010924 4,86369 0,874582 1,075269 0,020482 56 1 0 1,573149 0,289097 0,001646 2,144109 0,054684 0,499807 0,020482 57 0 0 0,691603 0,775899 0,515416 2,030125 1,016878 0,565352 0,082107 58 1 1 2,859241 0,860826 0,660021 1,137852 0,054413 1,206338 0,03188 59 1 1 0 0 0,94994 0 0 0,731681 0,042437 60 1 0 2,048455 3,694051 0 0,553786 0 0,998256 0,051769 61 1 0 0 0 0 0 1,401557 0,051769 63 1 0	52	1	0	1,668602	1,12262	0,994625	0,882612	0	1,047215	0,013415
55 0 0 0,912686 1,419177 0,010924 4,86369 0,874582 1,075269 0,020482 56 1 0 1,573149 0,289097 0,001646 2,144109 0,054684 0,499807 0,020482 57 0 0 0,691603 0,775899 0,515416 2,030125 1,016878 0,565352 0,082107 58 1 1 2,859241 0,860826 0,660021 1,137852 0,054413 1,206338 0,03188 59 1 1 0 0 0,94994 0 0 0,731681 0,042437 60 1 0 2,048455 3,694051 0 0,553786 0 0,998256 0,051769 61 1 0 0 0 0 0 1,048282 0,013415 62 1 1 0 0 0 0 1,038259 0,051769 63 1 0 0 0 0	53	0	0	0,875703	1	1,504274	0,848525	1,006865	0,769102	0,013415
56 1 0 1,573149 0,289097 0,001646 2,144109 0,054684 0,499807 0,020482 57 0 0 0,691603 0,775899 0,515416 2,030125 1,016878 0,565352 0,082107 58 1 1 2,859241 0,860826 0,660021 1,137852 0,054413 1,206338 0,03188 59 1 1 0 0 0,94994 0 0 0,731681 0,042437 60 1 0 2,048455 3,694051 0 0,553786 0 0,998256 0,051769 61 1 0 0 0 0 0 1,048282 0,013415 62 1 1 0 0 0 0 1,401557 0,051769 63 1 0 0 0 0 0 1,232949 0,042437 65 1 0 0 0 0 0 0 0,01	54	1	0	3,556059	1,102943	0,008097	0,951615	1,157371	0,852328	0,013415
57 0 0 0,691603 0,775899 0,515416 2,030125 1,016878 0,565352 0,082107 58 1 1 2,859241 0,860826 0,660021 1,137852 0,054413 1,206338 0,03188 59 1 1 0 0 0,94994 0 0 0,731681 0,042437 60 1 0 2,048455 3,694051 0 0,553786 0 0,998256 0,051769 61 1 0 0 0 0 0 1,048282 0,013415 62 1 1 0 0 0 0 1,401557 0,051769 63 1 0 0 0 0 1,338259 0,051769 64 1 0 0 0 0 0 1,338259 0,051769 65 1 0 0 0 0 0 1,343443 0,042437 66 1 <td>55</td> <td>0</td> <td>0</td> <td>0,912686</td> <td>1,419177</td> <td>0,010924</td> <td>4,86369</td> <td>0,874582</td> <td>1,075269</td> <td>0,020482</td>	55	0	0	0,912686	1,419177	0,010924	4,86369	0,874582	1,075269	0,020482
58 1 1 2,859241 0,860826 0,660021 1,137852 0,054413 1,206338 0,03188 59 1 1 0 0 0,94994 0 0 0,731681 0,042437 60 1 0 2,048455 3,694051 0 0,553786 0 0,998256 0,051769 61 1 0 0 0 0 0 1,048282 0,013415 62 1 1 0 0 0 0 1,048282 0,051769 63 1 0 0 0 0 1,038259 0,051769 64 1 0 0 0 0 0 1,232949 0,042437 65 1 0 0 0 0 0 1,343443 0,042437 66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0	56	1	0	1,573149	0,289097	0,001646	2,144109	0,054684	0,499807	0,020482
59 1 1 0 0 0,94994 0 0 0,731681 0,042437 60 1 0 2,048455 3,694051 0 0,553786 0 0,998256 0,051769 61 1 0 0 0 0 0 1,048282 0,013415 62 1 1 0 0 0 0 1,401557 0,051769 63 1 0 0 0 0 0 1,038259 0,051769 64 1 0 0 0 0 1,232949 0,042437 65 1 0 0 0 0 0 1,343443 0,042437 66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0 0 0 0 0,013415	57	0	0	0,691603	0,775899	0,515416	2,030125	1,016878	0,565352	0,082107
60 1 0 2,048455 3,694051 0 0,553786 0 0,998256 0,051769 61 1 0 0 0 0 0 1,048282 0,013415 62 1 1 0 0 0 0 1,401557 0,051769 63 1 0 0 0 0 0 1,038259 0,051769 64 1 0 0 0 0 0 1,232949 0,042437 65 1 0 0 0 0 0 1,343443 0,042437 66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0 0 0 0 0,013415	58	1	1	2,859241	0,860826	0,660021	1,137852	0,054413	1,206338	0,03188
61 1 0 0 0 0 0 1,048282 0,013415 62 1 1 0 0 0 0 0 1,401557 0,051769 63 1 0 0 0 0 0 1,038259 0,051769 64 1 0 0 0 0 0 1,232949 0,042437 65 1 0 0 0 0 0 1,343443 0,042437 66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0 0 0 0 0,013415	59	1	1	0	0	0,94994	0	0	0,731681	0,042437
62 1 1 0 0 0 0 1,401557 0,051769 63 1 0 0 0 0 0 1,038259 0,051769 64 1 0 0 0 0 0 1,232949 0,042437 65 1 0 0 0 0 0 1,343443 0,042437 66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0 0 0 0,013415	60	1	0	2,048455	3,694051	0	0,553786	0	0,998256	0,051769
63 1 0 0 0 0 0 1,038259 0,051769 64 1 0 0 0 0 0 1,232949 0,042437 65 1 0 0 0 0 0 1,343443 0,042437 66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0 0 0 0,013415	61	1	0	0	0	0	0	0	1,048282	0,013415
64 1 0 0 0 0 0 1,232949 0,042437 65 1 0 0 0 0 0 1,343443 0,042437 66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0 0 0 0 0,013415	62	1	1	0	0	0	0	0	1,401557	0,051769
65 1 0 0 0 0 0 1,343443 0,042437 66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0 0 0 0 0,013415	63	1	0	0	0	0	0	0	1,038259	0,051769
66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0 0 0 0 0 0,013415	64	1	0	0	0	0	0	0	1,232949	0,042437
66 1 0 0 0 0 0 0 0,013415 67 1 0 0 0 0 0 0 0 0,013415	65	1	0	0	0	0	0	0	1,343443	0,042437
67 1 0 0 0 0 0 0 0 0,013415	66	1	0	0	0	0	0	0	0	0,013415
68 1 0 0 0 0 0 1,308755 0,042437	67	1	0	0	0	0	0	0	0	0,013415
	68	1	0	0	0	0	0	0	1,308755	0,042437

