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Abstract—There are different non-equivalent definitions of attractors in the theory of dynam-
ical systems. The most common are two definitions: the maximal attractor and the Milnor
attractor. The maximal attractor is by definition Lyapunov stable, but it is often in some ways
excessive. The definition of Milnor attractor is more realistic from the physical point of view.
The Milnor attractor can be Lyapunov unstable though. One of the central problems in the
theory of dynamical systems is the question of how typical such a phenomenon is. This article
is motivated by this question and contains new examples of so-called relatively unstable Milnor
attractors. Recently I. Shilin has proved that these attractors are Lyapunov stable in the case
of one-dimensional fiber under some additional assumptions. However, the question of their
stability in the case of multidimensional fiber is still an open problem.
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1. UNSTABLE MILNOR ATTRACTORS

Let us recall some definitions. In what follows, we consider homeomorphisms of a metric measure
space into itself. Let F : X → X be such a homeomorphism and U ⊂ X be an attracting domain,
which means that ClF (U) ⊂ U . A maximal attractor of F in U is the intersection

Amax(F,U) =
⋂
n>0

Fn(U).

It easily follows from the definition that the maximal attractor is Lyapunov stable: for each of its
neighborhoods V there is k such that F k(U) ⊂ V .

A Milnor attractor is a minimal closed set that contains the ω-limit sets of almost all points of
the phase space.

A simplest example of a Lyapunov unstable Milnor attractor is provided by a diffeomorphism
of a circle with a single semistable fixed point, for instance,

x �→ x + 0.1(cos x − 1).

The point 0 is the Milnor attractor here, but it is not Lyapunov stable.
This example can easily be generalized to diffeomorphisms of manifolds of arbitrary dimension:

one can multiply this map in a Cartesian way by a north–south diffeomorphism of a sphere. It
follows that in phase spaces of any dimension Lyapunov unstable Milnor attractors unremovably
appear in one-parameter families, thus being of codimension at most one. But can they be more
typical?
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RELATIVELY UNSTABLE ATTRACTORS 85

Problem 1. Is there an open set in the space of diffeomorphisms such that every map in this
set has a Lyapunov unstable Milnor attractor?

This problem is one of the central problems in dynamical systems.

2. RELATIVELY UNSTABLE MILNOR ATTRACTOR

Let us say that a homeomorphism of a metric measure space has a relatively unstable Milnor
attractor if some iterate of this map has an invariant subset such that the restriction of this iterate
to that subset has an unstable Milnor attractor. A detailed definition is given at the end of this
section.

We say that a set in a function space is locally dense if it is dense in some open subset of this
space.

In this paper we construct a locally dense subset of the space of skew products over a Bernoulli
shift with fibers of any dimension such that all the maps in this subset have relatively unstable
Milnor attractors.

Let M be an arbitrary closed manifold of dimension k. Consider a skew product over Σk+2 with
fiber M :

F : X → X, (ω, x) �→ (σω, fω0(x)). (1)

Here Σl is the space of doubly infinite sequences over an l-element alphabet, σ : Σl → Σl is the
Bernoulli shift, X = Σk+2 × M , and fj, j = 0, . . . , k + 1, are diffeomorphisms M → M , called
fiber maps.

We denote by Cm
k the space of ordered sets of maps f = (f0, . . . , fk+1) endowed with the Cm

topology.
Let M be a Riemannian manifold, and let dM and mes be the distance and the volume cor-

responding to the Riemannian metric. Let dΣ be the standard metric and Pk be the
(

1
k , . . . , 1

k

)
Bernoulli measure on Σk. We define d and μ, a metric and a measure on X, as follows:

d
(
(ω, x), (ω′, x′)

)
= dΣ(ω, ω′) + dM (x, x′), μ = Pk+2 × mes.

Then for homeomorphisms F : X → X the Milnor attractor AM(F ) is well defined.
Let Ξ be a closed subset of Σk. We define a cylinder in Ξ as an intersection of a cylinder in Σk

with Ξ. For an arbitrary subset A in Σk we denote by Aε its ε-neighborhood in Σk. Then for any
cylinder C ⊂ Ξ the relative measure is defined in the following way:

μΞ(C) = lim
ε→0

μ(Cε)
μ(Ξε)

.

