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Abstract

Given an integek > 0, our main result states that the sequence of orders of the groyjg,SlL(respectively, of the groups
GL(Zy)) is Cesaro equivalent as— oo to the sequencél(k)nkz_l (respectively;cz(k)nkz), where the coefficient€'1 (k)
andC»y(k) depend only ork; we give explicit formulas foC1 (k) andC2 (k). This result generalizes the theorem (which was first
published by I. Schoenberg) that says that the Euler fungtian is Cesaro equivalent bo%. We present some experimental
facts related to the main resulo cite thisarticle: A.G. Gorinov, S.V. Shadchin, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
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Résumé

Formules asymptotiques au sens de Cesaro pour les ordres de SL;(Z;) e GLi(Z;,) quand n — oo. Fixons un entier
k > 0. Notre resultat principal dit que la suite des ordres des groupe&Zg)- (respectivement, des groupes &¥,)) est
equivalente au sens de Cesaro quang oo a la suiteCl(k)n"Z—1 (respectivementCz(k)nkZ), ou les coefficient€"q (k) et
C>(k) ne dependent que de on donne des formules explicites pati(k) etCo(k). Ce resultat généralise le théoréeme (publié
pour la premiéere fois par |. Schoenberg) disant que la fonction d’Euley est equivalente au sens de Cesanoj—r%. On
présente quelques faits experimentaux liés au resultat prin€pat. citer cet article: A.G. Gorinov, S.V. Shadchin, C. R.
Acad. Sci. Paris, Ser. | 337 (2003).
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0. Introduction

The article is organized as follows: in Section 1 we introduce some notation and formulate our main result.
Then, in Section 2, we prove this result. Finally, in Section 3 we discuss some interesting related facts.

1. Themain theorem

Two sequences of real numbéxg),,eny and(y,) ey are said to b€esaro equivavenif lim,,_, H =1.
n
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For any finite seX we shall denote by@) the cardinality ofX. We shall use the symbli[p to denote the product
over all prime numbers.
Our main result is the following theorem:

Theorem 1.1. For any fixed integek > 0 the sequenc&(SL«(Z,))).en (resp., the sequencd#(GL(Z,,)))neN)
is Cesaro equivalent as— oo to C1(k)nk*~1 (resp.,C2(k)nk*), whereC1(1) = 1, Ca(1) = ,a- p—lz), and for
anyk > 1 we have

o) o)

Remark. In particular, #GL1(Z,)) and #SLx(Z,)) are Cesaro equwalenttg‘— and ”3) respectively. We do not
know if the asymptotics given by Theorem 1.1 can be expressed in terms of values of the Riemann zeta-function
(or any other remarkable function) at algebraic points in any of the other cases.

To the best of our knowledge, the fact that the Euler funciion = #(GL1(Z,)) is Cesaro equivalent tm—
was first published in [1] by Schoenberg, who attributes the result to Schur. This result was probably already known
to Gauss. An explicit formula for the cumulative distribution function of the sequen@®/n),cy is given in [2]
by Venkov.

2. Proof of Theorem 1.1

Let us first recall the explicit formulas for8Lx (Z,)) and #GLk(Z,)). For any positive integer denote byj;
the mapN — R given by the formulag (plt - - p) = (1 — 1/p%)--- (1 = 1/p}) (hereps, ..., p. are pairwise
distinct primes).

Lemma 2.1. We have#(GL1(Z,)) = n@1(n), and for any integek > 1 we have#(SLi(Z,)) = nK°~1g(n) - - -
~ 2 . ~
Gk (), #H(GLi (Zy)) = n*"g1(n) - - - Gr (n).

