

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 337 (2003) 149-152

Number Theory/Algebra

Cesàro asymptotics for the orders of $\mathrm{SL}_k(\mathbb{Z}_n)$ and $\mathrm{GL}_k(\mathbb{Z}_n)$ as $n \to \infty$

Alexey G. Gorinov a, Sergey V. Shadchin b

^a Université Paris 7, U.F.R. de mathématiques, 2, place Jussieu, 75251, France ^b IHES, Bures-sur-Yvette, route de Chartres, 91140, France

> Received 6 May 2003; accepted 20 May 2003 Presented by Vladimir Arnold

Abstract

Given an integer k > 0, our main result states that the sequence of orders of the groups $\mathrm{SL}_k(\mathbb{Z}_n)$ (respectively, of the groups $\mathrm{GL}_k(\mathbb{Z}_n)$) is Cesàro equivalent as $n \to \infty$ to the sequence $C_1(k)n^{k^2-1}$ (respectively, $C_2(k)n^{k^2}$), where the coefficients $C_1(k)$ and $C_2(k)$ depend only on k; we give explicit formulas for $C_1(k)$ and $C_2(k)$. This result generalizes the theorem (which was first published by I. Schoenberg) that says that the Euler function $\varphi(n)$ is Cesàro equivalent to $n + \frac{6}{\pi^2}$. We present some experimental facts related to the main result. *To cite this article: A.G. Gorinov, S.V. Shadchin, C. R. Acad. Sci. Paris, Ser. I 337 (2003).* © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Formules asymptotiques au sens de Cesàro pour les ordres de $\mathrm{SL}_k(\mathbb{Z}_n)$ et $\mathrm{GL}_k(\mathbb{Z}_n)$ quand $n \to \infty$. Fixons un entier k > 0. Notre resultat principal dit que la suite des ordres des groupes $\mathrm{SL}_k(\mathbb{Z}_n)$ (respectivement, des groupes $\mathrm{GL}_k(\mathbb{Z}_n)$) est equivalente au sens de Cesàro quand $n \to \infty$ à la suite $C_1(k)n^{k^2-1}$ (respectivement, $C_2(k)n^{k^2}$), où les coefficients $C_1(k)$ et $C_2(k)$ ne dependent que de k; on donne des formules explicites pour $C_1(k)$ et $C_2(k)$. Ce resultat généralise le théorème (publié pour la première fois par I. Schoenberg) disant que la fonction d'Euler $\varphi(n)$ est equivalente au sens de Cesàro à $n \frac{6}{\pi^2}$. On présente quelques faits experimentaux liés au resultat principal. *Pour citer cet article : A.G. Gorinov, S.V. Shadchin, C. R. Acad. Sci. Paris, Ser. I 337 (2003).*

© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

0. Introduction

The article is organized as follows: in Section 1 we introduce some notation and formulate our main result. Then, in Section 2, we prove this result. Finally, in Section 3 we discuss some interesting related facts.

1. The main theorem

Two sequences of real numbers $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ are said to be *Cesàro equivavent*, if $\lim_{n\to\infty}\frac{x_1+\cdots+x_n}{y_1+\cdots+y_n}=1$.

E-mail addresses: gorinov@math.jussieu.fr (A.G. Gorinov), chadtchi@ihes.fr (S.V. Shadchin).

1631-073X/\$ – see front matter © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

For any finite set X we shall denote by #(X) the cardinality of X. We shall use the symbol \prod_p to denote the product over all prime numbers.

Our main result is the following theorem:

Theorem 1.1. For any fixed integer k > 0 the sequence $(\#(\operatorname{SL}_k(\mathbb{Z}_n)))_{n \in \mathbb{N}}$ (resp., the sequence $(\#(\operatorname{GL}_k(\mathbb{Z}_n)))_{n \in \mathbb{N}}$) is Cesàro equivalent as $n \to \infty$ to $C_1(k)n^{k^2-1}$ (resp., $C_2(k)n^{k^2}$), where $C_1(1) = 1$, $C_2(1) = \prod_p (1 - \frac{1}{p^2})$, and for any k > 1 we have

$$C_1(k) = \prod_{p} \left(1 - \frac{1}{p} \left(1 - \prod_{i=2}^{k} \left(1 - \frac{1}{p^i} \right) \right) \right), \qquad C_2(k) = \prod_{p} \left(1 - \frac{1}{p} \left(1 - \prod_{i=1}^{k} \left(1 - \frac{1}{p^i} \right) \right) \right).$$

