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Ferroconcrete production in Russia is character�
ized by low thermal efficiency. For example, in Mos�
cow, the most developed region, energy resources
account for 10–50% of the total production costs. In
that context, automatic control of the heat treatment
of ferroconcrete is of interest. The production of ferro�
concrete includes preparation of the concrete mix�
ture; its transportation; shaping; heat treatment; and
striking. Before it can be moved to the point of use, the
shaped ferroconcrete must acquire the required
strength. Hardening is the most prolonged operation.
In normal conditions, concrete acquires 70–80% of
its strength in 7–15 days and its full strength in 28 days
[1]. The most effective means of accelerating this pro�
cess is heat treatment [2, 3].We consider heat treat�
ment by saturated steam (steaming), in which the parts
are held in special chambers filled with saturated
steam or steam–air mixture until the specified
strength has been attained. The optimal temperature
for accelerated hardening is 60–80°C; the moisture
content of the steam is 100%.

The goal of the control system is to maintain spec�
ified temperature Tsp within the chamber. Typically,
the temperature is specified for four stages: (1) prelim�
inary holding; (2) heating; (3) steaming at constant
temperature (isothermal heating); (4) cooling.

The heat treatment of concrete is a very energy�
intensive process. The production efficiency and the
product cost depend directly on the rational use of
energy resources.

Strength is one of the most important characteris�
tics of ferroconcrete. The strength is acquired during
heat treatment. More precise maintenance of the ther�
mal conditions and mixture composition ensures
more rapid attainment of the required strength.

In the present work, we develop an optimal control
system for heat treatment, which employs predictions
of the target parameter. The regulator, which trans�
forms the observed discrepancy into a control signal, is
based on fuzzy logic. The predictions are generated on

the basis of artificial neural networks, which are widely
recognized as a universal tool in control, data filtra�
tion, shape recognition, time�sequence prediction,
and elsewhere. The problem considered here is equiv�
alent to the prediction of time sequences.

There is an extensive literature on prediction by
neural networks. For example, short�term prediction
of the power consumption at an industrial enterprise
was considered in [4]. Daily predictions of the power
consumption were obtained three days in advance, by
means of recurrent Elman networks. Modified Elman
networks were used to predict the power consumption
in [5]. A generalized�regression neural network
(GRNN) was used for weather prediction in Moscow
in 1998 and prediction of phone�system breakdowns
for 2002, in [6]. Multilayer neural networks were used
to predict groundwater levels in [7].

PREDICTION METHOD

Special laboratory equipment is built to test the
temperature predictions generated by the prediction
and control algorithms.

Short�term temperature predictions require the
following data: the current temperature; the ambient
temperature; the current state of the heater; and infor�
mation regarding the past state of the heater.

Correspondingly, the neural network may have
three�layer perceptron architecture [8, 9]. The inputs
are the current temperature; the ambient temperature;
the current state of the executive mechanism (the
steam�valve aperture) and several previous states; and
the pressure in the steam line. This data set is assumed
sufficient for prediction of future temperature varia�
tion. Thus, the output layer corresponds to prediction
of the temperature after some time interval.

This approach is tested in practice by means of lab�
oratory equipment including a water�filled tank with
an electrical heater; instruments connected to the
computer for measuring the water temperature and the
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ambient temperature; and equipment for controlling
the heater. The neural network is a three�layer percep�
tron, with 20 inputs for historic states of the heater and
one input for the current temperature; the intermedi�
ate layer consists of three neurons. The output is a pre�
diction of the water temperature in 5 s. In fact, the out�
put must be regarded as the current temperature
shifted to the left on the time axis by 5 s. At this stage,
the ambient temperature is disregarded. As a result of
a training stage, we obtain a neural network capable of
correctly predicting the water temperature in 5 s dur�
ing the transition from stable cooling to stable heating
and also in periods of stable cooling.

Now consider long�term prediction. As in short�
term prediction, we employ laboratory equipment
including a water�filled tank with an electrical heater;
instruments connected to the computer for measuring
the water temperature and the ambient temperature;
and equipment for controlling the heater.

There is one more input than in short�term predic�
tion: the temperature history over some period of time.
The input layer of the neural network includes 20 val�
ues of the heater history and 21 values indicating the
history of temperature variation. Only two heater
states are possible: on (1) and off (0). The temperature
history is a set of temperature values at 5�s intervals.
The network’s output consists of values of the water
temperature in 5 s (short�term prediction). Long �
term prediction involves repeatedly feeding the output
back into the network.

The accuracy of long�term prediction is greatest for
the following network configurations: 41–20–1; 41–
40–10–1; 41–41–15–1. (The figures are the numbers
of neurons in each layer.) The accuracy is 7–10°C at
water temperatures of 20–100°C for the first two net�
works and up to 5°C at water temperatures of 35–
100°C for the last network. In the experiment, we
obtain networks capable of progressively more precise
predictions, but within narrower temperature ranges.

We now consider a control algorithm for the heat�
ing system in accordance with the predictions
obtained and the specifications imposed.

