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1. Introduction

The purpose of this paper is to characterize Lipschitzian superposition
(Nemytskii) operators in the Hardy space of functions of two variables with finite
total variation. More details on the definitions and results of this paper are given in
Section 2. Here we review some facts known for functions of one variable.

Let 7 = [a,b] C R be a closed interval, R’ be the algebra of all functions
f I — R under the usual pointwise operations and 2:1 xR — R be a given
function. The superposition (Nemytskii) operator H = Hy, : R' — R! is defined by

(Hf)(x) = H(f)(x) = h(x,f(x)), feR!, xel (1)
The function 4 is called the generator of H. Let B(I) C R’ be a Banach function
space with the norm || - ||. We are interested in finding conditions on the generator

h in order for the operator H : B(I) — B(I) to be Lipschitzian: there exists a
constant y >0 such that

1H(fi) —HR)I<plfi Al forall fi,f>€B(). (2)

The operator H with the property (2) (and p<1) is closely connected with the
solution of the functional equation f(x) = h(x,f(x)), x €I, written also as f = Hf,
with respect to f € B(I) via the classical Banach fixed point theorem. For instance,
if xel and h(x,u) = sinu, u € R, the corresponding operator H is Lipschitzian in
the space of continuous functions C(7) (with the supremum norm) and in the space
I7(I) of Lebesgue p-summable functions on I (with the standard norm), p>1. In
contrast with this, Matkowski [12] proved that if B(I) = Lip(I) is the space of
Lipschitz functions on I with respect to the usual Lipschitzian norm, then condi-
tion (2) implies that the generator & of H is of the form h(x,u) = ho(x) + hy (x)u,
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x€l, ueR, for some functions hg, h; €Lip(I). For the space B(I) = BV(I) of
functions of bounded (Jordan) variation on / with the standard norm Matkowski
and Mis [16] (cf. also Appell and Zabrejko [3, Theorem 6.14]) showed that the
generator £ of a Lipschitzian superposition operator H satisfies the condition:

B (x,u) = ho(x) + hy(x)u, x€(a,b], uel, (3)

where 2™ (x,u) = limy_,_o h(y, u) is the left regularization of / in the first variable
and functions hg, h € BV(I) are continuous from the left.

The last two results assert that the sets of Lipschitzian superposition operators
on spaces Lip(I) and BV(I) are much poorer than those on spaces C(I) and
L[P(I) in that the corresponding generators are necessarily linear in the second
variable; in particular, the above functional equation cannot be solved by directly
applying Banach’s contraction principle if # depends on the second variable u € R
nonlinearly (in this case one should invoke Schauder’s fixed point theorem or a
similar more powerful tool). The above two results have been extended later to
different spaces of functions of one variable: [3]—[7], [14], [15], [17] (see also [13]
for the case of Lipschitz maps).

In this paper we first show that the Hardy space of functions of two variables
with finite total variation is a Banach algebra under the usual pointwise operations
and a suitably chosen norm (Theorem 1). Then we present a complete description
of Lipschitzian superposition operators H on the Hardy space — the representation
for the corresponding generators will be of the form similar to (3) (Theorem 2).
Also, we show that the representation of type (3) is exact in that in general one
cannot omit the asterisk in #* (Theorem 3). Finally, in Section 4 we present some
generalizations of the above results when functions of two variables under con-
sideration have their values in normed linear or Banach spaces (Theorem 4).
Methods of proof used in this paper are consistent with those from [5]-[7] applied
for functions (and maps) of one variable.

We have chosen the basic case of functions of two variables since the principal
difference with the case of functions of one variable is more clearly seen. Corre-
sponding results for functions of N>2 real variables with finite total variation
from the Hardy space will be published elsewhere.

2. Banach Algebra BV(I%; R). Main Results

Let I> = [ay, b1] X |aa, by] be the basic rectangle (the domain of functions) with
a=(a1,a2), b= (by,by) € R? such that a; < b, and a, <b,. For the sake of brevity
we will write x = (x,x2),y = (y1,y2) forx,y € R?, and x<y if x; <y, and x, <y».
Let { = {1;}, and n = {s;}}_, be partitions of [a1,b;] and [ay, bs], respectively
(e, mneN, a) =< < <tp1<tmw=by and ap = sop<s1< - <5,1<
s, = by). The (two-dimensional) Hardy-Vitali variation ([8], [19]) of a function
f: 1> — R is defined by

Va(f, 1) = (S;I;Z D W ir, 1) £ 55) = f i, s) = (1550,
) =1 =1

where the supremum is over all pairs (m, n) € N?and (&,m) with € apartition of [ay, by ]
and 7 a partition of [a,, b,] of the above form. If x, € [ay, bs] is fixed and [x;, y;] is a
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subinterval of [ay, b1], the Jordan variation of the function f(-, x;) of one variable
defined by f (-, x2)(¢t) = f(t, x2), t € [a1, b1], on the interval [x, y1] is the quantity:

V2 (f sulef ti,x0) — f(tio1,32)),

where the supremum is over all partitions & = {#;};",(meN) of [x;,y]. A
similar definition applies to the Jordan variation V2(f(xy,-)) if xi € [ay,by] is
fixed and [x,y,] is a subinterval of [az, by).