69	1	0	0	0	0	0	0	1,753263	0,042437
70	1	0	1,908808	-0,18742	0	0,54104	0	1,00969	0,025055
71	1	0	2,381479	0,073934	0	1,082508	0	1,156707	0,025055
72	1	0	1,048891	-1,2471	0	1,132027	0	0,979729	0,025055
73	1	1	2,542742	-1,79975	0	0,372549	0	1,069199	0,025055
74	1	0	0	0	0	0	0	0,865102	0,025055
75	1	0	0	0	0	0	0	1,633477	0,025055
76	1	0	0	0	0	0	0	1,122988	0,013415
77	1	0	0	0	0	0	0	1,349219	0,013415
78	1	0	3,965856	1	0	1,92692	0	1,020361	0,013415
79	1	1	1,771196	-0,01681	2,805624	0,790888	0	0,878596	0,025055
80	0	1	0,946085	-0,05077	0,770759	2,612933	0	1,027127	0,051769
81	0	1	1,074956	0,491467	0,951712	1,302174	2,242853	2,94886	0,075981
82	0	0	0,918641	1,584184	1,046594	0,690786	4,538909	1,16463	0,02512
83	0	1	0,678813	1,100724	1,214229	1,070697	0,560438	1,108063	0,03188
84	0	1	2,164018	1,177036	1,043933	1,217757	1,06385	1,048372	0,078321
85	0	1	1,412382	0,459332	0,399759	1,107825	2,549573	0,489688	0,037159
86	0	1	1,649985	1,221175	0,521584	0,761429	0	0,299878	0,044724
87	0	1	0,388388	1,426204	0,106862	3,707567	0,20263	0,742529	0,020482
88	0	0	2,200952	0,596825	0,949065	1,219885	0	1,224248	0,071961
89	0	1	0,529621	1,821125	0,634056	1,156116	3,684112	1,184148	0,030837
90	0	0	3,01675	0,703608	0,766473	1,018422	1,014964	0,84644	0,049149
91	0	1	1,591666	0,875604	0,602828	1,347566	1,220316	0,99075	0,013415
92	0	1	1,784227	0,910891	1,365739	0,579088	1,29911	1,038878	0,03983
93	0	1	1,649985	1,221175	0,521584	0,761429	0	0,299878	0,044724
94	0	1	0,388388	1,426204	0,106862	3,707567	0,20263	0,742529	0,020482
95	0	0	2,200952	0,596825	0,949065	1,219885	0	1,224248	0,071961
96	0	1	0,529621	1,821125	0,634056	1,156116	3,684112	1,184148	0,030837
97	0	0	0,524805	1,865227	0,324994	5,246194	0,287724	1,097536	0,025055
98	0	0	3,01675	0,703608	0,766473	1,018422	1,014964	0,84644	0,049149
99	0	1	1,591666	0,875604	0,602828	1,347566	1,220316	0,99075	0,013415
100	0	1	1,784227	0,910891	1,365739	0,579088	1,29911	1,038878	0,03983
101	1	0	0,938261	0,576548	0	0,842963	0	0,743284	0,03188
102	1	0	0,692949	0,760892	0	1,844516	0	0,993801	0,078435
103	1	0	3,163271	1,396422	0	1,097557	0	0,880431	0,013415
104	1	0	1,120081	0,528462	0	2,597593	0	0,956584	0,013415

