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1. INTRODUCTION

Abundant experimental data show that individual behaviour often de-
parts from the benchmark model of a selfish economic individual. This
fact would probably not appear puzzling for someone who has no eco-
nomics training. By contrast, qualified economists know that in the clas-
sical (finitely repeated) prisoners’ dilemma, the only Nash equilibrium
in strictly dominant strategies unambiguously predicts that both play-
ers should Defect, and receive Pareto-inferior payoffs. This prediction,
however, fails to comply to the evidence: real people in experimental lab
quite often do cooperate in a supergame when the prisoners’ dilemma is
repeated finitely many times (Andreoni and Miller, 1993).

Such observations are typical for many finitely repeated games, when
they all contradict equilibrium predictions. One of these is the classical
public goods (PG) game (Marwell and Ames (1979). Each of a group of
n > 2 players is endowed with w currency units, and makes an indepen-
dent bid of ¢;,0 > ¢; > w to the common pool (public account), keeping
the rest (w — ¢;) on her own (private account). Each unit on the private
account contributes one to the utility of that individual, while each unit
deposited on public account by any player brings k- ", ¢; = ac to the
entire group, where ¢ = ). ¢;/n is average contribution of the group and
a =kn,k <1 < kn. Given the contributions vector c, total utility of
every individual is thus given by

(1) vi(e) =w — ¢; + ac

Since 1 < kn, the efficient outcome is to contribute everything to
public account. However, k& < 1 implies that the game has a prisoner
dilemma structure, and any individual is better-off depositing nothing on
that account in a single-period version of this game. This result extends
to any finitely repeated game, where backward induction stipulates non-
cooperative behaviour in every period, which is the only subgame-perfect
solution. By contrast, experimental subjects typically exhibit high or at
least nonnegligible level of cooperation, especially at the early stages of
the finitely repeated game.

Yet another classical example of disequilibrium behaviour is given by
the trust game (Berg e.a., 1995). Player 1 receives an endowment of
$10, and decides how many dollars ($x < $10) to pass to player 2. This
amount is tripled by the experimenter, who gives to player 2 an amount
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of 3-$x, and decides how much of that amount ($y < 3- $x) she will return
back to player 1. (All actions are observable, and payoffs are commonly
known.) In another version of trust game (Kreps, 1990) two players face
the following game (see Figure 1).

Don’t trust
0,0

Cooperatie
(2,2)

('LS)

Cheat

Figure 1. Trust game (Kreps, 1990).

If player 1 fails to trust the opponent, both players receive zero payofts,
while if she does, player 2 makes his choice of sharing the same pie equally
(2:2) or getting the most at the expense of his trustful opponent (5:1).

Both variants of the trust game are solved by backward induction.
Since player 2 strongly prefers cheating (the only equilibrium strategy) to
cooperation, and player 1 knows it as well, the only (hence also subgame-
perfect) equilibrium prediction is that player 1 should stop the game
immediately.

However sound, this equilibrium logic of the trust game might be sub-
ject to the following criticism: If player 2 is as rational as player 1, why
does not she prefer cooperation to cheating on he move? And if player
1 understands this logic, and believes player 2 will cooperate, then he
should trust and give money/move to player 2. A similar logic applies to
public goods game, as well as to finitely repeated prisoners’ dilemma. In
both cases cooperation can be sustained by pure self-interest of rational
players: Inasmuch as they are rational enough to realize that the high-
est possible income would occur if everyone sticks to cooperation (until
perhaps the very last stage), actions aimed at fostering this outcome do
make sense, and can result in higher payoffs if these expectations are
supported by others’ beliefs and behaviour. This logic stands behind the
decisions of many experiment participants, including those who took part
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in our own recent cross-country work with Italian and Russian subjects
(Belianin and Novarese, 2005)".

