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Abstract

Given an integerk > 0, our main result states that the sequence of orders of the groups SLk(Zn) (respectively, of the group

GLk(Zn)) is Cesàro equivalent asn → ∞ to the sequenceC1(k)n
k2−1 (respectively,C2(k)n

k2
), where the coefficientsC1(k)

andC2(k) depend only onk; we give explicit formulas forC1(k) andC2(k). This result generalizes the theorem (which was fi
published by I. Schoenberg) that says that the Euler functionϕ(n) is Cesàro equivalent ton 6

π2 . We present some experiment
facts related to the main result.To cite this article: A.G. Gorinov, S.V. Shadchin, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Formules asymptotiques au sens de Cesàro pour les ordres de SLk(Zn) et GLk(Zn) quand n → ∞. Fixons un entier
k > 0. Notre resultat principal dit que la suite des ordres des groupes SLk(Zn) (respectivement, des groupes GLk(Zn)) est

equivalente au sens de Cesàro quandn → ∞ à la suiteC1(k)n
k2−1 (respectivement,C2(k)n

k2
), où les coefficientsC1(k) et

C2(k) ne dependent que dek ; on donne des formules explicites pourC1(k) etC2(k). Ce resultat généralise le théorème (pub
pour la première fois par I. Schoenberg) disant que la fonction d’Eulerϕ(n) est equivalente au sens de Cesàro àn 6

π2 . On
présente quelques faits experimentaux liés au resultat principal.Pour citer cet article : A.G. Gorinov, S.V. Shadchin, C. R.
Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

0. Introduction

The article is organized as follows: in Section 1 we introduce some notation and formulate our main
Then, in Section 2, we prove this result. Finally, in Section 3 we discuss some interesting related facts.

1. The main theorem

Two sequences of real numbers(xn)n∈N and(yn)n∈N are said to beCesàro equivavent, if lim n→∞ x1+···+xn
y1+···+yn

= 1.

E-mail addresses:gorinov@math.jussieu.fr (A.G. Gorinov), chadtchi@ihes.fr (S.V. Shadchin).
1631-073X/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-073X(03)00328-5
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For any finite setX we shall denote by #(X) the cardinality ofX. We shall use the symbol
∏

p to denote the produc
over all prime numbers.

Our main result is the following theorem:

Theorem 1.1. For any fixed integerk > 0 the sequence(#(SLk(Zn)))n∈N (resp., the sequence(#(GLk(Zn)))n∈N)

is Cesàro equivalent asn → ∞ to C1(k)n
k2−1 (resp.,C2(k)n

k2
), whereC1(1) = 1, C2(1)=∏

p(1− 1
p2 ), and for

anyk > 1 we have

C1(k) =
∏
p

(
1− 1

p

(
1−

k∏
i=2

(
1− 1

pi

)))
, C2(k) =

∏
p

(
1− 1

p

(
1−

k∏
i=1

(
1− 1

pi

)))
.

Remark. In particular, #(GL1(Zn)) and #(SL2(Zn)) are Cesàro equivalent ton
ζ(2) and n3

ζ(3) respectively. We do no
know if the asymptotics given by Theorem 1.1 can be expressed in terms of values of the Riemann zeta-
(or any other remarkable function) at algebraic points in any of the other cases.

To the best of our knowledge, the fact that the Euler functionϕ(n) = #(GL1(Zn)) is Cesàro equivalent ton 6
π2

was first published in [1] by Schoenberg, who attributes the result to Schur. This result was probably alread
to Gauss. An explicit formula for the cumulative distribution function of the sequence(ϕ(n)/n)n∈N is given in [2]
by Venkov.

2. Proof of Theorem 1.1

Let us first recall the explicit formulas for #(SLk(Zn)) and #(GLk(Zn)). For any positive integerk denote byϕ̃k
1

the mapN → R given by the formulãϕk(p
l1
1 · · ·plm

m ) = (1 − 1/pk
1) · · · (1 − 1/pk

m) (herep1, . . . , pm are pairwise
distinct primes).

Lemma 2.1. We have#(GL1(Zn)) = nϕ̃1(n), and for any integerk > 1 we have#(SLk(Zn)) = nk2−1ϕ̃2(n) · · ·
ϕ̃k(n),#(GLk(Zn)) = nk2

ϕ̃1(n) · · · ϕ̃k(n).

The proof is an exercise in linear algebra.✷
Now let us calculate the limits of the averages of the sequences(ϕ̃1(n) · · · ϕ̃k(n))n∈N and(ϕ̃2(n) · · · ϕ̃k(n))n∈N.

More generally, let� be a finite (nonempty) ordered collection of positive integers:� = (i1, . . . , il). For anyn ∈ N

set ϕ̃�(n) = ϕ̃i1(n) · · · ϕ̃il (n). For any sequencex = (xn)n∈N denote by〈x〉 the Cesàro limit ofx, i.e., the limit
limn→∞ 1

n

∑n
m=1xm.