We prove that in examples below this limit exists. Consider the σ-algebra of subsets of Ξ generated
by cylinders. We extend our relative measure, defined on cylinders, to this algebra. The extended
measure is called the relative measure on Ξ and is denoted by μΞ.

Suppose that Ξ is invariant under an lth power of the Bernoulli shift. Let Y = Ξ × M . On Y
we get the measure μY = μΞ × mes and the metric induced from X. Let F be a skew product (1).
Then Y is F l-invariant. Therefore, the map F l|Y has a Milnor attractor defined by the measure
and metric described above.

Definition 1. We say that the map (1) has a relatively unstable Milnor attractor if the restric-
tion of the lth power of this map to the subset Y described above has an unstable Milnor attractor.
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86 Yu.S. ILYASHENKO, I.S. SHILIN

Theorem 1. For every closed Riemannian manifold M of dimension k and every m ≥ 1,
there exists an open domain in Cm

k and a dense subset N in this domain such that for each f ∈ N
the skew product (1) has a relatively unstable Milnor attractor.

The proof for k = 1 is given in the next two sections, and for arbitrary k, in Section 5 (except
for Theorem 3, which is proved in Section 6).

3. THE STANDARD UNSTABLE MILNOR ATTRACTOR

Consider a skew product (1) over Σ2 with M = S1. Let the fiber maps f0 and f1 have the
following structure:

1. The rotation number of both maps is 0. All their fixed points are hyperbolic.
2. The map f0 is a north–south map with an attractor a0 and a repeller r0.
3. The map f1 has attractors a1, a2 and repellers r1, r2. Moreover,

r1 = a0. (2)

On the arc [r0, r2] (the smallest of the two arcs with the endpoints r0 and r2) there are no attractors
of the maps f0 and f1.

4. The multiplicators of the fiber maps at the point a0 = r1 satisfy the inequality

f ′
0(a0)f ′

1(a0) < 1. (3)

Theorem 2. The skew product

F0 : X = Σ2 × S1 → X, (ω, x) �→ (σω, fω0x) (4)

with the fiber maps f0 and f1 described above has a Lyapunov unstable Milnor attractor.
A more general Theorem 3 is proved below.
Definition 2. The Milnor attractor described in Theorem 2 is called a standard unstable at-

tractor.
Example 1. Consider the skew product (1) with k = 1 and M = S1. Suppose that in the

tuple f = (f0, f1, f2) the maps f0 and f1 are the same as in Theorem 2 and f2 is close to f1, but
the fixed points of f2 differ from a0. The base of this skew product, the space Σ3, consists of all
bi-infinite sequences of symbols from the alphabet {0, 1, 2}. Let Ξ ⊂ Σ3 be the set of the bi-infinite
sequences of 0 and 1 with the

(
1
2 , 1

2

)
Bernoulli measure. We will prove below that this measure

is the relative measure in the sense of Section 2. Let Y = Ξ × M . Then the skew product (1),
restricted to Y , has an unstable Milnor attractor; therefore, in the whole phase space this map has
a relatively unstable Milnor attractor.

In the proof of Theorem 1 we construct attractors in the same way as in the example above.

4. RELATIVELY UNSTABLE ATTRACTORS OF SKEW
PRODUCTS WITH CIRCLE FIBER

In this section the maps fj are orientation-preserving diffeomorphisms of a circle.

4.1. Construction of the domain Ω. The space of all skew products (1) with k = 1 is
the space of tuples of fiber maps; each tuple has the form f = (f0, f1, f2) and each map is a
diffeomorphism of a circle. In other words, this space is (Diff S1)3.

Consider a pair of maps f0
0 ∈ Diff S1, f0

1 ∈ Diff S1 satisfying conditions 1–4 of Section 3. The
maps f0

0 and f0
1 admit neighborhoods V0 and V1 in Diff S1 such that all the pairs of maps f0 ∈ V0,
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f1 ∈ V1 satisfy conditions 1–4 of Section 3, except for condition (2). Each map f1 ∈ V1 has a repeller
close to a0. These repellers lie on an arc W � a0. We require the neighborhood V1 to be so small
that all the maps inverse to f1 ∈ V1 contract on the arc W .