We define the fotal variation of f : Ié’ — R by

TV(f,17) = Vo (f(a2)) + V2 (flar, ) + Valf ), (4)

and the Hardy space of functions with finite total variation — by
BV(I3;R) = {f : I — R|TV(f, ;) <oo}.

The value V;(f, IZ’ ) was usually defined (cf. Adams and Clarkson [1], [2] and
Hardy [8]) with the supremum over all partitions of I('j (by a finite number of
arbitrary nonoverlapping subrectangles of Ifj with the edges parallel to the coordi-
nate axes, and not necessarily of the form [f;_i,#;]x[s;_1,s;| as above) and the
Hardy space of functions was defined so that the three variations in (4) are finite.
It was shown by Hildebrandt [9, 111.4.2] and Leonov [11, Corollary 4] that all these
definitions of the Hardy space coincide. Recall that the space BV (I Z ; R) is essential
for the representation of continuous linear functionals on the space of continuous
functions on Ié’ via the Riemann- or Lebesgue-Stieltjes integrals (cf. Shilov and
Gurevich [18, Ch. II, Sect. 5]). The total variation (4) was effectively used
(19, 111.6.5], [10, Theorem 3.2], [11, Theorem 4]) to obtain a Helly selection
principle for functions from the Hardy space BV(If i R).

It is known ([9, I11.6.3], [11, Corollary 2], see also Section 4.1 below) that
BV(I%;R) is a Banach space with respect to the norm:

IFll = f(@] +TV(F. L), fEBV(I;R). (5)
The main ingredient in the proof of this assertion is the following inequality (due
to Leonov [11, Corollaries 1 and 5] for functions of N variables) which will also be
needed below: if f € BV(I%; R) and x<y in /2, then

F) —f@I<TVF, L):; (6)
in fact, this is straightforward for functions of two variables:
F(r1,y2) = fe ) [ < (v, x2) = fxx) ] 4 1 (x1,y2) —f(x1, %)
+ If(x1,x2) +f (1, 32) = fF(x1,32) —f(y1,%2)]
SV Cx) + Vi (F(xa,) + Vo, 1) = TV ).

The first main result of this paper is the following theorem which will be
proved later in this section:

Theorem 1. The space BV(IZ; R) is a Banach algebra with respect to the usual
pointwise operations and norm (5), and the following inequality holds:

If - sll<4lfll - llgll,  f.g€BVI;R). (7)
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Given f € BV(I%; R), we define its left—left regularization f*: 1> — R by

lim fO,y2) if a1<x1<by and ap <xa< by,
(YI 7y2)—><X| —0,}(2—0)
lim
(1:2) = (x1-0,a,+0)

)

) if ay<x1<b; and x; = ay,
lim fy2) if xi=a; and ay <x, <by,

)

-
N
=
<
)

[ (x,x) =
(O1,y2)—(a1+0,x2-0)

lim :
(Y1,y2)%(a1+0’a2+0>f(yl yz

if X1 = ay and X2 = ay.

It is to be noted that (y;,y2) — (x; — 0,x, — 0) means that (y;,y2) Elf,yl <Xxi,
y2<x; and (y1,y2) — (x1,x;) in R?, and similarly for the other three limits. The
existence of all these limits was proved, e.g., in [9, II1.5.3].

A function f : Ig — R is said to be left-left continuous if

lim FO1,y2) =f(x1,x2) for all x; € (a1, b1] and x; € (a2, by).
(V1.32) = (x1-0,2-0)

We denote by BV*(I2; R) the subspace of BV (I2; R) of those functions which are
left—left continuous on (ay, b1]x (az, by].
The second main result reads as follows:

Theorem 2. Let H : R — R be a superposition operator with the generator
h:I’xR — R (cf. (1) with [ = I?).
If H maps BV(Ié7 i R) into itself and is Lipschitzian in the sense of (2), then
|h(x,u1) — h(x, u2)| <24 |uy — us, xe€l’, u,umeR, (8)

a

and there exist two functions ho, hy € BV*(I?; R) such that
h*(x,u) = ho(x) + hy (x)u, xel’, uck, 9)

where h*(x,u) is the left-left regularization of the function x+— h(x,u) for each
Jixed ueR.

Conversely, if ho, hy € BV(I2;R) and h(x,u) = ho(x) + hy(x)u, x€12, ueR,
then H maps BV(IS; R) into itself and is Lipschitzian.