Theorem 2.2. For any � = (i1, . . . , il) the limit 〈ϕ̃�〉 exists and is equal to
∏

p f�(
1
p
), wheref�(t) = 1 − t (1 −∏l

j=1(1− t ij )).

Sketch of a proof of Theorem 2.2. We shall first give an informal proof of the theorem; we shall then show w
changes should be made to make our informal proof rigorous.

The idea of the proof of Theorem 2.2 is to give a probabilistic interpretation to some complicated expr
(such as1

n

∑n
m=1 ϕ̃�(m)). This idea goes back to Euler.

1 This notation can be explained as follows: the functionϕ̃k generalizes the functionn �→ ϕ(n)/n = ϕ̃1(n).
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Let us note that for any positive integerq the “probability” that a “random” positive integer is a not a multip
of q is 1− 1/q . If q1 andq2 are coprime integers, the events “r is not divisible byq1” and “r is not divisible by
q2” ( r being a “random” positive integer) are independent, which implies that for any positive integersm, k the
expressioñϕk(m) is the “probability” that a “randomly chosen” positive integer is not divisible byk-th powers of
the prime divisors ofm.

Analogously, for any fixed positive integerm the expressioñϕ�(m) can be seen as the “probability” to find a
element(x1, . . . , xl) ∈ N

l that satisfies the following conditions:x1 is not divisible by thei1-th powers of the prime
factors ofm, x2 is not divisible by thei2-th powers of the prime factors ofm etc.

Using the total probability formula, we obtain that1
n

∑n
m=1 ϕ̃�(m) is the “probability” that a “random” elemen

of the set{(x0, x1, . . . , xl) | x0, . . . , xl ∈ N, x0 � n} satisfies the following condition: anyxj , j = 1, . . . , l is not
divisible by theij -th powers of the prime divisors ofx0. So the limit〈ϕ̃�〉 is the “probability” of the limit event,
which can be described as the intersection for all primep of the following events: “either (x0 is not divisible byp),
or (none ofxj , j = 1, . . . , l, is divisible bypij )”. These events are independent, and the “probability” of eac
them isf�( 1

p
) = 1− 1

p

(
1−∏l

j=1(1− 1
p
ij
)
)
. This gives the desired expression for〈ϕ̃�〉.

This idea is formalized as follows. Letl be a positive integer, and letA andB be subsets ofNl such that there
exists limk→∞ #(A∩B∩Ck)

#(B∩Ck)
, whereCk = {(x1, . . . , xl) ∈ N

l | x1 � k, . . . , xl � k}. This limit will be called thedensity

of A in B and will be denoted bypB(A). For anyB ⊂ N
l the correspondenceB ⊃ A �→ pB(A) defines a measur

onB.2

Using the same argument as above (and replacing “probabilities” with “densities” and “events” with “set
can represent1

n

∑n
m=1 ϕ̃�(m) as the density of a certain subset of the set{(x0, x1, . . . , xl) | x0, . . . , xl ∈ N, x0 � n}.

This interpretation does not allow us to pass immediately to the limit asn → ∞, but it enables us to write th
following combinatorial formula for1

n

∑n
m=1 ϕ̃�(m). Define the sequence(ak)k∈N by the formula

∑∞
k=1akt

k =
1−∏j (1− t ij ). We have1

n

∑n
m=1 ϕ̃�(m) = 1+∑∞

r=2
1
r
(−1)pr(r)a(r)br,n, where for anyr = p

α1
1 · · ·pαs

s we define

pr(r) = s, a(r) = aα1 · · ·aαs , br,n = [ n
p1···ps

] 1
n

(in particular,a(r) = 0, if max{α1, . . . , αs} > i1 + · · · + il ). Now let

us note that this expression has the form
∑∞

k=1 b
′
k,ncr , whereck is the k-th term of the absolutely converge

series obtained by multiplying out the product
∏

p

(
1 − 1

p

(
1 − ∏l

j=1(1 − 1
p
ij
)
))

, and everyb′
k,n has the form

p1···ps

n
[ n
p1···ps

]. We have 0� b′
k,n � 1 for anyk,n, and the limit limn→∞ b′

k,n is equal to 1 for anyk. This implies
Theorem 2.2. ✷

Theorem 1.1 can be obtained from Theorem 2.2, from Lemma 2.1 and from the following lemma.

Lemma 2.3. Let (xn)n∈N be a sequence of real numbers, and suppose that〈x〉 exists. Then, for any nonnegati

integerk, we havelimn→∞ x1+2kx2+···+nkxn
1+2k+···+nk

= 〈x〉.