105	1	0	0,765531	1,004768	0	1,385701	0,675405	0,987726	0,013415
106	1	1	0,768344	1,135658	0,11681	1,221078	0	0,46269	0,013415
107	1	1	0	0	0	0	0	2,170833	0,013415
108	0	1	0,540889	1,078084	0,554731	0,993147	1,130462	1,000183	0,103977
109	0	1	1,101514	1,023725	1,11092	1,07901	1,400824	0,964944	0,043879
110	0	1	1,043358	1,213033	1,288593	1,457632	1,041081	0,870848	0,03188
111	1	0	2,897136	0,734017	4,942655	1,302552	1,026871	1,012585	0,03188
112	1	0	0,753275	0,362596	0,947325	1,082609	0	0,925191	0,079233
113	1	0	0,844494	0,978735	0	1,214014	0,990511	1,014796	0,013415
114	0	1	2,517075	2,199002	0,704981	0,728189	0	0,977292	0,013415
115	0	1	1,006278	1,200511	0,819247	1,332821	0,037333	0,958523	0,040419
116	0	1	0,513932	0,866768	0,885252	1,184458	1,134744	0,974321	0,013415
117	0	1	5,697642	0,851786	0,176026	0,451882	1,900663	0,898938	0,03983
118	0	1	1,433529	1,057516	0,647674	1,051653	0,81321	1,14947	0,03188
119	0	1	0,938908	0,884151	0,851263	0,922467	1,136749	1,032152	0,045681
120	0	1	2,096898	1,145717	0,743361	1,112997	0,917553	1,334897	0,013415
121	0	1	0,718728	0,908459	1,146272	1,327674	0,062388	0,705774	0,013415
122	0	1	1,127628	0,916951	0,472666	0,985526	0,937859	0,939474	0,020482
123	0	0	1,42211	0,872523	0,804469	1,813658	0,962216	1,05311	0,013415
124	0	1	0,842186	0,946411	0,908169	1,458051	1,111146	0,8016	0,013415

Assessment of the relationship between the probability of corporate fraud and financial and non-financial performance of Russian firms was carried out on the basis of econometric methods for testing binary models, namely using probit-and logit-models. The results obtained for probit- and logit-models are shown in Tables 4 and 5 respectively.