Theorem 2 will be proved in Section 3. Now we present a corollary:

Corollary 1. Suppose that the function h : Ifj xR — R is such that h* = h on
If: X R, and the superposition operator H is generated by h. Then the following two
conditions are equivalent:

(a) H maps the space BV (I”; R) into itself and is Lipschitzian,

(b) there exist functions ho, hy € BV*(I%; R) such that h(x,u) = ho(x)+ hy (x)u
for all x€ 1% and u e R.

Another corollary of Theorem 2 is given after the proof of Theorem 2.

In general the function #* in the representation (9) cannot be replaced by h.
This is shown in the next theorem (its proof is given in Section 3) which is a
modification of the one-dimensional ideas in [16, Example on p. 157].
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Theorem 3. Let {pi},~, and {q.},-, be sequences of distinct rational numbers
of the intervals [ay,by] and [ay, b), respectively. Let h : I’xR — R be defined for
(x1,%2) €17 and u e R by:

2% sin u, if x; =px and x, = q;, k, LN
h — ) ¢ ) )
(x1,%2, u) { 0, otherwise.

Then the superposition operator H generated by h maps BV(IZ’ ; R) into itself and
is Lipschitzian. (Note that the left—left regularization of h is given by h* = 0 which
is of the form (9).)

In Section 4 we generalize Theorems 1 and 2 to the case when functions of two
variables under consideration have values in normed linear spaces (Section 4.1 and
Theorem 4).

Now we turn to the proof of Theorem 1.

Proof of Theorem 1. By (4) and (5), we have:
Ifell = 1(F2) (@)| + VI (fe) (- a2)) + V2 (&) (a1, ) + Valfe, 1) (10)

For the second term we apply the following well known estimate:

Vol ((f8) (o a2)) < (sup [f(,a2)|) Vol (8(- a2)) + Vol (f(-,a2)) ( sup [g(-, az)).

la,b1] [a1,b1]
Since
[SUE] (- ar)| <If(@)| + V(- ), [SUE] 8, )| < g(a)| + V. (g(- a2)),
aip,by aip,by
we get:

Val (1) (-, a2)) <If (@) Vg (8 (-, a2)) + Vi (f (-, a2) g (a)]
+2V (- a2) Vel (8( a2)), (11)

and similarly for the third term:

Var ((f8) (ar, ) <If (@) Ve (g(ar, ) + Ve (Flar, )l (a)]

+2 V2 (flar, )V (8ar, ) (12)
In order to estimate the fourth term V,(fg, I1), let {#;}]_, and {s;}/_, be partitions
of [a;,by] and [ay, by], respectively. We note that fori = 1,...,mandj=1,...,n

the following equality holds:

(fo)(tiz1,s5-1) + (fe) (ti, 57) — (f&) (ti-1. ;) — (fg) (8, 55-1)
= [f(tic1,8i-1) +f(ti,55) — f(tica,87) — f(ti,55-1)] g(ti1,8-1)
+f(tis;) [8(ti1,85-1) + 8(8i,57) — 8(ti1,57) — &(ti, 85-1)]
+ [f(ar,s5) = flar, 5-1)] [8(ti, a2) — g(ti-1, @2)]
+ [f(ar,s5) — flar, si-1)] [8(tim1, a2) + g(tis sj-1) — g(ti1,57-1) — 8(ti; @2)]
+ [far,si-1) +f(ti,55) — flar,s;) — f(ti,5-1)] (8, a2) — g(ti-1, @2)]
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+ [far, si-1) + (8, 57) — f(ar, s;) — f (8, 55-1)]

x[g(tio1, a2) + 8(tis 5j-1) — 8(ti-1, 5j-1) — &(ti, a2)]
+ [f(tisa2) — f(ti1, @2)] [g(ar, 55) — g(ar, sj-1)]
+ [f(tisaz) — f(tic1, @2)] [g(ar, si-1) + g(tim1, ;) — g(ar, s7) — g(ti-1,55-1)]
+[f(ticr,a2) +f(ti,s5) — f(tior,85) — f(ti,a2)] [g(ar, 5;) — glar, sj-1)]
+ [f(ticr,a2) + £ (ti,57) — f(ti-1,57) — f (8, a2)]

x[glar,si-1) +g(ti1, ;) — glar, s5) — g(ti-1,55-1)]

=87 48y 4+ S+ S+ SU+ Y+ Y+ ST+ Sy + Y.
Let us estimate the sums > ;" >0, ISY], k=1,..., 10, separately. By virtue of
(5) and (6), we have: |[f(t,s)|<|If]|, |g(t,s)|<||gll, (t,5) €I, and so,

ZZIS”I<V2(J‘ sl ZZ|S|<IlfHVz 8. 17)-

i=1 j= i=1 j=
Clearly,

ZZ|SU|<V172 alv'))vgll(g('vaZ))v

ZZ U<V (F (- a2)) V2 (g(an, ).

i=1 j=

Since the variation V»(f, -) is additive [9, 11L4.2] (i.e. for all partitions {7;};", and
{si}j=o of [a1,b] and [az,bz} as above and I;; = [t;_1, ;] x[sj_1, sj] the following
equahty holds: Va(f,12) = > 1 21 Va(f, 1ij)), we have:

ZZ|S”|<V”’ (a1,))Va(g, 12), ZZlS’f|<V2(f 10)Val (8, @2)),

ZZIS |<SVE(F( a2)Valg, I2), ZZIS |<Va(f, 2 V2 (g(ar, ),
i=1 j= i= 1]

ZM:ZIS”|<V2(I‘ Walg. 1), ZDS <Valfu L) Valg. ).
i=1 j= i=1 j=

Thus, V> (fg, I%) is estimated from above as follows:

Va(fe, 1) <|f(a)[Va(g, 1) + 2V2' (f (-, a2)) Va(g, 1)) + 2V (f (a1, ) Va(g, 1))
+Va(f, 1)lg(a@)] +2Va(f, 1)V (8( a2)) + 2Va(f, 1) Ve (g(an, )
+ VI a)Ver(glars ) + V2 (flar, )Val (8- a2))
+AVL(f, I)Va(g, IL).

Taking into account (10), (11), (12) and the last estimate we arrive at the desired
inequality (7). ]
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Remark 1. As it is known from the theory of Banach algebras, the norm (5) can
always be replaced by an equivalent norm |||-||| on BV (I%; R) such that

W -gll<IIFI-Ngll,  f,e€BV(IL;R). (13)

In fact, given f GBV(IS; R), consider the linear continuous operator My from
BV(I%;R) into itself defined by M;(g) = f - g whenever g€ BV(I%; R). Then the

operator norm |||f||| = ||Mf||d§fsup{|[f-g\|;||g|| =1} is the desired norm on
BV(I;; R) satisfying (13) and [[f[| <[[f[[|<4[lf|| for all f € BV (I;; R).

3. Lipschitzian Superposition Operators
In order to prove Theorem 2 we need a lemma.
Lemma 1. [f f € BV(I’; R), then f* € BV¥(I; R).

Proof. From the first line of the definition of f* it is clear that f* is left—left
continuous on (ay, b1]x (az, by], so we prove that f* GBV(IZ; R). Let a; =t <
H< oo <ty 1 <ty =Dby, ay =850<851< -+ <Sy—1 <S8, = by, and let us fix £>0.
By the definition of f*, there exist € (t1,4), i=1,...,m, si€(s;1,5),
j=1,...,n,t € (a1, 1)) and s; € (az,s)) such that

[ (i1, 5j-1) +F 5 (t57) = F (ti-1,87) = (83, 55-1)]
< lf(tz/‘—17s]/'—1) +f(t1/‘7s]/') —f(t_1,5}) —f(f;>s;—1)| + (e/mn)

foralli=1,...,mand j=1,...,n. Summing over these i and j, we get:

m n

DSOS T tiersim) + £ ) = (timr,5) = (652) [ < VAL ID) + &,

i=1 j=1

which means that V,(f*,1%) is finite.

To prove that V2! (f*(-,a2)) <00, let ay = to<t; < - - <ty_y <ty = b1. By the
definition of f*, there exist £, € (ti—1,#), i = 1,...,m, ty € (a1, 1)) and so € (a2, b>)
such that

[F* (1, a2) — ¥ (ti-1, a2) |< | (2}, 50) — f(t_y,50)| + (/m),

so that summing over i = 1,...,m we have:

D I (1 ar) = fH (i, @) <O Nf(H,50) = f(£y50) + &
i=1 i=1
SVI(f(50) + ¢
SV @) + Valf 1) + &, (14)

which means that V}' (f*(-,a,)) is finite. The last inequality in (14) can be proved
as follows. Since, for any a; <7<Lt<by,

f(tv SO) _f(Ta SO) = [f(lv a2) _f(Tv aZ)] + [f(Tv a2) —|—f(l,S()) _f(Ta SO) _f(t7 a2)]7
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setting 7 = ¢;,_; and ¢t = ¢;, summing over i = 1,...,m and applying the triangle
inequality, we find that

3 1 t050) — Flto1050) < 3 F002) — £ 11, a0)

+ Z If (ti-1,a2) +f(ti, 50) — f(tiz1,50) — f(ti,a2)]
i1

SVl (F( @) + Valf i) SV (Faa@)) + Valf dg), - (19)
which proves the desired inequality.
Similar arguments apply to prove that V22 (f*(ay,-)) <oo. O

Proof of Theorem 2. Using definitions (5) and (4) we rewrite inequality (2)
more explicitly as (functions f; and f> are arbitrary in BV (I%; R)):

(Hfy — Hf)(a)| + V' ((Hfy — HR) (- @) + Vo2 ((Hf — Hf) (a1, )
+ Va(Hfy — Hf, %)
<pll(hi =)@+ V2 (i —£) (¢ a)) + VIR = ) ()

+ VZ(fl _f27ls)]~ (16)
For any o, 3 € R, o< 3, we define auxiliary Lipschitz functions 77, 3 : R — R by
0 if t<a,
Nas(t) =14 (t—a)/(B—a) if a<t<p,
1 if >0

1. First we prove inequality (8). We consider the following four cases: (i)
a1 <x1<by and ay <xp, <by; (ii) a1 <x1<by and x, = ay; (iii) x; = a; and a, <
xp < by; and (iv) x; = a; and x; = a.