The proof is an exercise in linear algebraz

Now let us calculate the limits of the averages of the sequeiaés) - - - o (n)),en and(@z(n) - - - Pk (1)) neN-
More generally, let be a finite (nonempty) ordered collection of positive integées:(i1, ..., i;). Foranyn € N
set@e(n) = @, (n)---@;,(n). For any sequence = (x,),en denote by(x) the Cesaro limit ofr, i.e., the limit
iMoo 2 30 3 X

Theorem 2.2. For any £ = (i1, ..., i;) the limit (¢,) exists and is equal t(ﬂp fg(%), where fe(t) =1 —1t(1—
L@ —1iy).

Sketch of a proof of Theorem 2.2. We shall first give an informal proof of the theorem; we shall then show what

changes should be made to make our informal proof rigorous.

The idea of the proof of Theorem 2.2 is to give a probabilistic interpretation to some complicated expressions
(such as}l > _1®e(m)). This idea goes back to Euler.

1 This notation can be explained as follows: the functigrgeneralizes the functiomi— ¢(n)/n = ¢1(n).
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Let us note that for any positive integgtthe “probability” that a “random” positive integer is a not a multiple
of g is 1— 1/q. If g1 andg, are coprime integers, the evenisi$ not divisible byg1” and “r is not divisible by
g2 (r being a “random” positive integer) are independent, which implies that for any positive integérshe
expressionp, (m) is the “probability” that a “randomly chosen” positive integer is not divisiblekby powers of
the prime divisors ofn.

Analogously, for any fixed positive integer the expressiog, (m) can be seen as the “probability” to find an
element(xs, ..., x;) € N that satisfies the following conditions; is not divisible by the;-th powers of the prime
factors ofm, x2 is not divisible by the,-th powers of the prime factors of etc.

Using the total probability formula, we obtain th,%gfn:l @¢(m) is the “probability” that a “random” element
of the set{(xo, x1,..., %) | x0, ..., x; € N, xo < n} satisfies the following condition: any;, j =1,...,1is not
divisible by thei ;-th powers of the prime divisors af. So the limit(¢,) is the “probability” of the limit event,
which can be described as the intersection for all printé the following events: “eitherx is not divisible byp),
or (none ofx;, j=1,...,1,is divisible by p'i)". These events are independent, and the “probability” of each of

them ing(%) =1— %(1 — ]'[’j:l(l - pij)) This gives the desired expression {6y).

This idea is formalized as follows. Léte a positive integer, and lét and B be subsets df’ such that there

exists lim, . oo “gPaC  whereCy = ((x1, ..., x) € N' | x1 <k, ..., x; <k). This limit will be called thedensity

of A in B and will be denoted by (A). For anyB c N the correspondende > A — pp(A) defines a measure
onB.?

Using the same argument as above (and replacing “probabilities” with “densities” and “events” with “sets”), we
can represen& Y .—1%¢(m) as the density of a certain subset of the{geg, x1, ..., x;) | xo0, ..., x; €N, xo <n}.
This interpretation does not allow us to pass immediately to the limit as oo, but it enables us to write the
following combinatorial formula forz1 > —1@e(m). Define the sequendey)xen by the formulaz,filakt" =
1-T1;(—1). We havel 3™ 1 Ge(m) = 1+ >, L (=1)P Da(r)by.,, where for any = pi* - - ps* we define
pr(r)=s,a(r) =ag, - -da,, brn = [p1 > (m particulara(r) =0, if max{aa, ..., a5} > i1+ ---+1i;). Now let
us note that this expression has the foZniil k.nCrs Wherecy is the k-th term of the absolutely convergent

series obtained by multiplying out the prodydt, (1 — %(1 - ]’[’jzl(l - %))) and everyb, , has the form
» :

PLib[-]. We have O< by, < 1 for anyk, n, and the limit lim, .o b; , is equal to 1 for any. This implies
Theorem 5 2.0

Theorem 1.1 can be obtained from Theorem 2.2, from Lemma 2.1 and from the following lemma.

Lemma 2.3. Let (x,),en be a sequence of real numbers, and suppose(thagxists. Then, for any nonnegative

. . k k

integerk, we haveim,_ o % = (x).