A compelling (and purely neoclassical) argument that rationalizes this
intuition was first suggested by Kreps, Wilson, Milgrom and Roberts
(1982) in the context of prisoners’ dilemma. Their explanation makes
substantial use of information incompleteness: Assume for simplicity
that players can be of two types: 'rational’, or sane with probability ,
and ’irrational’, or crazy with complementary probability 1 — 7. Sane
players are convinced by the Nash equilibrium argument, and always
Hold everything on private account. Crazy players follow Tit-for-Tat
strategy (Axelrod, 1981): they Contribute in period 1, and in each ¢ > 1
play the same strategy that your opponent played at ¢t — 1. To be more
specific, assume n = 2,w = 1,¢; = {0,1},k = % and the discount factor
is 1. The payoff matrix of a single stage game can be written (in multiples
of 1) as

1\ 2 Hold | Contribute
Hold 3,3 5,0
Contribute | 0,5 44

Figure 2. PG game in normal form

The only equilibrium in the stage game is (Hold, Hold), which remains
subgame-perfect for any finite number T of repetitions. However, if the
game is repeated for T' < oo periods, a rational player 1 who faces an
opponent of unknown type can compare two strategies: Hold for all ¢,
with total payoff of 5-7 + 3 - (1 — 7)(T — 1) or Contribute for all ¢,
with total payoff 0 -7 + 4 - (1 — m)(T — 1)Hence Contribute is better
than Hold if 7 < ™ = 4T+;T1, which provides a rationalistic justification for
cooperation for 7' low enough. More generally, Kreps e.a. have shown
that, as long as one of the players is uncertain about the type of the
opponent, cooperation until the last few’ stages (where ’few’ depends
on the payoffs and the probability of the opponent’s rationality) is a
Pareto-undominated sequential equilibrium in a finitely repeated game
of incomplete information.

In some of our games, degree of cooperation was even rising with time, and in
one treatment even showing over 90% of cooperation on average.
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While significant theoretically, this result remains incomplete in sev-
eral respects. Fist, sequential equilibria are difficult to characterize ex-
plicitly (in fact, Kreps e.a. do not fully characterise one, but only deter-
mine the boundaries of a sequential equilibrium). Second, there are far
too many sequential equilibria, (including noncooperative ones) and it is
hard to say which of these would prevail. Third, and most importantly,
this logic is incompatible with the standard properties of types space, as
introduced by Harsanyi (1967-1968), and characterized by Mertens and
Zamir (1985), Tan and Verlang (1988), Armbruster and Bége (1978),
and others. Specifically, inasmuch as in the PG game the players do
not choose strategies that survive iterated deletion of strictly dominant
strategies, their rationality (in a standard sense) cannot be common
knowledge?. and this latter is necessary for the existence of a universal
types space (Brandenburger and Dekel, 1993). Hence the incomplete
information explanation of cooperation along the lines of Kreps e.a. ap-
pears to be inconsistent with the existence of a canonical space of types,
casting doubts of the legacy of cooperative sequential equilibria®.

The present paper aims at filling this gap in two ways. First, starting
from an explicit consideration of individual reasoning supporting coop-
erative behaviour in noncooperative games, we build an extended types
space which fully characterizes types of each player without imposing
common knowledge of rationality. The resulting space is based on ana-
lytic sets, rather than the usual Borel sets — hence it is more general,
and also better motivated behaviourally. Despite analytic types spaces
are 'richer’ than the standard ones, we show that they possess the same
fundamental properties, and dispense of some behaviourally controver-
sial features of these latter. Second, we show how this extension of types
space can explain a broad range of economic phenomena in which ratio-
nal agents infer optimal strategies from beliefs about each others’ beliefs.

2» Common certainty of rationality implies that players will choose actions that are
iteratively undominated in the interim sense in the game of incomplete information.”
(Dekel and Gul, 1997, p.121.)

3Recent literature, including types spaces build in pure measure-theoretic (Heifetz
and Samet, 1998) or decision-theoretic (Epstein and Wang, 1996) contexts; models of
dynamic equilibria without common knowledge (Parikh and Krasucki, 1990; Heifetz,
1996), or the concept of epistemic games (Aumann and Brandenburger, 1995), all offer
far-reaching opportunities of explicit incorporation of individual beliefs into equilib-
rium analysis, but all remain prone to the same criticism.
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The paper is organized as follows. Section 2 develops the intuition be-
hind our extension of the universal types space, and may be viewed as a
non-technical summary of the argument. Section 3 develops a numerical
example which illustrates the intuition behind our model in the frame-
work of standard types space. Section 4 contains a full-fledged formal
model, including construction of the analytic types space and character-
izes of its basic properties. Section 5 discusses relationship of our results
to the existing literature. Section 6 outlines some directions for further
research and concludes. Technical proofs are collected in the Appendix.