Let u;, uy € R be arbitrary numbers and let »# = Hf; — Hf,.

Case (i). We define two functions fi, f> € BV(I%; R) by
ﬁ(yl )yZ) = [nauxl ()’1) + Nay x (yZ)]uj/zv aj<)’j <bj) J = 17 2.

Since fi(a) = 0,j = 1,2, V2 (i —f2) (- a2)) = V(i —f2) (a1, ) = [u1— ua|/2
and Va(fi — f>,1%) = 0, the norm ||f; — f3|| on the right hand side of (16) is equal to
Hf] —f2|| = |u1 — M2|. Noting that %(dl,az) = (Hfl — Hfz)(a) =0 and taking
into account (16) we have:

| (xy,x0, u1) — h(xy,x2, u2)|
= |(Hfy = Hf)(x1,2)| = [ A (x1,%2)]
<|AH(x1,a7) — H(ay,a)| + |H (a1, x2) — H (a1, a2)]
+ | A (ar,a2) + H (x1,x2) — H (a1, x2) — A (x1,a2)]
SVIA (- a2)) + V2 (A (ay, ") + V(A1)
<||Hfi — Hf2|| < pluy — ua|,
and inequality (8) follows.
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Cases (ii) and (iii). In case (i) we set fj(y1,y2) = Na,x, (01)u; for a;<y;<bj;,
j=1,2, and note that fi(a) =0, j=1,2, V2 ((fi —f)(,a2)) = lu1 — us],
Vszz((fl —fz)(al, )) =0 and Vz(fl —fz,]ﬁ) = 0, so that “fl —f2|| = |Lt1 — M2|.
Since fj(x1,a2) = u;, j = 1,2, inequality (16) yields:

|h(x1, a2, u1) — h(x1,a2,u2)| = |(Hfi — Hf2)(x1,a2)| = | # (x1, a2)|
= | (x1,a2) — H (a1, a0) | <V (A (-, a2)) < ||Hfy — HB|| < pluy — wa)].
Similarly, in case (iii) we set f;(y1,y2) = Na, v, (2)uj for a;<y;<b;, j = 1,2.
Case (iv). Setting
i006,v2) = 2= Nay by 1) = Nar, 02)Ju/2, aj<y;<b;, j=1,2,
we have: fi(a) = w;, j=1,2, V2'((fi —f)(-,a2)) = V2 ((fi — /) (ar,-)) = |ur1—
u2|/2 and V2<fl —fz,]ﬁ) = 0, and SO, Hf] —f2|| = 2|M1 — l/l2|. Since r?f(l?],bz) =
(Hfi — Hf>)(b) = 0, it follows from (16) that
|h(a1,(12, ul) - h(ahaZ; M2)| == ‘(Hfl - HfZ)(alua2)|
= |A (a1, )| <|H (br,a2) — H (a1, a2)|
+ | # (a1,by) — H(ar,ar)| + | # (a1, a2)
+ A (by,by) — H(ar,by) — H (b, az)|
SV:]’ (,7/(~7a2)) + Vl]:zz (céf(al, )) + V2<°yf712)

<2p|uy — us,

which completes the proof of inequality (8).

2. Now we prove the validity of the representation (9). For this, we first fix
x1 € (ar,by] and x; € (az,b5] and set x = (x1,x3). Also, let meN, a; <o <<
<< <ap<Pp<x; and @<o<f<p<B,< - <0y <, <xs.
Inequality (16) implies, in particular, that

S 1 (Brra) — H(ona)| + 3 1 (a1, By) — H an,@)| + Vo, 1)
i=1 i=1

<pllfi = £ (17)

Let us define two auxiliary functions n,, : [a;,b1] — [0, 1] and 7j,, : [a2,b2] — [0, 1]
as follows:

0 if a<t<ay,
) N () if o<t<B, i=1,....m,
nm(t)_ 1_77“31.,&,41(1‘) if ﬂi<t<ai+1, 1= 1,...,m—1, (18)
1 if ﬁm<[<b1,
0 if a<s<ay,
3 na_ﬁ(s) if a<s<g;, i=1,...,m,
Tin(8) = 1_7735,41(@ if B<s<@, i=1,...,m—1,
1 if Bm<s<b2.
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For arbitrary numbers u;, u, € R we set
1 _ } .
fi0n32) = 5 [ 01) + 0 02)lun + 2 = fluz,— 4<y;<by, j=1.2,

and note that f; — f> = up, and so, ||fi — f2|| = |uz|. Since fori = 1,...,m we have
(recall that »# = Hf} — Hf,):