Table 4 - Probit Estimation Results (not ordered)

Probit regression	Number of obs	=	124
-	LR chi2(8)	=	58.76
	Prob > chi2	=	0.0000
Log likelihood = -56.570627	Pseudo R2	=	0.3418

fraud	Coef.	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
orgform	7245306	.295194	-2.45	0.014	-1.3031	1459611
dsri	.1111976	.1477849	0.75	0.452	1784554	.4008507
gmi	3285419	.185254	-1.77	0.076	6916331	.0345492
ăqi	.1004243	. 1644771	0.61	0.541	2219449	.4227934
sgi	6932096	. 265269	-2.61	0.009	-1.213127	1732919
sgāi	9859067	. 2264269	-4.35	0.000	-1.429695	5421181
lvgi	. 3498436	. 3220207	1.09	0.277	2813053	.9809925
region	-7.904608	5.957472	-1.33	0.185	-19.58104	3.771823
_cons	1.691065	. 5110217	3.31	0.001	.6894808	2.692649

 $\begin{array}{l} \mbox{fraud} * = -0.72453 * \mbox{orgform} + 0.111198 * \mbox{DSRI} - 0.32854 * \mbox{GMI} + 0.10042 * \mbox{AQI} - 0.69321 * \mbox{SGI} - 0.98591 * \mbox{SGAI} + 0.34984 * \mbox{LVGI} - 7.90461 * \mbox{region} \end{array} \ \ \, \mbox{(4)}$

Table 5 - Logit Estimation Results

Logistic regression	Number of obs	=	124
	LR chi2(8)	=	57.75
	Prob > chi2	=	0.0000
Log likelihood = -57.073267	Pseudo R2	=	0.3360

fraud	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
orgform	-1.20953	. 4968859	-2.43	0.015	-2.183409	2356518
dsri	.1858899	. 2465569	0.75	0.451	2973527	.6691326
gmi	5569224	. 3185354	-1.75	0.080	-1.18124	.0673955
āqi	.1552069	. 2699739	0.57	0.565	3739323	.6843461
sgi	-1.135652	. 4426743	-2.57	0.010	-2.003278	2680263
sgāi	-1.614721	. 3891511	-4.15	0.000	-2.377443	8519991
lvgi	.5576163	. 5506358	1.01	0.311	5216101	1.636843
region	-12.7099	9.948742	-1.28	0.201	-32.20907	6.789277
_cons	2.812122	. 9033622	3.11	0.002	1.041564	4.582679

fraud * = - 1.20953*orgform + 0.18589*DSRI - 0.55692*GMI + 0.155207*AQI - 1.13565*SGI - 1.61472*SGAI + 0.557616*LVGI - 12.7099*region (5)

3. Results

Marginal effects from independent variable variations on the regress and were determined through the application of commands of the statistical program STATA. Analysis of the results presented in Table 6 shows that in this study: the results are rather similar across

estimation methods of both probit- and logit-models; there is no significant difference in the value and quality in any model.

Factor	Impact of factors on the lik	elihood of corporate fraud
	probit-model	logit-model
DSRI	Non significant	Non significant
GMI	-0,13	-0,14
AQI	Non significant	Non significant
SGI	-0,28	-0,28
SGAI	-0,39	-0,40
LVGI	Non significant	Non significant
region	Non significant	Non significant
orgform	-0,29	-0,29

Table 6 - The marginal effects of financial and non-financial indicators on the presence / absence of corporate fraudin Russian firms

As a result of analysis of factors that are significant at 10%, we identified a number of dependencies. With a 10% increase of share of profit margin in sales compared to the previous year, the probability of fraud in such a company is reduced by 1.3 - 1.4%. With a 10% increase of the amount of revenue the probability of fraud is reduced by 2.8%. With a passage to joint-stock organizational the likelihood of fraud is reduced by 0.28%.

According to the results of the study the Sales General and Administrative Expenses Index has the greatest marginal effect on the likelihood of corporate fraud. Thus, with reduction of the share of sales costs by 10% the probability of fraud increases by 3.9 - 4%. On the one hand, it is possible to explain this relationship assuming that the decrease in the share of sales cost was caused by changes in the marketing policy of a company, i.e.by diminution of the previously mentioned expenses. Such dynamics also can indicate deterioration of the economic situation of the company, which, accordingly, may lead to an increased fraud risk. On the other hand, the reason for the reduction of SGAI could be the growth of the company's sales. Generally, in such firms a probability to commit fraud, especially in a form of fraudolent statements, is estimated higher since it is exert more pressure on managers to achieve obtained financial results in the future.

In the study we determined that the variable region is not significant at the 10% level, but we consider its effect on the probability of fraud as essential. The use of this variable in the regression model showed that in the Russian regions with a higher incidence of economic crime employees prefer to stick to the law-abiding behavior line. This tendency could be explained by the strengthened control measures by the government supervisors of companies' financial performance and, as a result, more vigilance from managers and employees.

