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A vortical model for freak wave formation in water is presented. The wind action is simulated by

nonuniform pressure on the free surface. The motion of the fluid is described by an exact solution of 2D

hydrodynamic equations for ideal inviscid fluid in Lagrangian variables. Fluid particles rotate in circles of

different radius. The model describes the appearance of a freak wave in the field of the Gerstner wave. The

physical parameters of the wave and feasibility of the proposed scenario are discussed.
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Rogue waves are characterized by the amplitude crite-
rion: the height of a rogue wave is two or more times the
significant waveheight. Being considered initially for
ocean waves, [1–4], nowadays the concept is shifted to
other fields of physics such as nonlinear optics [5–7],
physics of plasma [8], superfluid helium [9], and Bose-
condensate systems [10].

The mechanisms of freak wave formation are not clear
enough. Pelinovsky and co-workers [2] proposed a linear
model of dispersive focusing of waves. Some other models
are weakly nonlinear. They represent a rogue wave as an
envelope solution of the nonlinear Schrödinger equation
[11–14] or Dysthe equation [15].

The formation of a freak wave is an essentially nonlinear
phenomenon [16]. Zakharov and Dyachenko suggest that
focusing of ocean waves creates only preconditions for the
formation of freak waves, which is a strongly nonlinear
effect [17]. Using numerical calculations they demon-
strated the formation of a rogue wave from a Stokes
wave [17]. Ruban studied numerically two different kinds
of rogue waves using a completely nonlinear model for
long-crested water waves [18].

Most rogue waves in the ocean occur under storm con-
ditions where wind action must be taken into account [16].
Kharif et al. consider the wind action as a linear equation
connecting the pressure and the steepness of the wave
profile [19]; i.e., the wind action is simulated by a nonuni-
form pressure distribution.

We present an exact solution of 2D hydrodynamical
equations that describes the appearance of a freak wave
in the field of a Gerstner wave. The solution is written in
Lagrangian variables and belongs to the class of Ptolemaic
flows [20,21]. Fluid particles rotate in circles of different
radius and drift current is absent. The pressure on the free
surface is nonuniform and opposite in phase with the
wave profile. The dynamics of free surface and pressure
for freak waves are studied. Unlike other models the
analyzed freak wave is vortical. The vorticity is located
mostly in the neighborhood of its peak. This is the first

example of the importance of vorticity effects in freak
wave formation.
Exact solution.—The equations of 2D hydrodynamics

for waves on the surface of incompressible inviscid fluid in
Lagrangian coordinates have the following form [21,22]:

DðX; YÞ
Dða; bÞ ¼ DðX0; Y0Þ

Dða; bÞ ; (1)

XttXa þ YttYa ¼ � 1

�
pa � gYa; (2)

XttXb þ YttYb ¼ � 1

�
pb � gYb; (3)

where X, Y are Cartesian coordinates and a, b are the
Lagrangian coordinates of the fluid particles; t is time, �
is fluid density, p is pressure, g is acceleration of gravity,
the subscripts mean differentiation by the corresponding
variable, and the index ‘‘zero’’ means the value at time
t ¼ 0.
Equation (1) is the volume conservation equation;

Eqs. (2) and (3), are flow equations. Using the cross
differentiation it is possible to exclude the pressure and
to get the condition of the vorticity conservation along a
trajectory:

ðXtaXb þ YtaYb � XtbXa � YtbYaÞt ¼ 0: (4)

Abrashkin and Yakubovich proposed to introduce com-
plex Cartesian coordinates [20,21] W ¼ Xþ iY ( �W ¼
X� iY) and complex Lagrangian coordinates � ¼
aþ ib ( �� ¼ a� ib). Then the Eqs. (1) and (4), are equiva-
lent to the conditions of two Jacobians’ conservation
[20,21]:

DðW; �WÞ
Dð�; ��Þ ¼ DðW0; �W0Þ

Dð�; ��Þ ¼ D0ð�; ��Þ;

DðWt; �WÞ
Dð�; ��Þ ¼ DðWt0; �W0Þ

Dð�; ��Þ ¼ i

2
D0�ð�; ��Þ:

(5)
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Here, � is the vorticity. The function D0 defines the
dependence of the initial positions of fluid particles W0

on the Lagrangian variables. This function must not vanish
in the flow region.