A (Bi, B) — A (cw, @) | <|H (B, a2) = H (ew, a)| + | H (a1, By) — H (a1, @)
+ | A (i, a2) + A (Bi, B;) — W(Oéi,ﬁﬂ — A (B, a2)|
+ |%<alvai) + %(aiaﬁi) - %(alaﬁi) - %(ai,@iﬂ,
summing over i = 1,...,m and taking into account (17) we get:
> |(Hfy = Hf)(8: 5:) — (Hfy = Hf2) (0, @) | < plua |-
i=1

As f1(Bi B;) = wy + ua, (B;, B;) = wr, fi(cw, @) = up and fo(ay, @) = 0, the last
inequality can be rewritten in the form:

Z \h(Bi, Biyur + uz) — h(B3;, Biywr) — h(qi, @y uz) + h(eu, @, 0)| S plua].  (19)
=1

Since constant functions of two variables on I” belong to BV(I’;R) and H
maps BV (I%; R) into itself, the function A(-,u) = [x+ h(x,u)] is in BV(I%; R) for
all u € R. Hence, by Lemma 1, its left—left regularization in the first two variables
I*(-,u) is in BV*(I%;R) for all u€R. Passing to the limit as (aj, @) —
(x1 — 0, x, — 0) in the inequality (19), we find that

D R (ery 0, A+ ug) — B (e, x0,un) — B (1,0, 1) + B (31,30, 0)| < g
=1
whence
|W* (x,uy + uz) — W™ (x,uy) — W™ (x,up) + 1™ (x,0)| < palua| /m.

Due to the arbitrariness of m € N this implies the equality:

B (x,uy 4 up) — h™(x,u1) — h* (x,u2) + h*(x,0) = 0, (20)

which holds for all a; <x; <by, a, <x, <b, and u;, u, € R.
Now let a1<x1<b1 and x; = ap. f meN, a; <o <f1< -+ < <B,<xi
and ay <@ <3, < <am<ﬁm<b2, the above arguments prov1de the estimate

(19). Taking the hmlt as (ay,B,) — (x; —0,a, +0) in (19) we arrive at the
equality (20). The cases when x; = a; and a; <x; <b, or x; = a; and x; = ap
are treated similarly.

Thus, equality (20) holds for all xelﬁ and all u;, u, €R.

The rest of the proof of (9) is standard (cf. [12]). For each fixed x € IZ we define
the function 7, : R — R by

To(u) = h* (x,u) — h*(x,0), uecR,
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so that equality (20) can be rewritten as

Tx(u1 + uz) = Tx(ul) —+ TX(Mz), Uy, Uy € R,
which shows that 7, is an additive function. By inequality (8) and the definition of
h*(-,u), we have:

T (1) — To(u2)| <2p|ur — ual, up, ur € R,
and so, T, is (Lipschitz) continuous on R. Therefore there exists a function A :
1* — R such that T,(u) = hy(x)u for all x€ I” and u € R. Setting ho(x) = h*(x,0),
x€1°, we get the representation (9). Since ho(-) = h*(-,0) and h;(-) = K* (-, 1)—
h*(-,0), we conclude (from Lemma 1) that hg, h; € BV*(I%; R), and this completes
the proof of the first part of Theorem 2.

3. To prove the second part of Theorem 2, we note that the superposition

operator H is given by:

(Hf)(x) = ho(x) + i (X)f (x),  x€ly, fEBV(Iy;R),
and since BV(Ifl’ ;R) is an algebra according to Theorem 1, it follows that H maps
BV(I%;R) into itself. Applying inequality (7) we have:
IH () = HE) = (i =) <4l - Ifi £l Ao €BVIGR), (21)
and so H is a Lipschitzian operator. This completes the proof. ]

Remark 2. A theorem similar to Theorem 2 holds for the right—right, right—left
and left—right regularizations of A(-,u), u € R.

Remark 3. If ho, hy € BV(I%;R) and ||h;||<1/4, then, by Banach’s contrac-
tion principle and (21), there exists a unique function f€BV(I?;R) such that
f(x) = ho(x) + hy (x)f (x) for all x€I?.

Given N € N, let (R") i = (Rlb) be the algebra of all functions f : I? — R,
h Ib>< [RRN — R be a function of N + 2 variables, h = h(xy,x2,uy,...,uy), and let
(RN ) " R be the superposition operator defined by
b

(Hif)(x) = hx,fi(x),. . (@), x€Il, f=(fi... fu) € (RY)".