Proof of Lemma 2.3. The proof is by induction onk. If k = 0, there is nothing to prove. Suppose Lemma 2.3 h
for somek. For any sequencey = (yn)n∈N setSk

n[y] = y1 + 2ky2 + · · · + nkyn. We haveSk
n[x] = nk+1(

〈x〉
k+1 + εn),

where(εn)n∈N is a sequence such that limn→∞ εn = 0. Note that for any sequencey = (yn)n∈N we have

Sk+1
n [y] = nSk

n[y] −
n−1∑
m=1

Sk
m[y]. (∗)

Thus, we can writeSk+1
n [x] = 〈x〉

k+1(n
k+2 −∑n−1

m=1m
k+1) + εnn

k+2 − Sk+1
n−1[ε]. We have limn→∞

Sk+1
n−1[ε]
nk+2 = 0, and

hence limn→∞ Sk+1
n [x]
nk+2 = 〈x〉

k+1(1− 1
k+2) = 〈x〉

k+2, which implies the statement of Lemma 2.3.✷
2 Unfortunately, this measure is notσ -additive, which is why we prefer to speak rather of densities than of probabilities.
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3. Convergence rates and the distribution of the values of ϕ̃�

Let � be a finite (nonempty) ordered collection of positive integers:� = (i1, . . . , il). In this section we briefly
discuss the convergence rate of the sequences( 1

ns+1

∑n
k=1 k

sϕ̃�(k))n∈N for different fixeds ∈ N and the distribution
of the values of the functioñϕ�.

SetΦ� = limn→∞ 1
n

∑n
k=1 ϕ̃�(k) =∏

p f�(
1
p
), ξ�,s(n) = 1

ns

(∑n
k=1 k

s ϕ̃�(n) − ns+1

s+1 Φ�

)
. It follows immediately

from these definitions that
∑n

k=1 k
s ϕ̃�(k) = ns+1

s+1 Φ� + nsξ�,s(n).

Theorem 3.1. If 〈ξ�,0〉 exists, then for all integerss > 0 the limit 〈ξ�,s〉 exists and is equal to12Φ�.

Proof of Theorem 3.1. Setη�,s(n) = 1
ns

∑n
k=1 k

s(ϕ̃�(k) − Φ�). Note thatξ�,0 = η�,0, hence〈η�,0〉 exists. Using
formula(∗) we getη�,s+1(n) = η�,s(n)− 1

ns+1

∑n
k=1 k

sη�,s(k). Hence we obtain using Lemma 2.3 that〈η�,s+1〉 =
s

s+1〈η�,s〉 for any integers � 0. Thus,〈η�,s〉 = 0 for any integers > 0.

For any integers � 1 we have
∑n

k=1 k
s = ns+1

s+1 + 1
2n

s + O(ns−1). Hence we get the following relation

ξ�,s(n) = η�,s(n) + 1
2Φ� + O( 1

n
), which implies that〈ξ�,s〉 = 1

2Φ�. The theorem is proven.✷
Let us now consider the distribution of the values of the functionϕ̃�. Using the argument from [1, §5], on

can prove that for anyt ∈ [0,1] the limit limn→∞ 1
n
#{k ∈ N | k � n, ϕ̃�(k) � t} exists, and that the functionF�

defined by the formulaF�(t) = limn→∞ 1
n
#{k ∈ N | k � n, ϕ̃�(k) � t} is continuous (I. Schoenberg conside

only the case� = (1), but his argument can be easily extended to the case of an arbitrary�). The functionF� is
the analogue of the cumulative distribution function in probability theory. Given a nonnegative integers, thes-th
moment ofF� is defined as follows:µ�,s = ∫ 1

0 ts dF�(t). It is easy to prove (see [1, Satz I]) thatµ�,s = 〈(ϕ̃�)
s〉. Due

to Theorem 2.2, we haveµ�,s = Φ�s where�s is the following collection of positive integers:�s = (i1, i1, . . . , i1 (s
times),i2, i2, . . . , i2 (s times), . . .).

The Fourier series forF�(t) is equal to
∑

n∈Z
une2π int , whereu0 = 1 − Φ� = 1

2 −∑
k �=0

〈e−2π ikϕ̃� 〉
2π ik (the sum of

the series in the latter formula is to be taken in Cesàro sence), and the Fourier coefficientsun for n �= 0 can be

calculated using either the formulaun = −∑∞
m=1

(−2π in)m−1

m! Φ�m, or the formulaun = 1
2π in(〈e−2πinϕ̃� 〉− 1). Since

F� is continuous, its Fourier series converges in Cesàro sence toF� uniformly on every compact subset of the op
interval(0,1).

Note added in proof. Recently we proved that for any� = (i1, . . . , il) such that allij > 1, the limit 〈ξ�,0〉 exists
and 〈ξ�,0〉 = 1

2Φ� − 1
2ζ(i1)···ζ(il ) . After the article has been accepted for publication, we learn from P. More

alternative proof of Theorem 1.1 based on a lemma in [3, p. 108] (the proof of that lemma given in [1] is
Erdős).
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