Now we define a domain Ω ⊂ (Diff S1)3 as a set Ω ⊂ V0 × V 2
1 that consists of the triplets

f = (f0, f1, f2) such that the attractor of the map f0 belongs to the arc W and lies between those
repellers of the maps f1 and f2 that belong to this arc.

It is clear that the set Ω of tuples with such properties is open.

4.2. Construction of the set N . Let us denote by N the subset of Ω that consists of all
tuples (f0, f1, f2) such that the repeller of some composition of the maps f1 and f2 coincides with
the attractor of the map f0. We recall that this attractor is close to a0 by the construction of Ω.

Lemma 1. The set N is dense in Ω.
Proof. In the one-dimensional case the well-known Hutchinson lemma [1] can be formulated

in the following way.
Lemma 2. Let maps f−1

1 and f−1
2 be contracting on the arc W, and let r1 and r2 be their

attractors on that arc. Suppose that [r1, r2] ⊂ f−1
1 ([r1, r2]) ∪ f−1

2 ([r1, r2]). Then for any interval
U ⊂ [r1, r2] there is a composition gU of these maps such that

gU [r1, r2] ⊂ U.

Note that the map gU contracts on [r1, r2]. Therefore, it has a single attracting fixed point rU .
The point rU is a repeller for the inverse map fU = g−1

U . Notice that the map fU is a finite
composition of the maps f1 and f2.

Now consider an arbitrary ordered set f ∈ Ω, f = (f0, f1, f2). We prove that slightly changing
solely f0 we can get a tuple that belongs to N . First we take the attractor a0 of the map f0, a small
neighborhood U of this attractor, and a composition fU of the maps f1 and f2 that has a repeller
rU ∈ U . We replace f0 by the map f̃0 that is close to f0 and has an attractor coinciding with rU .
The tuple (f̃0, f1, f2) ∈ N is the required one. �

4.3. Relatively unstable attractors. Here we finish the proof of Theorem 1 in the case of
one-dimensional fiber.

We prove that for every tuple f ∈ N the map (1) has a relatively unstable Milnor attractor on
some subset. Let f = (f0, f1, f2) ∈ N and fU be the composition of the maps f1 and f2 such that
the repeller of fU coincides with the attractor of f0. Denote by w the word of 1 and 2 corresponding
to fU . Let l be the length of this word. Consider the immersion ζ : Σ2 → Σ3 defined in the following
manner. In each sequence of zeros and ones we replace every 1 by the word w and every 0 by the
word of l zeros. At the zero position of the new sequence, we have the first letter of the word that
replaces the symbol that stood at the zero position in the old sequence. This construction allows
us to examine the relative measure on the set

Ξ = ζ(Σ2). (5)

This subset is invariant under the lth iterate of the Bernoulli shift.
Now let Y = Ξ×S1. Denote the

(
1
3 , 1

3 , 1
3

)
Bernoulli measure on Σ3 by P3 and the one-dimensional

Lebesgue measure on the circle by m1. Then μ = P3 × m1 is the measure on X defined above.
Consider the induced measure PΞ = ζ∗P2 on ζ(Σ2). Let μ̃Y = PΞ × m1.

Proposition 1. The relative measure on the subset Ξ ⊂ Σ3 coincides with the induced mea-
sure ζ∗P2.

Proof. Step 1. We consider a natural embedding Σ2 ⊂ Σ3 and prove that the relative measure
on Σ2 coincides with the Bernoulli measure P2. For this purpose we consider ε-neighborhoods of the
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set Σ2. Note that the ε-neighborhoods of every point, and consequently of any set in the space Σ3,
coincide for 3−n ≤ ε < 3−n+1. Therefore, it is enough to consider the sequence εn = 3−n. For
every n, the εn-neighborhood of the subset Σ2 consists of 22n+1 pairwise disjoint balls of volume
3−(2n+1) each. This implies P3((Σ2)ε) =

(
2
3

)2n+1.
Now consider a cylinder in the subset Σ2 ⊂ Σ3 and suppose that this cylinder has m fixed

positions. Suppose n is so large that all these positions lie inside the interval [−n, n]. Then the
εn-neighborhood of the cylinder in question consists of 22n+1−m disjoint balls of radius εn, and the
measure of this neighborhood equals

(
2
3

)2n+1 · 2−m. Therefore, the relative measure of this cylinder
equals 2−m and coincides with its P2-measure.