Remark. In particular, $\#(GL_1(\mathbb{Z}_n))$ and $\#(SL_2(\mathbb{Z}_n))$ are Cesàro equivalent to $\frac{n}{\zeta(2)}$ and $\frac{n^3}{\zeta(3)}$ respectively. We do not know if the asymptotics given by Theorem 1.1 can be expressed in terms of values of the Riemann zeta-function (or any other remarkable function) at algebraic points in any of the other cases.

To the best of our knowledge, the fact that the Euler function $\varphi(n) = \#(GL_1(\mathbb{Z}_n))$ is Cesàro equivalent to $n \frac{6}{\pi^2}$ was first published in [1] by Schoenberg, who attributes the result to Schur. This result was probably already known to Gauss. An explicit formula for the cumulative distribution function of the sequence $(\varphi(n)/n)_{n\in\mathbb{N}}$ is given in [2] by Venkov.

2. Proof of Theorem 1.1

Let us first recall the explicit formulas for $\#(\operatorname{SL}_k(\mathbb{Z}_n))$ and $\#(\operatorname{GL}_k(\mathbb{Z}_n))$. For any positive integer k denote by $\tilde{\varphi}_k^{\ 1}$ the map $\mathbb{N} \to \mathbb{R}$ given by the formula $\tilde{\varphi}_k(p_1^{l_1}\cdots p_m^{l_m})=(1-1/p_1^k)\cdots(1-1/p_m^k)$ (here p_1,\ldots,p_m are pairwise distinct primes).

Lemma 2.1. We have $\#(GL_1(\mathbb{Z}_n)) = n\tilde{\varphi}_1(n)$, and for any integer k > 1 we have $\#(SL_k(\mathbb{Z}_n)) = n^{k^2 - 1}\tilde{\varphi}_2(n) \cdots \tilde{\varphi}_k(n)$, $\#(GL_k(\mathbb{Z}_n)) = n^{k^2}\tilde{\varphi}_1(n) \cdots \tilde{\varphi}_k(n)$.

The proof is an exercise in linear algebra. \Box

Now let us calculate the limits of the averages of the sequences $(\tilde{\varphi}_1(n)\cdots\tilde{\varphi}_k(n))_{n\in\mathbb{N}}$ and $(\tilde{\varphi}_2(n)\cdots\tilde{\varphi}_k(n))_{n\in\mathbb{N}}$. More generally, let ℓ be a finite (nonempty) ordered collection of positive integers: $\ell=(i_1,\ldots,i_l)$. For any $n\in\mathbb{N}$ set $\tilde{\varphi}_\ell(n)=\tilde{\varphi}_{i_1}(n)\cdots\tilde{\varphi}_{i_l}(n)$. For any sequence $x=(x_n)_{n\in\mathbb{N}}$ denote by $\langle x\rangle$ the Cesàro limit of x, i.e., the limit $\lim_{n\to\infty}\frac{1}{n}\sum_{m=1}^n x_m$.

Theorem 2.2. For any $\ell = (i_1, ..., i_l)$ the limit $\langle \tilde{\varphi}_{\ell} \rangle$ exists and is equal to $\prod_p f_{\ell}(\frac{1}{p})$, where $f_{\ell}(t) = 1 - t(1 - \prod_{i=1}^{l} (1 - t^{i_j}))$.

Sketch of a proof of Theorem 2.2. We shall first give an informal proof of the theorem; we shall then show what changes should be made to make our informal proof rigorous.

The idea of the proof of Theorem 2.2 is to give a probabilistic interpretation to some complicated expressions (such as $\frac{1}{n}\sum_{m=1}^{n} \tilde{\varphi}_{\ell}(m)$). This idea goes back to Euler.

¹ This notation can be explained as follows: the function $\tilde{\varphi}_k$ generalizes the function $n\mapsto \varphi(n)/n=\tilde{\varphi}_1(n)$.