2. INTUITION

The logical problem with justification of cooperative beliefs in con-
ventional types space can be illustrated using the example of Kreps e.a.
(1982). Refer again to Figure 1, but now assume that both individuals
are commonly known to be either sane or crazy, while in fact both are
sane (rational). Repeating the same arguments as above, it is imme-
diate that Contribute is better than Hold provided 7 < 7 = L_;jl, for
both players. This logic, however, is internally flawed, because rational
player 1 (symmetrically, 2) would be willing to cooperate only if she
believes her opponent intends to cooperate. Since only crazy types can
cooperate, agreement on cooperative strategies must imply both players
know their opponents are crazy, thus it becomes common knowledge that
m < @ (Aumann, 1976). Yet this fact contradicts the assumption that
both rationally choose to cooperate whilst been sane, i.e. 7 — 1. More
formally,

Proposition 1. In the repeated prisoners’ dilemma, cooperation cannot
be achieved as equilibrium outcome if both players are same, but believe
their opponent is crazy.

Proof. Let Q be the set of states, and let the partitions (subsets of in-
distinguishable states) of players 1 and 2 on that set be P; and Ps. If
both players agree to cooperate in the state w € ) because this will be
their profit-maximizing strategy, then this state must belong to the meet
(finest common coarsening) of both partitions, i.e. w € P; A P,, and all
events £ D P; A Py are common knowledge. In any state belonging to
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such events, players believe that their opponent is crazy with high prob-
ability; given these beliefs, optimal response for a rational player is non-
cooperative with probability 1 in the last stage. Reasoning backward, no
player can choose cooperation, which establishes the contradiction?. O

The above proposition implies that, inasmuch as rational coopera-
tion requires beliefs that the opponents are irrational, this irrationality
cannot be common knowledge. In other words, to justify cooperative
strategies one must allow for some sort of rational irrationalities, in
particular, with the claim that rational players should assign positive
weights only to those strategies of the opponents that are justified by
any infinite sequence of such beliefs (Bernheim, 1984; Pearce, 1984).
Moreover, hierarchies of mutual beliefs in the game of incomplete infor-
mation form form the types ©; of all players ¢ = 1,... N in the sense of
Harsanyi (1967-1968). The universal types space {2 which captures both
physical characteristics of the environment S, and players’ types were
effectively constructed by Mertens and Zamir (1985), Tan and Verlang
(1988), Armbruster and Boge (1978), Brandenburger and Dekel (1993):
the types spaces are characterized by two features:

N
(2) a=5x]Je:
i=1
N
(3) 0,=A SXH(“)]‘
J#i

The first of these characteristics claim that the universal states space
is a product of physical uncertainty and all types (belief hierarchies) of
each player. The second requires that the type of each player is a joint
probability distribution on S and the product of types of all players j
other than i. Existence of this types space requires common knowledge of
players’ rationality (Tan and Werlang, 1988), soits failure is incompatible
with standard types space.

4This proof is based on the tacit assumption that rationality in the sense of ex-
pected utility maximization automatically implies reasoning by backward induction.
This assumption is debatable; yet it can be shown that common knowledge of craziness
remains contradictory to rationality (in the sense of expected utility maximization)
even if backward induction is set aside.



3. THE UNIVERSAL TYPES SPACE

To articulate the problems with the standard specification, consider
the following simple example of discrete belief spaces. We begin with
the standard types space which is defined as follows (Harsanyi, 1967-68;
Mertens and Zamir, 1985). In terms of our example, suppose that both
players can be sane (event S) or crazy (event C). Being exogenous, these
events determine the state of physical uncertainty consisting of four ele-
ments: X° = {a = (15,15),8 = (15,20),vy = (1C,25),§ = (1C,20)}.
In line with the above story, each rational player knows own sanity for
sure, so player 1 is certain that either a or § take place. He is, however,
not sure of sanity of player 2, so his the space of physical uncertainty is
a partition on X given by the events that are indistinguishable for him:
XY = {{a},{B}}. In the same way, the space of physical uncertainty for
sane player 2 is X§ = {{a}, {7}}.

The space of first-order uncertainty of player 1 is the set of probabil-
ity distributions over his zero-level uncertainty space X, with generic
element p. As prototypical space, consider A} (X?) = {pi(e, 8) = (1,0),
pi(a, B) = (.2,.8)}. Here p; and ps denote different probability distribu-
tions in A}, superscripts refer to belief levels; occasionally we shall also
use subscripts to subscripts to denote particular probabilities associated
with elements of p; etc.: thus, p;, = 1,pj, = .2 etc. Similar space for
player 2 over X° is AL(X9) = {g} (a,7) = (:5..5). b(@,7) = (4, .6)}.