To prepare training and test data sets for the neural
network, we employ data obtained on the laboratory
equipment with the most typical transient states of the
temperature, such as continuous heating to tempera�
tures less than 100°C; a series of relatively long periods
in which the heater is on; a series of relatively short
periods in which the heater is on; and specified limits
on the temperature in the laboratory equipment (con�
tinuous heating of the liquid from the ambient tem�
perature to the boiling point).

The training and test data sets contain subsets
(windows), each of which contains a complete set of
initial values for the neural network, as well as the
required output.

The training algorithm employed is the Rprop
(resilient propagation) gradient method, on account
of its fast convergence with respect to the classic back�
propagation method (Backprop algorithm) [10, 11].
In contrast to the Backprop algorithm, the Rprop
algorithm only uses the signs of the partial derivatives
to adjust the weighting factors. The Rprop algorithm
employs time�span training, in which the weights are
corrected after the network has processed all the
examples in the training set.

For each weight ωij determining the relation
between neuron i and neuron j, we introduce a unique
value Δij, which uniquely determines the correction of
the weight. In the course of training, Δij conforms to
the following rules:

where 0 < η– < 1 < η+.

The adjustment of the weighting factors proceeds
as follows. If the partial derivative with respect to the
weight ωij changes sign in step t – 1, we conclude that
the last change in the weight was too large, and the
algorithm overshot the local minimum. In that case,

Δij is reduced by  for step t. However, if the deriva�
tive retains the same sign, Δij is increased in step t, so as
to hasten convergence. When the corrections for all
the weights have been found, we use the following rule
to change the weighting factor: if the derivative is pos�
itive, the weight is reduced by Δij; and, if the derivative
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Results of temperature regulation. The vertical lines
denote the state of the heater: 1, heater on; 0, heater off.
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is negative, the weight is increased by Δij. In symbolic
form

If the partial derivative with respect to the weight ωij

changes sign in step t—that is, if the algorithm over�
shot the local minimum in step t – 1—we reverse the
sign of Δij

As a result of back propagation, the derivative
changes sign again in the next step. To prevent repeated
correction of Δij, we must assume that ∂E(t – 1)/∂ωij = 0.

Once we have a correct long�term prediction of the
target parameter, we may plan the optimal control sig�
nal. The algorithm’s output should be a sequence of
operations in which the heater is turned on and off, so
as to maintain the water temperature in the laboratory
equipment within the range ⎣Tsp – 5°C, Tsp + 5°C⎦. In
other words, the temperature specification should be
satisfied. (As a rule, Tsp = 50–80°C.)

The temperature specification is known, and the
temperature history is sufficient for generating the ini�
tial set of input data. The time interval covered by the
temperature specification is divided into 5�s segments,
for the convenience of the network. Thus, this segment
(increment) defines the minimum time of heater
operation.

We now introduce the concept of a dead zone, so as
to rule out extremely frequency switching of the
heater. The dead zone is below the specified tempera�
ture: Tdz ∈ [Tsp – ΔT, Tsp] (0 < ΔT < Tsp).

The prediction algorithm is as follows.
(1) Generation of predictions over the whole

period covered by the temperature specification.
(2) Comparison of the temperature prediction Tpr

in step 1 with the specified temperature Tsp for each
specified point i. If Tpr < Tsp, the heater is switched on
for the interval [Ti – 5 s, Ti], where Ti is the tempera�
ture is the temperature at the point being considered.
If that restores the planned temperature, proceed to
step 3; if not, continue step 2.

(3) Adjustment of the prediction over the whole
interval of temperature specification, followed by
return to step 2.

Obviously, the main deficiency of this algorithm is
that the amount by which the temperature exceeds the
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specification is not monitored. At the present stage,
however, this is not required.

After generating a sequence of control signals, it is
reproduced in the laboratory equipment. Heater con�
trol does not include temperature feedback; we
employ blind regulation.

TEST RESULTS

In temperature regulation for the laboratory equip�
ment, we rely on temperature specifications with dif�
ferent temperature rise in the initial stage. As we see in
the figure, the results show that, at the stage of temper�
ature increase, the difference between Tsp and Tac is no
more than 5°C on average. (The error is around 7%.)
The expected increase in Tsp is observed in the tran�
sient sections (within the limits of error). For specifi�
cations with prolonged maintenance of constant tem�
perature, gradual temperature decline is observed.

Analysis of the results provides some information
regarding the process [12, 13].

The error in predicting the discrepancy between Tsp

and Tac in each iteration may be considerably reduced
by reducing the time increment. The discrepancy
observed between Tac and Tsp may be attributed to the
failure to take account of the ambient temperature in
training; in fact, the ambient temperature fluctuates
from 19 to 25°C. Compensation of this error entails
taking account of the ambient temperature in training
or introducing an initial adjustment in constructing
the prediction.

An undoubted benefit of the proposed control sys�
tem is that the number of times that the executive
mechanism is turned on is monitored. The system
operate may make informed decisions in balancing the
control precision and the life of the equipment. This
permits long�term planning of the repair and replace�
ment schedule for the equipment components.

In comparison with classical control systems, the
proposed system is not greatly destabilized by the fail�
ure of temperature sensors. The system may operate
autonomously for a long time, without corrections on
the basis of up�to�date temperature data, while retain�
ing the required precision. By contrast, instrument
failure incapacitates classical control systems based on
a PID regulator or a fuzzy regulator.
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