We endow the Cartesian product

BV(I>;R)Y = BV(I’; R)x - - - xBV(I’; R)

N times

with the product norm Hf”zv =SV fill forf = (i, . ... fv) €BV(I2; R)Y. Clearly,
the space BV(Ib R) is a Banach algebra with respect to the componentwise
pointwise operations, and for all f, g € BV(Ifl’ ; [RE)N the following inequality holds:

17 - glly <4lFllwllglly-

Corollary 2. Let h: beRN — R be a given function. If H, maps the space
BV(1Y; R) into BV(I%; [R) and is Lipschitzian (in the obvious sense), then
for the left—left regularization of h(-,uy,...,uy) we have: h*(x,uy,... ,uy) =
ho(x) + SN hi(Owi,  x€IP,  (uy,...,uy)ERY,  for  some  functions
ho,hi, ..., hy €BV*(I%;R).  Conversely, if ho,hi,...,hy€BV(I’;R) and
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h(x,up, .. uy) = ho(x) + SN, hi(x )u,, x€1’, (uy,...,uy) €ERY, then the super-
position operator H;, maps BV(Ib R)Y into BV (I°;R) and is Lipschitzian.

Proof of Theorem 3. First we show that H maps BV (I2; R) into itself. Let a; =
o< < -+ <ty1<tp=byanda; = sp<s;< -+ <8,_1 <S8, = by. For any func-
tion f € BV(I?; R) we have:

m n

ZZVI i~1,8j-1, f(tic1,85-1)) + h(ti, 55,/ (13, 57))
i=1 j=
— h(tioy, 85, f(tio1, 7)) — h(tiy 51, f (8, 55-1))|

m n o0 o0

<4ZZ |h L, ), f(t,,s, |<4ZZ |h(pkaQW> f(Pk,Q/)N

i=0 j=0 k=1 (=1
oo o o
=4y 2”Ismf(pk,q/|<4222”
k=1 =1 |
so that V,(Hf,1?) <4. Also, we have:

Y It az, f(ti,a2)) = hltio1, a2, f(tio1,a2))]

i=1

M8

~
Il

h(ti,ag, f(tiaa2))|
h(px, a2, f (P, a2))]

27%sin f(pr, a2)|

ie. VI((Hf)(-,a2))<2, and similarly, V2*((Hf)(a1,-))<2. This proves that
(Hf, 17)<8, and so H maps BV (I’; R) into BV (I’; R).
Now we prove that H is a Lipschitzian operator. For any two functions fi,
f€BV(I’;R) we have, by virtue of (5) and (6),
SN CIHf — H)(to,551) + (Hfs — HE)(t4,57)
=1 j=1

— (Hfi — Hf2)(ti-1,55) — (Hft — Hf2)(ti,85-1)|
<4ZZ| Hfy — Hf>) (81, 5;)]

i=0 j=0

ZZ |h tlvsjvfl thsj)) (tlasjva(tlvs]))l

i=0 j=0

<4Z Z |h(pka qﬁfl (Pk»%)) - h(Pkbefz(Pka CI!))‘
(=

k=1

—_
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o0

4 - kfé‘lsin fl (Pkaql) — sin fz(Pk,W>|

EM8

-
42 27 = £) (e a0) |[< Al = £l

=1
so that Vo (Hfy — Hf»,12) <4||fi — f2|| In a similar manner we have:

A
NgE

?
I\

> |(Hfy — Hp)(t1,a2) — (Hfy — Hf) (41, a2)]
i=1

N
[\
.MS

Il
S

|h(ti, aa, f1(tis a2)) — h(ti, az, fa(ti, @2))|

<2 27[sin fi(pr, a2) — sin fo(pi, @2)| <2|lfi — £,
k=1

ie. VOU((Hfi — Hf>)(-,a2)) <2|fi — f2||, and a similar estimate holds for the
Jordan variation of (Hfy — Hf>)(a1,+) over [az, b]. Finally, noting that

|(Hfy — Hf2)(a)| = [h(a.fi(a)) — h(a,f2(a))|<|sin fi(a) — sin f(a)]
<lfile) = f(a)|<Ifi = £l;
we find that [[H(fi) — H(£)[| <Ollfi — £ O

4. Some Generalizations

1. Theorem 1 is valid (with the same proof) if we replace the target space R in
it by any Banach algebra (U, | - (I; U) is straight-
forward. More generally, let U, V and W be normed linear spaces over the same
field R or C and the norms denoted by the same symbol | - | (which won’t lead to
ambiguities). Suppose that there exists a bilinear map M : UxV — W, called a
multiplication, such that |M(u, v)| <|u| - |v] for all u € U and v € V. The following
generalization of Theorem 1 holds: if f€BV(I%;U) and g€ BV(I%; V), then the
product function f-g:1> — W defined by (f-g)(x) =M(f(x),g(x)), xel’,
belongs to BV (I2; W), and inequality (7) holds.