Physical uncertainties and probability distributions form spaces X x
AT(X?) and X§ x AL(XY), which are first-order general uncertainty
spaces with typical elements for player 1 (analogously, player 2): (a, p}),
(Oé,p%), (671)%)7 (va%) over player I’s beliefsa and (Oé, q%)a (Oé, q%)a (ﬂa q%):
(B, q}) over player 2’s beliefs.

The former four elements are of no much interests to the traditional
analysis, because each rational player should know his actual beliefs, so
that any probability distribution which attaches positive weights to them
is degenerate in every state which contains them. The latter four ele-
ments are nondegenerate — hence the second-order uncertainty of player
1 is the product of her physical uncertainty X?, and first-order uncer-
tainty of the other player, A}(X9),i.e. X = X9xA}(XY9). Second-order



uncertainty space of player 1 is denoted X1, e.g.
AT(X7) = AT(X] x AX)
AT ({(@,q1) (@, 42), (B.a1), (B,42)})

AT ({(e, (5,.5)), (a; (4,.6)), (B, (-5,.5)), (B, (4,.6)}) -

Assume the set of probability distributions are probability distributions
over that space has two elements: p? = (.25,.25,.25,.25) and p3 =
(.1,.1,.4,.4). Similar second-order uncertainty space for player 2 is

A(Xy) = AF (X3 xA[XY)
= A ({(,p)), (. 3), (v, 1)), (7. P3)})
= A} ({(e, (1,0)), (a, (2, .8)), (7, (1,0)), (v, (-2, .8))}) -

Let the representative elements of this space be ¢7 = (.2,.3,.2,.3) and
q5 = (.1,.1,.7,.1). Beliefs of consecutively higher orders thus combine in
sequences, which implicitly determine beliefs of the opponents over ’this’
player’s beliefs of lower order: thus, second-order beliefs ¢? of player 2
assign positive probabilities to all first-order beliefs of player 1. Taken
to infinity, this property allows to identify all beliefs of player 1 with the
set of all probability distributions over physical uncertainty and beliefs
of his opponent.

Not all beliefs are equally good, however, but only those which are
internally consistent. The only consistent sequence of player 2’s beliefs in
our example is (¢i, ¢?) = ((.5,.5), (.2,.3,.2,.3)): probabilities assigned by
second-order beliefs to the zero-level states a and v are 0.5, which equal
first-order beliefs over these states. By contrast, sequence (g3,q}) =
((4,.6),(.2,.3,.2,.3)) is not consistent, because ¢® assigns probability
of 0.5 to the event a, contrary to what ¢3 does. Neither consistent
are (¢}, 43) = ((:5,.5), (1,.1,.7,.1)) and (¢}, 43) = (4, 6), (.1,.1,.7,.1)):
probabilities assigned to A and B by the second-order beliefs are 0.8 and
0.2, which do not coincide with those assigned by both ¢} and ¢i5.

Going further, consider third-order uncertainty of player 1 as given
by the product of her first-order uncertainty, Xi = X? x A}(XY), and

5Most probability distributions of player 2 in our simple example are inconsistent,
but this is neither upsetting nor surprising: If the set of probability distributions of
any order is large enough (e.g. consists of all Borel probability measures endowed
with the topology of weak convergence), some distributions will not be consistent,
but there will be many others that will.
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second-order beliefs of the other player over his second-order uncertainty,
AZ(X1). Let the set of distributions A$ of player 1 over her third-level
space of uncertainty of order 2, X? be given by the following table:

State \ Probability pi | p3 | p
(o, (.5,.5),(.2,.3,.2,.3)) | .125 | .05 | .2
(o, (. ,.5),(.1,.1,.7,.1)) 125 (1.05] 0
(,(4,.6),(.2,.3,.2,.3)) | 125 | .05 | 0
(,(4,.6),(.1,.1,.7,.1)) | 125 | .05 | O
(8,(.5,.5),(.2,.3,.2,.3)) | 125 | .2 | .8
(8,(.5,.5),(.1,.1,.7,.1)) | 125 | .2 | O
(8,(4,.6),(2,3,2,3))|.125| 2 | 0
(8,(4,.6),(1,.1,.7,.1)) | 125 | 2 | 0