Let us note that for any positive integer q the "probability" that a "random" positive integer is a not a multiple of q is 1 - 1/q. If q_1 and q_2 are coprime integers, the events "r is not divisible by q_1 " and "r is not divisible by q_2 " (r being a "random" positive integer) are independent, which implies that for any positive integers m, k the expression $\tilde{\varphi}_k(m)$ is the "probability" that a "randomly chosen" positive integer is not divisible by k-th powers of the prime divisors of m.

Analogously, for any fixed positive integer m the expression $\tilde{\varphi}_{\ell}(m)$ can be seen as the "probability" to find an element $(x_1, \ldots, x_l) \in \mathbb{N}^l$ that satisfies the following conditions: x_1 is not divisible by the i_1 -th powers of the prime factors of m, x_2 is not divisible by the i_2 -th powers of the prime factors of m etc.

Using the total probability formula, we obtain that $\frac{1}{n}\sum_{m=1}^{n}\tilde{\varphi}_{\ell}(m)$ is the "probability" that a "random" element of the set $\{(x_0,x_1,\ldots,x_l)\mid x_0,\ldots,x_l\in\mathbb{N},\ x_0\leqslant n\}$ satisfies the following condition: any $x_j,\ j=1,\ldots,l$ is not divisible by the i_j -th powers of the prime divisors of x_0 . So the limit $\langle \tilde{\varphi}_{\ell} \rangle$ is the "probability" of the limit event, which can be described as the intersection for all prime p of the following events: "either $(x_0$ is not divisible by p), or (none of $x_j,\ j=1,\ldots,l$, is divisible by p^{i_j})". These events are independent, and the "probability" of each of them is $f_{\ell}(\frac{1}{p})=1-\frac{1}{p}\left(1-\prod_{j=1}^{l}(1-\frac{1}{p^{i_j}})\right)$. This gives the desired expression for $\langle \tilde{\varphi}_{\ell} \rangle$.

This idea is formalized as follows. Let l be a positive integer, and let A and B be subsets of \mathbb{N}^l such that there exists $\lim_{k\to\infty}\frac{\#(A\cap B\cap C_k)}{\#(B\cap C_k)}$, where $C_k=\{(x_1,\ldots,x_l)\in\mathbb{N}^l\mid x_1\leqslant k,\ldots,x_l\leqslant k\}$. This limit will be called the *density* of A in B and will be denoted by $p_B(A)$. For any $B\subset\mathbb{N}^l$ the correspondence $B\supset A\mapsto p_B(A)$ defines a measure on B.²

Using the same argument as above (and replacing "probabilities" with "densities" and "events" with "sets"), we can represent $\frac{1}{n}\sum_{m=1}^n \tilde{\varphi}_\ell(m)$ as the density of a certain subset of the set $\{(x_0,x_1,\ldots,x_l)\mid x_0,\ldots,x_l\in\mathbb{N},\ x_0\leqslant n\}$. This interpretation does not allow us to pass immediately to the limit as $n\to\infty$, but it enables us to write the following combinatorial formula for $\frac{1}{n}\sum_{m=1}^n \tilde{\varphi}_\ell(m)$. Define the sequence $(a_k)_{k\in\mathbb{N}}$ by the formula $\sum_{k=1}^\infty a_k t^k = 1-\prod_j(1-t^{i_j})$. We have $\frac{1}{n}\sum_{m=1}^n \tilde{\varphi}_\ell(m)=1+\sum_{r=2}^\infty \frac{1}{r}(-1)^{pr(r)}a(r)b_{r,n}$, where for any $r=p_1^{\alpha_1}\cdots p_s^{\alpha_s}$ we define $pr(r)=s, a(r)=a_{\alpha_1}\cdots a_{\alpha_s}, b_{r,n}=[\frac{n}{p_1\cdots p_s}]\frac{1}{n}$ (in particular, a(r)=0, if $\max\{\alpha_1,\ldots,\alpha_s\}>i_1+\cdots+i_l\}$). Now let us note that this expression has the form $\sum_{k=1}^\infty b'_{k,n}c_r$, where c_k is the k-th term of the absolutely convergent series obtained by multiplying out the product $\prod_p \left(1-\frac{1}{p}(1-\prod_{j=1}^l(1-\frac{1}{p^{i_j}}))\right)$, and every $b'_{k,n}$ has the form $\frac{p_1\cdots p_s}{n}[\frac{n}{p_1\cdots p_s}]$. We have $0\leqslant b'_{k,n}\leqslant 1$ for any k,n, and the limit $\lim_{n\to\infty}b'_{k,n}$ is equal to 1 for any k. This implies Theorem 2.2. \square

Theorem 1.1 can be obtained from Theorem 2.2, from Lemma 2.1 and from the following lemma.