Step 2. Suppose that w is a word of length l and ζ is the corresponding immersion Σ2 → Σ3

defined at the beginning of this subsection. Each point ω ∈ ζ(Σ2) is a sequence consisting of clusters
of length l, one of which begins from the zero position. Every cluster either consists solely of zeros or
coincides with the word w. When 3−nl ≤ ε < 3−(n−1)l, the ε-neighborhoods of the points ω ∈ ζ(Σ2)
coincide. Continuing as above, we conclude that the relative measure of the cylinder with m fixed
clusters equals 2−m; so this measure coincides with the measure ζ∗P2 for that cylinder. This proves
that the relative measure on Ξ coincides with ζ∗P2. �

Proposition 2. Suppose that the map (1) of the space Σ3×S1 onto itself belongs to the set N .
Then it has a relatively unstable Milnor attractor.

Proof. Suppose that w is a word corresponding to a composition fw of the fiber maps f1

and f2, and that the repeller of fw coincides with the attractor a0 of the map f0. Denote by l the
length of the word w. Then the map

F0 : Σ2 × S1 → Σ2 × S1, (ω, x) �→ (σω, gω0(x)), g0 = f l
0, g1 = fw,

satisfies all conditions of Theorem 2. Therefore, its Milnor attractor is unstable.
Consider the restriction F l|Y . It leaves the set Y = Ξ × S1, Ξ = ζ(Σ2), invariant. The

homeomorphism ζ × id conjugates the maps F0 and F l|Y . It converts the measure μ on Σ2 × S1

into the measure μY on Y as well. The map F0 has an unstable Milnor attractor by Theorem 2. It
follows that the Milnor attractor of the map F l|Y is unstable too. Thus the map F has a relatively
unstable Milnor attractor.

This proves the proposition and, therefore, Theorem 1 for k = 1. �

5. MULTIDIMENSIONAL CASE

In this section we prove Theorem 1 for an arbitrary closed Riemannian manifold M of dimen-
sion k.

5.1. Standard unstable attractor in the general case. Consider a skew product over Σ2

with fiber M and fiber maps f0
0 and f0

1 that are defined in the following way. Both maps are of
Morse–Smale class, and their non-wandering sets consist of fixed points only. The map f0

0 has a
repeller r0 with a repelling neighborhood W , and f0

1 has a repeller r1 ∈ W for which W is also a
repelling domain. Let f0

0 have an attractor (a stable equilibrium position) a0. We assume that it
attracts all points of the manifold M , except for the points of a stratified manifold S of dimension
at most k − 1. Let f0

1 have a repeller r2 = a0. Suppose that

‖df0
0 (a0)‖ · ‖df0

1 (a0)‖ < 1. (6)

We also require that for every point q ∈ S there is a finite word w such that the corresponding
composition of the fiber maps fw = f0

w|w|−1
◦ . . . ◦ f0

w0
takes the point q to some point outside S.
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RELATIVELY UNSTABLE ATTRACTORS 89

Theorem 3. Consider a skew product

F0 : Σ2 × M → Σ2 × M, (ω, x) �→
(
σω, f0

ω0
(x)

)
, (7)

where the fiber maps f0
0 and f0

1 are the same as above. Then the Milnor attractor of the map F0

coincides with the set

AM = Σ2 × {a0}

and is Lyapunov unstable.
The proof is given in Section 6.

5.2. Construction of the domain Ω in the general case. Let the maps f0
0 and f0

1 be the
same as in Section 5.1. We consider the neighborhoods V0 and V1 of f0

0 and f0
1 in the space Diff M

and define the set Ω ⊂ (Diff M)k+2 in the following manner.
We take the set of tuples f = (f0, . . . , fk+1) ∈ V0 × V k+1

1 with the following properties:
1. The maps fj have a common repelling region W , the same as for f0

0 and f0
1 .

2. There is a domain Ω0 ∈ M such that f−1
j (Ω0) ⊂ Ω0 and each f−1

j contracts on Ω0, j =
1, . . . , k + 1.

3. There is a domain Ω1 ⊂ Ω0 such that

Ω1 ⊂
k+1⋃
1

f−1
j (Ω1).

4. The map f0 has an attractor a0 that attracts all points of the manifold M , except for the
points of a stratified manifold S of dimension at most k − 1.