Distribution p? assigns probablhty to each of the four states of space
of level 1, hence it is consistent with dlstr1but10n p? = (.25,.25,.25,.25)
on X{; however, p? is not consistent with p} = (1,0) and p} = (.2,.8)
on X{. Distribution p3 is consistent with belies p3 = (.1, .1, .4,.4) onX{
which, in turn, assigns probability 0.2 to state a and 0.8 to state § on
X1, i.e. is consistent with p{. Since p3 also assigns £ to a and % to 3, the
sequence of beliefs (p?, p3, p2) is consistent (at least so far). A problem
with this sequence is that it assigns positive probability (of 0.75) to beliefs
of player 2 other than those from the consistent sequence (qi,q?) =
((.5,.5),(.2,.3,.2,.3)), i.e. those that are not consistent themselves (but
which in our example do assign high probability to the event  of player
1 being crazy). This is not a problem for the sequence (pi, p3,p3), whose
last element assigns probability 0.2 to a and probability 0.8 to 3, as
both p! and p2 do, and also assigns probability 1 to the consistent type
(¢l,¢2) = ((:5,-5),(.2,.3,.2,.3)) of player 2.

Taken to the limit, this double consistency of the sequences of type
(p},p3,p3) are laid down in the construction of the ”universal types
space” as defined by Mertens-Zamir-Brandenburger-Dekel. To construct
this space, extend all sequences of that last kind to infinity, and require
that each player is certain in consistency of the other at any level of
beliefs (this property is called common knowledge of coherence, see next
section for details). However, it is now easy to see that this construction
precludes the existence of types who would in equilibrium hold mutual
beliefs the other player is crazy. Indeed, beliefs (pi,p3,p3) of player 1
assign high probability to the type of player 2 who puts high weight
(of 0.6) to the event ~, while the type of player 1 consistent with this
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sequence himself puts high weight (of 0.8) on the event 8. Since the
complementary event for both players is «, it follows that such beliefs
cannot be common knowledge. To put it another way, in order to make
the Kreps e.a. argument consistent with the universal types space, we
must either depart from consistence of some of the players’ beliefs, or
allow belief sequences of the form (p?, p3, p3), which impose high weights
(of 0.8) on the event § of player 1, while allowing for weights of 0.5 to
the beliefs of player 2 in the event +.

A bottomline of this story is now clear: in order to build the hierar-
chies of beliefs compatible with both the notion of types as defined by
Harsanyi-Mertens-Zamir, and our observation 1, it must be either that
players’ beliefs are inconsistent, or that their rationality is not common
knowledge®. Which of the two assumptions (consistency of beliefs or
common knowledge of rationality) one has to abandon then? We ar-
gue that the former ought to be kept at the expense of the latter. The
reason for this preference is straightforward: observation 1 agrees with
the first assumption, which is basically a self-consciousness requirement,
but contradicts the second one, which not only requires coordination of
rationality among the players, but also imposes some queer restrictions
on the players’ rationality. Moreover, common knowledge of rationality
requires that the players are able to agree on one property of each other’s
types — namely, consistency of each others’ beliefs. This property is by
far not the most transparent one; at the same time, the players fail to
understand a simpler characteristics of each other, such as their beliefs
over the state space. Finally, it is responsible for a number of contro-
versial constructs, such as common prior assumption in interim types
spaces (Dekel and Gul, 1997).

To proceed along these lines, we note that beliefs about each other’s
beliefs similar to those of (p?, p%, p?) seem to have been justifiable by the
intuition of many rational players in cooperative experiments, such as
the public goods game. A smart strategy in these games should lead to
the highest possible individual payoff; yet determination of such a strat-
egy depends of what she expects the other players to do. Both recorded
and casual observation of experimental subjects (Belianin and Novarese,

60ther recent developments, such as introduction of particular subsets of types
spaces (Ely and Pecki, 2005; Dekel e.a., 2006) cannot do the same job.
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2005) clearly suggests they explicitly build their strategies aiming at en-
forcement of Pareto-optimal outcome through the following observation,
which gives the clue, and suggests a method to attack the problem.

Observation 1. The inference of player i about future actions of the
opponents is based on i’s perception of beliefs of the other players, which
need not the be the same as the actual beliefs of these other players.