Lemma 2.3. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers, and suppose that $\langle x \rangle$ exists. Then, for any nonnegative integer k, we have $\lim_{n\to\infty} \frac{x_1+2^kx_2+\cdots+n^kx_n}{1+2^k+\cdots+n^k} = \langle x \rangle$.

Proof of Lemma 2.3. The proof is by induction on k. If k=0, there is nothing to prove. Suppose Lemma 2.3 holds for some k. For any sequence $y=(y_n)_{n\in\mathbb{N}}$ set $S_n^k[y]=y_1+2^ky_2+\cdots+n^ky_n$. We have $S_n^k[x]=n^{k+1}(\frac{\langle x\rangle}{k+1}+\varepsilon_n)$, where $(\varepsilon_n)_{n\in\mathbb{N}}$ is a sequence such that $\lim_{n\to\infty}\varepsilon_n=0$. Note that for any sequence $y=(y_n)_{n\in\mathbb{N}}$ we have

$$S_n^{k+1}[y] = nS_n^k[y] - \sum_{m=1}^{n-1} S_m^k[y]. \tag{*}$$

Thus, we can write $S_n^{k+1}[x] = \frac{\langle x \rangle}{k+1} (n^{k+2} - \sum_{m=1}^{n-1} m^{k+1}) + \varepsilon_n n^{k+2} - S_{n-1}^{k+1}[\varepsilon]$. We have $\lim_{n \to \infty} \frac{S_{n-1}^{k+1}[\varepsilon]}{n^{k+2}} = 0$, and hence $\lim_{n \to \infty} \frac{S_n^{k+1}[x]}{n^{k+2}} = \frac{\langle x \rangle}{k+1} (1 - \frac{1}{k+2}) = \frac{\langle x \rangle}{k+2}$, which implies the statement of Lemma 2.3. \square

² Unfortunately, this measure is not σ -additive, which is why we prefer to speak rather of densities than of probabilities.

3. Convergence rates and the distribution of the values of $\tilde{\varphi}_{\ell}$

Let ℓ be a finite (nonempty) ordered collection of positive integers: $\ell = (i_1, \dots, i_l)$. In this section we briefly discuss the convergence rate of the sequences $(\frac{1}{n^{s+1}} \sum_{k=1}^n k^s \tilde{\varphi}_{\ell}(k))_{n \in \mathbb{N}}$ for different fixed $s \in \mathbb{N}$ and the distribution of the values of the function $\tilde{\varphi}_{\ell}$.

Set $\Phi_{\ell} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \tilde{\varphi}_{\ell}(k) = \prod_{p} f_{\ell}(\frac{1}{p}), \ \xi_{\ell,s}(n) = \frac{1}{n^{s}} \left(\sum_{k=1}^{n} k^{s} \tilde{\varphi}_{\ell}(n) - \frac{n^{s+1}}{s+1} \Phi_{\ell} \right)$. It follows immediately from these definitions that $\sum_{k=1}^{n} k^{s} \tilde{\varphi}_{\ell}(k) = \frac{n^{s+1}}{s+1} \Phi_{\ell} + n^{s} \xi_{\ell,s}(n)$.

Theorem 3.1. If $\langle \xi_{\ell,0} \rangle$ exists, then for all integers s > 0 the limit $\langle \xi_{\ell,s} \rangle$ exists and is equal to $\frac{1}{2}\Phi_{\ell}$.

Proof of Theorem 3.1. Set $\eta_{\ell,s}(n) = \frac{1}{n^s} \sum_{k=1}^n k^s (\tilde{\varphi}_{\ell}(k) - \Phi_{\ell})$. Note that $\xi_{\ell,0} = \eta_{\ell,0}$, hence $\langle \eta_{\ell,0} \rangle$ exists. Using formula (*) we get $\eta_{\ell,s+1}(n) = \eta_{\ell,s}(n) - \frac{1}{n^{s+1}} \sum_{k=1}^n k^s \eta_{\ell,s}(k)$. Hence we obtain using Lemma 2.3 that $\langle \eta_{\ell,s+1} \rangle = \frac{s}{s+1} \langle \eta_{\ell,s} \rangle$ for any integer $s \ge 0$. Thus, $\langle \eta_{\ell,s} \rangle = 0$ for any integer s > 0.