Let us prove that if U is a Banach space, then BV(If; U) is also a Banach space
with respect to the norm (5). The linearity of BV (1%; U) and the axioms of a norm
for || - || are clear (due to (6)). In order to prove the completeness of BV (1%; U), let
{f.};2, be a Cauchy sequence in BV(I’;U). By virtue of (6),
(%) = fin ()| < |f — foull, x€15, n, meN, and so, the sequence {f,(x)}, is
Cauchy in U, so that the limit f(x) = lim,_, f,(x) exists in U. Since f;, — f,, tends
to f, —f in U pointwise on I? as m — oo,

Ify — 1< liminf |, —full = lim_ [, — ]|

whence

limsup [[f, — £ < lim sup Tim [[f, — full = Tim Tim [[fy — foll = 0.

n—oo
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It follows that lim, ||, — f]| = 0. Since {f,}.~, is Cauchy in BV(I’; U), it is
bounded, and so there exists a constant C >0 such that ||f,|| <C for all n € N. The
pointwise convergence of f,, to f implies

Il < liminf [[f[| <C,
n—oo

i.e. f€BV(I%; U). This proves that BV (I%; U) is complete.

2. In order to generalize Theorem 2 for BV (12; U) with (U, | - |) a Banach space,
we have to show that the limits in the definition of the left—left regularization f* of
f€BV(I%; U) exist and prove an analogue of Lemma 1. To do this, we first prove, in
addition to (6), that if f € BV(I>; U) and x = (x1,x2) <(y1,y2) =y in I, then

V(L) STV, L) = TV, 1) (22)
In fact, similar to (14) (more exactly cf. the first inequality in (15)) we have:
Vi) SVE(F(ha)) + Valf B ),
Vi () SVE () + Valf 1)
By the additivity of V,(f,-),
Volf L) = Vo(f, L) + Valf, L) + Va(f, L' 22) 4+ Va(f, L'22). (23)

Yrarx 7T X1,a2

Applying these (in)equalities, the additivity of the Jordan variation and definition
(4) we get (omitting the straightforward calculation):

V(L) = Vi (F(sx)) + V3 (Flx, ) + Valf, 1)
<TV(f>IZ) - TV(f?Ezc)

As the second step, we assert that the total variation function vy : I? — R
defined by v4(x) = TV(f,I), x€ 12, belongs to BV(I’;R) for any function f €
BV(1%; U) and, moreover, TV (v, 12) = TV(f,1%). Indeed, the functions v/ (t,az) =
Vi (f(-,a2)) and vy(ai,s) = V; (f(ai,-)) are nondecreasing for € [a;,b;] and
§ € [ap, by], respectively, and for any x, yelﬁ with x <y, making use of (4), (23)
and the (additivity) equalities:

Valfi L)) = Valfs 1) + Va(f, 15,
Valf, L) = Va(f, 1) + Valf, B2,
we have:
vr(x1,%2) +vp (v, y2) — vp(xn, y2) — v (v, x2) = Valf, 1),
which implies V» (v, 1%) = Va(f, I2).
Now, (6) and (22) yield the estimate:

o) = f@I<p(y) —1p(x),  x<yinIg. (24)
Since vy € BV(I2; R), it has one-sided limits shown in the definition of f* above
([9, I1.5.3]). By the Cauchy criterion for the existence of a limit, (24) and the
completeness of U, any function f € BV (I%; U) has the limits defining f*. Thus, in
this more general situation Lemma 1 holds as well.
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3.If (U, | - |)) and (V, | - |) are normed linear spaces, we denote by L(U; V)
the normed linear space of all linear bounded operators from U into V. Denote by
U% the space of all functions f : I2 — U mappmg 1’ into U. Given h:I’x

U — V, the superposition operator H:U% — V& is defined as in (1) with
feR and xe! replaced by f€ U% and xel. Let Pi([aj,bj]; U) C Ul be a
family of functions having the following property: for all u;, u, € U, me N and
aj <oy <1< - <oy <, <bj the polygonal function defined by [aj,b;] > t+—
(1) uy +up € [I_J (for the deﬁn1t10n of n,, see (18)) belongs to Pj([a;, b;]; U), j =
1,2. Clearly, P(I’;U) = P([a1,b1]; U) + Py([az,b]; U) is a subspace of
BV(I%; U).

The analysis of the proof of Theorem 2 shows that the following counterpart
and generalization of Theorem 2 holds:

Theorem 4. Suppose that the superposition operator H : Ul — V& s gen-
erated by a function h : ISX U— V.

If U is a real normed linear space, \ is a Banach space and H maps the space
P(I%; U) into BV(1’; V) and is Lipschitzian (in the sense of the norms in these
spaces), then there exists a constant py>0 such that

|h(x,u1) — h(x,uz) |y < polur — uz|y, xels, u,up €U,

and there exist two functions hg € BV*(I;V) and hy : I — L(U; V) with the
property that [x+— hy(x)u] € BV*(I%; V) for all u€ U such that

B* (x,u) = ho(x) + b (x)u in V, xel’, ucl.

Conversely, if U and NV are normed linear spaces, hy EBV(IS;\/), hy €
BV(I’;L(U; V) and h(x,u) = ho(x) + hi(x)u, x€I’, uc€U, then H maps
BV(1;U) into BV(I’; V) and is Lipschitzian.
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