5. The attractor a0 belongs to Ω1.
The definition of the domain Ω is completed. Obviously, the set of tuples f = (f0, . . . , fk+1) ∈

V0 × V k+1
1 that satisfy conditions 1–5 is nonempty and open.

5.3. The set N and its density. By definition, the set N consists of tuples f ∈ Ω such that
the attractor a0 of f0 coincides with the repeller of some composition of the maps f1, . . . , fk+1.

Proposition 3. The set N is dense in Ω1.
Proof. We use the following Hutchinson lemma.
Lemma 3 (the Hutchinson lemma [1]). Consider a k-dimensional manifold M, a domain

Ω0 ⊂ M, a positive number q < 1, and maps g1, . . . , gk+1 with the following properties :

gl(Ω0) ⊂ Ω0, (8)

Lip gl|Ω0 ≤ q. (9)

Suppose there is also a subdomain Ω1, included with its closure in Ω0, such that

Ω1 ⊂
k+1⋃
1

gl(Ω1). (10)

Then for any domain U that has a nonempty intersection with Ω1, there exists a map g in the
semigroup G+(g1, . . . , gk+1) such that

g(Ω0) ⊂ U. (11)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 277 2012
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By the Hutchinson lemma, conditions 2 and 3 for the tuple of maps inverse to f1, . . . , fk+1

imply the following: for any domain U that has a nonempty intersection with the domain Ω1, there
is a composition gU of the maps f−1

1 , . . . , f−1
k+1 such that gU (Ω0) ⊂ U . Note that the map gU

contracts. Consequently, it has a single attracting fixed point rU ∈ U . Then the map fU = g−1
U has

a repeller at rU .
Let w be the word corresponding to the composition fU and l be its length.
For an arbitrary point f = (f0, f1 . . . , fk+1) ∈ Ω we take its neighborhood Uf and prove that

there is a point of the set N in this neighborhood. Suppose that a = a0(f0) ∈ Ω1 is the attractor
of the map f0. Let Ua ⊂ Ω1 be a neighborhood of a such that for any b ∈ Ua there is a map g0

for which g = (g0, f1, . . . , fk+1) ∈ Uf and b is the attractor of g0. By the Hutchinson lemma, there
exists a composition FUa of the maps f1, . . . , fk+1 that has a repeller r ∈ Ua. Now we choose
g = (g0, f1, . . . , fk+1) so that g ∈ Uf and the attractor of g0 is r. The tuple g belongs to N by
definition and to the domain Uf by construction. �

5.4. Relative instability. Suppose that f = (f0, f1 . . . , fk+1) ∈ N and a composition fw of
the last k + 1 maps of the tuple has a repeller that coincides with the attractor of f0. The word w
that generates this composition exists by the definition of the set N . Let l = |w|. Consider a skew
product (7) with f0

0 = f0 and f1
0 = fw. We define the immersion ζ : Σ2 → Σk+2 in the following

way. In each sequence of zeros and ones we replace every 1 by the word w and every 0 by the
word of l zeros. At the zero position of the new sequence, we have the first letter of the word that
replaces the symbol that stood at the zero position of the old sequence. A statement analogous to
Proposition 1 is proved identically, except that 3 is replaced by k + 2.

The proof of Theorem 1 in the multidimensional case is concluded in the same way as for
dimension one; we merely replace the reference to Theorem 2 by the reference to Theorem 3.

6. PROOF OF THE THEOREM ON THE STANDARD UNSTABLE ATTRACTOR

In this section we prove Theorem 3. We must show that the Milnor attractor AM(F0) coincides
with the set A = Σ2 × {a0} and is not Lyapunov stable.

6.1. The attractor is included in A. In order to show that the set A = Σ2 ×{a0} includes
the Milnor attractor, it is enough to prove that the basin of attraction of A has measure no less
than 1 − δ, where δ may be an arbitrary small positive number.

Consider a sequence ω = . . . ω−n . . . ω0 . . . ωn . . . ∈ Σ2. The subsequence ω0ω1 . . . is called the
right (or future) part of ω, and the subsequence . . . ω−2ω−1 is called the left (or past) part.