Proof of Lemma 2.3. The proofis by induction ok. If k = 0, there is nothing to prove. Suppose Lemma 2.3 holds
for somek. For any sequence= (yn),,eN.setS,’l‘[y] =y1+ 2%y + -+ nky,. We haveSk[x] = nk“(k%)1 +&n),
where(e,)eN IS a sequence such that [im ¢, = 0. Note that for any sequenge= (y,),cn We have

SK Y1 =nSyly] - Z Skl (%)
k+1
Thus, we can writesk 2 [x] = &4 (n*+2 — Y% mk 1) + ,n*+2 — SF¥1[e]. We have lim o S”ki[z —0, and
k+1
hence lim_, o 32 L[z x]_ 2k (- 25 = £, which implies the statement of Lemma 2.3

2 Unfortunately, this measure is netadditive, which is why we prefer to speak rather of densities than of probabilities.
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3. Convergenceratesand thedistribution of the values of ¢,

Let ¢ be a finite (honempty) ordered collection of positive integérs: (i, . .., i;). In this section we briefly
discuss the convergence rate of the seque@g@pzzzl k* ¢ (k))nen for different fixeds € N and the distribution
of the values of the functiogy.

Setdy = im0 2 0 _1 Ge(k) =11, f[(%), Eps(n) = 2 (p_1 K Ge(n) — S+1 @y). It follows immediately

from these definitions that;_; k*@¢ (k) = %@Dz +n'& 5(n).
Theorem 3.1. If (&,0) exists, then for all integers> 0 the limit (§, ;) exists and is equal té@z.

Proof of Theorem 3.1. Setn,  (n) = ni Y i1 kS (@e(k) — @¢). Note thats, o = n¢,0, hence(n o) exists. Using
formula(x) we getn, s+1(n) =nes(n) — n—ﬁl Y i—1k*ne s (k). Hence we obtain using Lemma 2.3 thiat ;1) =
w1 (ne.s) for any integes > 0. Thus,(ne,s) = O for any integes > 0.

For any integers > 1 we haveZk 1k = ’;+1 + zn‘ + O(n*~1). Hence we get the following relation:

Es(n) = nes(n) + §¢g+0(ﬁ),WhICh implies that&, ) = 1¢,. The theoremiis proven.O

Let us now consider the distribution of the values of the funcienUsing the argument from [1, 85], one
can prove that for any € [0, 1] the limit lim,_, » 1#{k e N |k <n, @e(k) <t} exists, and that the functiof,
defined by the formuld, (r) = lim,_ n#{k e N |k <n, @e(k) <t} is continuous (I. Schoenberg considers
only the case = (1), but his argument can be easily extended to the case of an arkfjrafiie functionfy is
the analogue of the cumulative distribution function in probability theory. Given a nonnegative inte¢ges-th
moment ofFy is defined as followsi, s = folts dF;(¢). Itis easy to prove (see [1, Satz I]) that ; = ((¢¢)*). Due
to Theorem 2.2, we have, ; = @¢s wheret’ is the following collection of positive integerg’ = (i1, i1, ...,i1 (s
times),iz, i, ...,i2 (s timey,...).

The Fourier series foFy(¢) is equal to)_, ., u, € whereug=1— @y = 2 Zk;éo 227:::[ (the sum of

the series in the latter formula is to be taken in Cesaro sence), and the Fourier coeffigiforta £ 0 can be
. . _ ioym—1 R )
calculated using either the formula = — "> | (27T+,)¢gm, or the formulau,, = ﬁ((e—zm’“"@) —1). Since

F, is continuous, its Fourier series converges in Cesaro sernfgetiformly on every compact subset of the open
interval (0, 1).

Note added in proof. Recently we proved that for ary= (i, ..., i;) such that alk; > 1, the limit (& o) exists

and (§.0) = %qbg . After the article has been accepted for publication, we learn from P. Moree an
alternative proof of heorem 1.1 based on a lemma in [3, p. 108] (the proof of that lemma given in [1] is due to
Erdds).
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