5. Conclusion

Thus, the regression model allowed us to identify the dependence of the probability of corporate fraud in Russian firms from a number of financial and non-financial indicators. The study showed that the methodology developed by M. Beneish maybe applied to companies that form the financial statements on the basis of Russian accounting standards. As a consequence, we concluded that accounting principles have no significant effect on the parameters change of which may indicate the presence of signs of corporate fraud. The results of the study can be used as a basis for development of a methodology to identify and prevent fraud.

M.A. SHTEFAN

Associate professor Head of the Department of accounting, analysis and auditing

National Research University Higher School of Economics in Nizhni Novgorod E- mail -: shtefanmaria@yandex.ru

D.A. BYKOVA

Master

National Research University Higher School of Economics in Nizhni Novgorod E-mail: serface@bk.ru

References

International Standard on Auditing 240, The Auditor's Responsibilities Relating to Fraud in an Audit of Financial Statements. ABBOT J. L., PARK Y., PARKER S. The effects of audit committee activity and independence on corporate fraud / J. L. ABBOT, Y. PARK, S. PARKER // Managerial Finance. − 2000. - № 26(11). − p. 55−67.

BEASLEY M.S., An empirical analysis of the relation between the board of director composition and financial statement fraud / M.S. BEASLEY // The Accounting Review of Finance. − 1996. - № 71 (4). − p. 443–465.

BELL T., CARCELLO J. (2000). A decision aid for assessing the likelihood of fraudulent financial reporting / T. BELL., J. CARCELLO // Auditing: A Journal of Practice &Theory. – 2000. – № 9(1). – p. 169–178.

BERNARDI R.A., Fraud detection: the effect of client integrity and competence and auditor cognitive style / R.A. BERNARDI // Auditing: A Journal of Practice & Theory. − 1994. - № 13. − p. 68–84.

BENEISH M. D. Detecting GAAP Violations: Implications for Assessing Earnings Management among Firms with Extreme Financial Performance / M. D. Beneish // Journal of Accounting and Public Policy. − 1997. − № 3. − P. 30-36.

BOLTON R. Statistical Fraud Detection: A Review Statistical Fraud Detection: A Review [Электронный ресурс] / R.BOLTON, D.HAND // Statistical Science. – 2002. - № 3. – P. 235-249; JSTOR. – http://www.jstor.org/.

CHURYK N. Early detection of fraud: Evidence from restatements [Электронный ресурс] / N.CHURYK, C.LEE, B.CLINTON // Advances in Accounting Behavioral Research. — 2009. - № 12. — P. 27 - 41; Emerald eBook Series. — http://www.emeraldinsight.com/.

FANNING K., COGGER K.O., SRIVASTAVA R., Detection of management fraud: a neural network approach / K. Fanning, K.O. COGGER, R. SRIVASTAVA // 11th Conference on Artificial Intelligence for Applications. – 1995. – P. 220–223.

FANNING K., Neural network detection of management fraud using published financial data / K. FANNING // Intelligent Systems in Accounting, Finance &Management. – 1998. - № 7 (1). – P. 21–41.

HUMPHERYS S. Identification of fraudulent financial statements using linguistic credibility analysis / S. HUMPHERYS, K.MOFFITT, M. BURNS // Managerial Auditing Journal. – 2010. – № 9. – P. 861-881; Scopus. –http://www.scopus.com/.

PERSONS O., Using financial statement data to identify factors associated with fraudulent financing reporting, Journal of Applied Business Research 11 (1995) p. 38–46.

SMIELIAUSKAS W. A framework for identifying (and avoiding) fraudulent financial reporting / W. SMIELIAUSKAS, R.MEUWISSEN, L.BOLLEN // Accounting Perspectives. – 2008. - № 2. – P. 111-121; Scopus. - http://www.scopus.com/.

WHITE H., Learning in artificial neural networks: a statistical perspective, Neural Computation 1 (1989) 425-464.

ZHOU W. Detecting evolutionary financial statement fraud \(\) W. ZHOU, G. KAPOOR // Critical Perspectives on Accounting. – 2005. - № 3. – P. 277-298; Elsevier Books. – http://www.elsevier.com//.

Official site of PricewaterhouseCoopers. URL: http://www.pwc.ru/;

Official site of the Federal Tax Service. URL: http://www.nalog.ru/;

Official site of the Federal Service of State Statistics. URL: http://www.gks.ru/;

Official site of the independent rating agency FIRA PRO. URL: http://www.fira.ru/;

Official site of the unified decisions database of general jurisdiction courts of the Russian Federation.