Lemma 4. For any δ ∈ (0, 1) and any neighborhood U0 ⊂ M of the point a0, there exists a set
B ⊂ Σ2 of measure 1− δ and a neighborhood U ⊂ U0 of a0 such that every point of the set B × U
is attracted to A under the iterates of F0. Moreover, one may require that the set B contain, with
each sequence ω ∈ B, all the sequences with the same right part.

This statement was first formulated and proved by S. Minkov (unpublished). Below we present
the proof that differs from his original argument in detail but follows the same ideas. Now we will
use Lemma 4 to prove the theorem.

Proposition 4. The Milnor attractor of the map F0 is included in A.
Proof. Proving this proposition, we follow the method suggested by Yu. Kudryashov [2].
Let U be a neighborhood of the point a0, as in the lemma, small enough to be an attracting

domain for f0
0 . For any point q ∈ M there is a finite word w(q) of zeros and ones such that the

image of q under the corresponding composition fw(q) of fiber maps does not belong to S. If q /∈ S,
then w(q) may be the empty word or the word consisting solely of zeros.

By the hypothesis of the theorem, some iterate of the map f0
0 takes the point t = fw(q)(q) /∈ S

into the domain U . Therefore, any point of the fiber can be taken to a point of the set U by a
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composition of the fiber maps. When the point q comes to U , so does a small neighborhood of q.
Consider the union of these neighborhoods for all points of the fiber: this union covers M , and there
is a finite covering as long as M is compact.

Each element of this subcovering can be taken into U by a finite composition of fiber maps.
Hence, for every point q ∈ M there exists a word w̃(q) such that fw̃(q) takes q to a point of the
set U and the length of the word w̃(q) is at most N . We assume that the length of any word w̃(q)
equals N : since U is an attracting region for f0

0 , one can supplement the word w̃(q) by zeros on the
right if the length of this word is less than N .

Now we fix some point p ∈ M and estimate the measure of the set

G(p) =
{
ω ∈ Σ2

∣∣ dist[Fn
0 (ω, p), A] → 0 (n → ∞)

}
.

The set G(p) consists of all sequences ω such that the points (ω, p) are attracted to A under the
iterates of F0.

Consider an arbitrary sequence η = . . . η−m . . . ηm . . . from Σ2. We divide the right part of this
sequence into clusters of length N : the first cluster begins from the zero position. The mth cluster
of the sequence η is called good with respect to the point p ∈ M whenever the image of the point p
under the composition corresponding to the word η0 . . . ηNm−1 belongs to U .

Proposition 5. Let a set H(p) consist of the sequences that have at least one good cluster with
respect to the point p. Then this set has the Bernoulli measure 1.

Proof. We will estimate the measure of Σ2 \H(p). Each sequence in Σ2 \H(p) has a “bad” first
cluster; therefore, there are no more than 2N − 1 options for this cluster. Whichever word we chose
for the first cluster, there would be no more than 2N −1 variants for the second one. These variants
depend on the image of p under the composition corresponding to the first cluster. Continuing in
the same way, we see that for each cluster we can find at least one word of length N that makes
this cluster good provided that we know all the previous clusters. Since limm→∞

(
2N−1
2N

)m = 0, the
measure of Σ2 \H(p) equals zero. Note that it depends on the previous clusters whether the cluster
is good or not, but it does not depend on the symbols that stand to the right of this cluster. The
proof of Proposition 5 is complete. �

The set H(p) can be represented in the form of a disjoint union:

H(p) =
⊔
i∈N

Hi.

Here the sets Hi consist of sequences such that their first good cluster has number i. We denote
by H ′

i the subset of Hi defined by the following property: in each sequence of H ′
i, to the right

from the ith cluster one has the right part of some sequence from the set B. In other words,
H ′

i = Hi ∩ σ−iN (B).
Suppose that ω belongs to Hi. This means that there is some restriction on the symbols to

the left of the iNth position. If a sequence belongs to σ−iN (B), the right “tail” that begins from
the iNth position is actually the right part of some sequence in B, so there is a restriction on the
symbols to the right of the iNth position. Therefore, P2(H ′

i) = P2(Hi)P2(B) = (1−δ)P2(Hi). Note
that the union H ′(p) =

⊔
i∈N

H ′
i is disjoint and P2(H(p)) = 1. This implies that P2(H ′(p)) = 1− δ.

Since H ′(p) ⊂ G(p), we obtain an estimate

P2(G(p)) ≥ 1 − δ.