For any integer $s \geqslant 1$ we have $\sum_{k=1}^{n} k^s = \frac{n^{s+1}}{s+1} + \frac{1}{2}n^s + O(n^{s-1})$. Hence we get the following relation: $\xi_{\ell,s}(n) = \eta_{\ell,s}(n) + \frac{1}{2}\Phi_{\ell} + O(\frac{1}{n})$, which implies that $\langle \xi_{\ell,s} \rangle = \frac{1}{2}\Phi_{\ell}$. The theorem is proven. \square

Let us now consider the distribution of the values of the function $\tilde{\varphi}_{\ell}$. Using the argument from [1, §5], one can prove that for any $t \in [0,1]$ the limit $\lim_{n\to\infty}\frac{1}{n}\#\{k\in\mathbb{N}\mid k\leqslant n,\ \tilde{\varphi}_{\ell}(k)\leqslant t\}$ exists, and that the function F_{ℓ} defined by the formula $F_{\ell}(t)=\lim_{n\to\infty}\frac{1}{n}\#\{k\in\mathbb{N}\mid k\leqslant n,\ \tilde{\varphi}_{\ell}(k)\leqslant t\}$ is continuous (I. Schoenberg considers only the case $\ell=(1)$, but his argument can be easily extended to the case of an arbitrary ℓ). The function F_{ℓ} is the analogue of the cumulative distribution function in probability theory. Given a nonnegative integer s, the s-th moment of F_{ℓ} is defined as follows: $\mu_{\ell,s}=\int_0^1 t^s \, \mathrm{d}F_{\ell}(t)$. It is easy to prove (see [1, Satz I]) that $\mu_{\ell,s}=\langle (\tilde{\varphi}_{\ell})^s \rangle$. Due to Theorem 2.2, we have $\mu_{\ell,s}=\Phi_{\ell^s}$ where ℓ^s is the following collection of positive integers: $\ell^s=(i_1,i_1,\ldots,i_1)$ (s times), i_2,i_2,\ldots,i_2 (s times),...).

The Fourier series for $F_{\ell}(t)$ is equal to $\sum_{n \in \mathbb{Z}} u_n e^{2\pi i n t}$, where $u_0 = 1 - \Phi_{\ell} = \frac{1}{2} - \sum_{k \neq 0} \frac{\langle e^{-2\pi i k \tilde{\varphi}_{\ell}} \rangle}{2\pi i k}$ (the sum of the series in the latter formula is to be taken in Cesàro sence), and the Fourier coefficients u_n for $n \neq 0$ can be calculated using either the formula $u_n = -\sum_{m=1}^{\infty} \frac{(-2\pi i n)^{m-1}}{m!} \Phi_{\ell^m}$, or the formula $u_n = \frac{1}{2\pi i n} (\langle e^{-2\pi i n \tilde{\varphi}_{\ell}} \rangle - 1)$. Since F_{ℓ} is continuous, its Fourier series converges in Cesàro sence to F_{ℓ} uniformly on every compact subset of the open interval (0, 1).

Note added in proof. Recently we proved that for any $\ell = (i_1, \dots, i_l)$ such that all $i_j > 1$, the limit $\langle \xi_{\ell,0} \rangle$ exists and $\langle \xi_{\ell,0} \rangle = \frac{1}{2} \Phi_{\ell} - \frac{1}{2\zeta(i_1)\cdots\zeta(i_l)}$. After the article has been accepted for publication, we learn from P. Moree an alternative proof of Theorem 1.1 based on a lemma in [3, p. 108] (the proof of that lemma given in [1] is due to Erdős).

Acknowledgements

The authors wish to thank V.I. Arnold for proposing this interesting problem and for useful discussions.

References

- [1] I. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928) 171–199.
- [2] B.A. Venkov, On a certain monotonic function, Uchenye Zapiski Leningrad State Univ. Math. Ser. 111 (16) (1949) 3-19 (in Russian).
- [3] M. Kac, E.R. van Kampen, A. Wintner, Ramanujan sums and almost periodic functions, Amer. J. Math. 62 (1940) 107-114.