Equations (5) have an exact solution [20,21],

W ¼ Gð�Þ expði�tÞ þ Fð ��Þ expði�tÞ; (6)

where F, G are analytic functions, and �, � are real
constants. The trajectories of the fluid particles are epicy-
cloids (hypocycloids) as planet orbits in the Ptolemaic
system of the world, so the flows (6) were named
Ptolemaic [20,21].

Let us consider the gravitational waves on the surface of
an infinitely deep fluid. Suppose that the motion of the fluid
is described by the expression (6). In Lagrangian coordi-
nates the flow region corresponds to the domain
b ¼ Im�< 0.

We study a particular case � ¼ 0, � ¼ �!, when fluid
particles move in circles. The fluid is motionless at the
bottom, so jFj ! 0 as b ! �1. The function G should be
bijective, so G0 � 0 in the flow region. One more require-
ment on the choice of the functions F, G is positiveness of
value D0:

D0 ¼ jG0j2 � jF0j2 > 0: (7)

The pressure p on the free surface is calculated from
Eqs. (2) and (3), and has the following expression:

p� p0

�
¼ �gImðGþ Fe�i!tÞ þ 1

2
!2jFj2

þ Re

�
ei!t

Z
!2G0 �Fd�

�
: (8)

Here, p0 is a constant value. The pressure p oscillates
periodically. The first term in the expression (8) represents
the well-known effect of the ‘‘inverted barometer’’ [23].

Model of a freak wave.—Consider the following
solution:

W ¼ �þ �1

ð�� �iÞn þ
�
iAeik ��þi’0 þ �2

ð ��þ �iÞn
�
e�i!t:

(9)

It belongs to the class of Ptolemaic flows (6). Here A, k,!,
� are positive parameters, n � 2. When �1 ¼ �2 ¼ 0, the
expression (9) describes a Gerstner wave. For Ptolemaic
flows the superposition principle holds true. If the function
F is a sum of functions, the resulting profile qualitatively
corresponds to the superposition of profiles defined by
these functions. The terms in F, G have one pole of order
n, which corresponds to b ¼ �> 0, so it is out of the fluid
region. The term with the pole in the function F describes a
periodically appearing peak. The term with the pole in the
function G compensates the peak of the wave profile at the
initial moment of time. So the expression (9) corresponds
to the peak standing out in the field of a Gerstner wave.
In the solution (9) the value of A is amplitude, ! is

frequency, and k is the wave number of a Gerstner wave,
kA � 1. The equality corresponds to the wave with sharp
crests on the profile. The parameter ’0 characterizes the
phase shift between the crests of the Gerstner wave and
vortex breather. If ’0 ¼ � their crests coincide and ampli-
tudes are summarized. If ’0 ¼ 0 the breather crest coin-
cides with the trough of the Gerstner wave and their
amplitudes are subtracted. This behavior of the solution
can be interpreted as wave interference. The parameter �
characterizes the peak width. The values �1, �2 are not
necessarily real numbers. To compensate for the peak at
t ¼ 0 and reinforce it at another moment, let �1 ¼
ð�1Þm�i, �2 ¼ ��1, �> 0, m ¼ n=2. The value of n
should be an even integer number. The dimension of � is
Lnþ1, its value characterizes the peak height.
We consider a particular case n ¼ 2, thus �1 ¼ ��i,

�2 ¼ �i. According to (7) there is a restriction on
the value of �. A sufficient condition is formulated as
� � ð1� kAÞ�3=4. The exact bounding for the � parame-
ter can be calculated numerically.