Now we integrate in p using Fubini’s theorem and get the likewise estimate for the measure of the
attraction basin of A. Since δ in the lemma can be chosen arbitrary small, this basin has the full
measure. It follows that AM ⊂ A.

The proof of Proposition 4 is complete. �
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6.2. The attractor coincides with A and is Lyapunov unstable. The Milnor attractor
cannot be a proper subset of A. Note that for the Bernoulli shift the ω-limit set of almost every
sequence coincides with Σ2. We have already shown that for almost every point of the phase
space the distance between its images under the iterates of F0 and the projections of these images
onto A tends to zero. These two statements imply that A is the ω-limit set for almost all points;
therefore, AM = A.

Denote by (1) the sequence that consists only of ones. Then in the invariant fiber {(1)}×M the
points are repelled from {(1)}×{a0} under the iterates of F0 since a0 is a repeller of f0

1 . Therefore,
these points repel from A = AM(F0) and the Milnor attractor is unstable. This completes the proof
of Theorem 3. �

6.3. Proof of Lemma 4. Let exp be the exponential mapping of the neighborhood T of zero
in the tangent space Ta0 to the fiber M . This mapping takes each vector ξ to the endpoint of a
geodesic arc of length |ξ| that begins at a0 and lies on M . We assume that the neighborhood T is
so small that the exponential map is a diffeomorphism. Let Dj : Ta0M → Ta0M be the differential
of the map f0

j at the point a0, j = 0, 1. We denote by d(x) the distance from x to a0 on M . In the
domain exp T this function is well defined. Let the neighborhood T ′ be so small that

d
(
exp(1 + ε)Djξ

)
≥ d

(
f0

j (exp ξ)
)
. (12)

We can choose such a neighborhood for every ε > 0 since the maps f0
j are C1-smooth. Suppose

that D′
j = (1 + ε)Dj and ε is chosen so small that

‖D′
0‖ · ‖D′

1‖ < 1. (13)

Such an ε exists by assumption (6).
We can rewrite inequality (12) in the following way:

d(exp D′
jξ) ≥ d

(
f0

j (exp ξ)
)

∀ξ ∈ T ′. (14)

Note that

d(exp D′
jξ) ≤ ‖D′

j‖d(exp ξ). (15)

Denote by g(ω) the function

g(ω) = ln‖D′
ω0
‖.

By (13), it follows that the space average of g is negative. Since the Bernoulli shift is ergodic, for
almost all ω the time averages of g are negative too. Let

Kn(ω) =
1
n

n−1∑
k=0

g(σkω).

For almost all ω, we have lim Kn(ω) < 0. Consequently, for almost all ω,

Σn−1
0 g(σkω) → −∞.

We denote by π the natural projection onto the fiber along the base. By induction on n with the
help of (14) and (15) we get

d
(
πFn

0 (ω, x)
)

= d
(
fωn−1 ◦ . . . ◦ fω0(x)

)
≤ eΣn−1

0 g(σkω)d(x) = enKn(ω)d(x) → 0 (16)
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under the condition that x ∈ exp T ′ and

fωm−1 ◦ . . . ◦ f0(x) ∈ exp T ′

for m = 1, . . . , n − 1.
For almost all ω, the quantity exp[nKn(ω)] tends to zero. According to Egorov’s theorem, for

any small positive δ there exists a set B ⊂ Σ2 of measure 1 − δ on which this convergence is
uniform. It follows that there is a number N such that for every ω ∈ B and every n ≥ N the
estimate exp[nKn(ω)] < 1 holds.

Now let the neighborhood U of the point a0 be a small ball such that the points of Σ2 × U do
not leave the set Σ2 × exp T ′ under the first N iterates of the map F0. In this case the images of
all points of the set B × U under the Nth iterate of F0 belong to the set Σ2 × U by the definition
of N and by (16). Under further iterations the images of these points do not leave the set Σ2 × U
either. Therefore, estimate (16) holds.

Since exp[nKn(ω)] tends to zero for ω ∈ B, the points of the set B × U are attracted to the
set Σ2 × {a0}.

Notice that the set B can be expanded by including all sequences with the same right part as
the right part of some sequence in B and with arbitrary left parts.

This concludes the proof of Lemma 4. �
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