In other words, when making her inference, player i would naturally
think that the other players’ motives and intentions are those which she
(player i) thinks these are, which in fact they need not be. Colloqui-
ally speaking, player i puts herself in place of the opponents, imposes
her rationality on theirs. Notice now that observation 1 also contradicts
common knowledge of rationality, as can be shown in two (rather in-
formal) ways. First, observation 1 explicitly requires that each player i
must allow the other player j to believe that ¢ would behave in a non-
Nash way (cooperatively), as this is the condition under which j himself
would be willing to cooperate to maximize own payoff. Yet if ¢ believes
j will be cooperative, i’s dominant strategy is to defect in any finitely
repeated version of the game, regardless of what the opponent does. Co-
operation, associated with beliefs that the opponent is cooperative, is
incompatible with belief in his rationality, which stipulates defection. A
second way to argue is more basic, but probably also more instructive:
An individual has strong incentives to cooperate if she 1) realizes the
power of Nash argument, but also 2) understands that fully cooperative
outcome is Pareto-superior, and 3) believes that her partners may fail to
realize that defection is the only dominant-strategy equilibrium. The op-
ponents ought then to form a mental image of our individual that would
be inconsistent in a way represented by the distribution p3 above: her
beliefs of order 3 are consistent with own lower-level beliefs, yet assign
strictly positive weights to inconsistent beliefs of the opponents. This
constellation of rationalities is much less awkward than one may think:
in fact, all individuals may be quite reasonable on their own (have con-
sistent hierarchies of beliefs), but may mutually believe their opponents
are not consistent; and it is exactly this lucky matching of incomplete ra-
tionalities which makes sustainable the cooperative outcome. This move,
however, requires another logical step: a rational player who assumes the
opponent is irrational, must admit that her beliefs over his beliefs can be
arbitrary, including those which assign positive weights to his inconsis-
tency. Inasmuch as we are still in need to build a consistent hierarchies
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of beliefs about players’ beliefs, hierarchies of the form (p?, p3, p3) are not
sufficiently rich. To enrich this space to due depth, instead of skipping
beliefs about own beliefs at the first-order interim uncertainty spaces
X9 x AL (X?), we have to include these beliefs in the definition of first-
order uncertainty space. With this extension, instead of X¥ x Al(XY)
the first-order uncertainty space becomes X x Al(X?) x AL(X9). The
second-order belief space is then defined over this latter; repeat the same
operation in all subsequent levels of uncertainty. This will give rise to
larger hierarchies of beliefs and uncertainties: in our simplest case of two
distributions at each hierarchy level, the second-order belief space shall
consist not of four, but of eight elements: one for each of

[ai (]‘7 0)5 ('55 '5)]7 [ai (]‘7 0)5 ('45 '6)]7 [ai ('25 '8)5 ('55 '5)]7 [ai ('25 '8)5 ('45 '6)]7
[8,(1,0),(:5,-5)], 8, (1,0), (:4,.6)]. [8, (-2, 8), (:5,-5)], [8, (:2, 8), (4, .6)],

— and so on. This extension is not complete either: such broad beliefs
have to be defined for all possible physical states, including the possibility
that both types are crazy, i.e. the event §. In full, this space of extended
beliefs in our example takes the following form:

Qa 8 5 )

1 1 1 1
b1, b1, b1, b1,

2 2 2 2 2 2 2 2
P, Pi, Pi; Pi, Pi; Pig Pi, DPig

The ’real’ case of Borel spaces will then lead not to the countable
families {A]}32, of countably infinite sets of all probability measures for
all players ¢ but, for each player, to a single space defined as follows. To
each probability distribution in a countably infinite set of all possible
beliefs of order 1 there will correspond a countably infinite set of all
possible beliefs of order 2; to each of these latter, a countably infinite
set of all possible beliefs of order 3 etc. to infinity. By construction all
subsequent beliefs form a countably branching system which a) contains
all possible beliefs at once, b) including beliefs of consistent player 1
over inconsistent types of player 2, ¢) admits imposition of consistency of
each player’s beliefs, but d) does not impose any restriction like common
knowledge of rationality. This conceptual simplification comes at a cost
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of more complicated hierarchies of infinite sets which are not anymore
Borel, but analytic spaces; hence the universal types spaces built on them
shall naturally be called analytic. Such space is explicitly built in the
next section, where we also show it does possess all the main properties
of the universal types space of Mertens and Zamir (1985), while being a
proper generalization of this latter.