FIG. 1. Formation of a freak wave.
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Figure 1 represents the dynamics of a freak wave (9)
for the case A ¼ 0:5 m, k ¼ 0:074 m�1, � ¼ 12 m, � ¼
328 m3, ! ¼ ffiffiffiffiffiffi

gk
p ¼ 0:85 s�1; the wave length is � ¼

84:9 m. The phase shift is ’0 ¼ �. The peak height is
h ¼ 2�=�2 þ A � 5:1 m. At the moment t ¼ 0 there is no
peak and the wave profile corresponds to the Gerstner wave
exactly. Next time the peak raises up to a maximum value
at the moment t ¼ �=!, then it decreases and in a period
disappears. This motion is periodic. The peak height is
greater than the amplitude of the Gerstner wave in eight
times. So such a peak can be considered as a freak wave.
The pressure has nonstationary character. In Fig. 1 the
lower curves represent the deviation of the pressure on
the free surface from atmospheric pressure p0.

Figure 2 shows velocities of fluid particles at different
moments of time. The values of the parameters are the
same as for Fig. 1. During formation of freak waves the
velocities on the front and back slopes of the peak have
opposite directions (see moments t ¼ �=4=!, t ¼
�=2=!). So the wave profile collapses and rises. When
the velocity in the highest point becomes horizontal the
freak wave begins to decrease.

The vorticity of the flow (9) equals to

� ¼ 2!jF0j2
jG0j2 � jF0j2 :

Far away from the peak location the value of� is near to
the vorticity of the Gerstner wave. For a Gerstner wave of
weak steepness (kA <<1) the flow outside of the freak
wave is practically potential. The vorticity localizes in the
small neighbourhood of the peak location. So the freak
wave is strongly vortical.
Figure 3 represents isolines of vorticity in the neighbor-

hood of the peak location at two moments of time. The
light gray isolines correspond to the smaller vorticity, the
dark gray ones—to greater vorticity. With the lapse of time
the isolines of vorticity become convex near the peak axis.
So the formation of the freak wave in our model is con-
nected with bending of vorticity isolines.
As seen from Fig. 1, the minimum of the pressure on the

free surface corresponds to the particle a ¼ b ¼ 0.
Because of the nonstationarity of the pressure we esti-

mate the pressure at two qualitatively different moments of
time. At the moment t ¼ 0, when there is no peak, the

FIG. 2. The field of velocities for a freak wave on the free surface.

FIG. 3. Isolines of vorticity.

TABLE I. Parameters of maximal freak wave.

A, m kA �, m h, m

0.25 0.07 21.2 4.8

0.5 0.13 23.5 5.4

2.0 0.33 38.0 8.8

4.0 0.45 56.1 12.3

1.25 0.69 11.4 1.8

1.25 0.75 10.5 1.4

1.25 0.88 9.0 0.7
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pressure is pð0Þ and at the moment t ¼ �=!, when the
peak height is maximal, the pressure is pð�Þ. The case
pð0Þ ¼ pð�Þ ¼ �100 mm of mercury (mmHg) is studied.

Table I represents examples of the freak wave parame-
ters obtained by numerical calculations. Here, � ¼ 2�=k is
the length of the Gerstner wave.

If the steepness is near to 1, then the value of h tends to
0. The peak cannot form on a steep wave. The ratio
between the height of the peak and Gerstner wave ampli-
tude is ð1=A� kÞ�=2. It can be very large. For small
steepness the maximum waves are located in the range of
lengths �� 20; . . . ; 60 m.

Our estimations of the wave parameters are provided for
the pressure deviation of order of jpð0Þj ¼ 100 mm Hg.
The value of the pressure gradient can vary in dependence
on the breather width that is of the order of �. Table II
represents a relation between the average pressure gradient
jpð0Þj=� and the value of � for given amplitude of
Gerstner wave A ¼ 4 m. These conditions do not corre-
spond to the maximal freak wave. When the pressure drop
takes place on larger scales (for bigger values of �) the
height of the vortex breather decreases.

The considered values of pressure, pressure gradient,
and the breather width correspond to the tornadoes.

Conclusions.— Our model can explain the formation of
freak waves under external pressure action. For deviation
of pressure of order of 100 mm Hg, which corresponds to
the tornado conditions, the peak height can achieve 4–12 m
on a uniform wave of weak steepness. If pressure deviation
acts during a period of the wave then the freak wave may
appear. Such waves satisfy the amplitude criterion for freak
waves. The constructed solution is periodic and can be
considered as a vortical breather.
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