4. MODEL

We limit attention to a class of finite games that can be viewed as
games of incomplete information, in which a finite number N of players
make (simultaneous or sequential) decision at T' < oo periods, have infor-
mation (full or summary statistics) of past plays, and rationally update
their beliefs about the set of possible histories (including other players’
types) following these observations. A large class of games, such as trust
game, ultimatum game (with unobservable types) or public goods game
(a multi-stage game with imperfectly observed action) all fit into this
framework, so our formulation of the model uses dynamic belief spaces
formulated in a manner similar to Battigali and Siniscalchi (1997).

Define an extensive form game T' = (N, H, Z, P, J, (u;)X . ), where N
is the set of players (and also, at the abuse of notation, the cardinality
of that set), H and Z are the sets of all histories and terminal histories,
respectively, J = {J;}I¥, is the collection of all information sets of all
players with typical element I; € J; for player i, P(I') : H! = i(= N?)
is the order of moves which determines which player i (set of players
Nt C N) has to move at ¢, and (u;)Y; are utilities (one for each player)
defined on the profiles of all terminal histories.

The set of actions of player i in the period ¢ will be denoted A!, with
generic element a!; a' = [a}, ... aly] is the profile of actions of all players
in period ¢, and A! = [Licn At is the set of all these profiles of actions.
We use ht € H to denote an arbitrary history of the game up to period
t, omitting the superscript index whenever time dimension is irrelevant.

Pure strategies in PG game are defined in a usual way. We use stan-
dard notations s; € S; etc. for arbitrary pure strategies. The set of
pure strategies of player ¢ which are compatible with (do not preclude
the possibility of) particular history h' are denoted S!(h'), its specific
element — s!(h'); the set of pure strategies’ profiles corresponding to
specific history is St(ht) C S, with generic element st(h?).
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Since our motivation is largely experimental, it is worth specifying the
above general framework to the case of multi-stage game with partially
observable actions, as most repeated experimental games belong to that
class. Information sets in these games are of the following form: for
any t < T, let [a},...al] be any particular sequence of actions of player
i up to t. Observable histories for this player consist of the members
of the sequence [a},...al] of player i, and of the summary statistics
(amount on the public account) of choices of all players, [a,,...,a ],
where —i refers to all players other than i. Since own contributions
and summary statistics are available for player’s reference at any time
of the game, sequences of actions observable by player ¢ up to period
t can be written as al = [(a},al,),...,(al,a’;)]. Let hi(al) be any
particular history up to ¢ whose possibility is not precluded by player
i who had observed sequence of actions a! (with no further restrictions
placed on the actions of the other players), and let hf(al) be the set of
all such histories Let u;(hf(a)) be the set of possible payoffs to player
i that are not precluded after the sequence of actions al at the end
of each period Information set of the player i at the beginning of the
period ¢ is then defined as I! = h'(al) Uu;(h’(al)) — i.e. the collection
of past histories and expected payoffs that are not precluded by her
observations”. Denote 3¢ = (If);cn; each strategy of player i is then a
sequence of maps st(ht) : It — At from the set of histories to the set of
actions feasible after each stage t.

Let H!(I!) = UT_, h™(I!) be the set of all continuation histories whose
possibility is not precluded by the information set (If). Since in exper-
imental practice, all actions are in integer number of cents, both 27"
and 2" will be finite, and may be endowed with the natural Boolean
algebras. We shall formulate the model in more general way, allowing
from the outset for real-valued contributions. Accordingly, all informa-
tion sets and sets of histories will be assumed to be Polish (complete
separable metric), endowed with with Borel o-algebras. The difference
between the two formulations evaporates with the introduction of the
set of all probability measures of the form p¢ = pt(a’*' a'*? ... aZ,|hi)
which determine players’ beliefs about future actions of the other play-
ers, conditional on his observable history. All relevant spaces of these

"This set is generally different for different players, as different own actions are
observed by different players.
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measures will be denoted through A(-) endowed with the topology of
weak convergence.

Since our game is that of incomplete information, we have to con-
sider, alongside with the space of all possible physical states S (a Polish
space), the set of all possible types ©; of all players over that set and the
strategies of other players (Mertens and Zamir, 1985). Taking products,
we obtain the state space Q = S x [[;cy ©: (Brandenburger and Dekel,
1993), endowed with the product topology and the Borel o-algebra %
containing this latter. This space can be constructed explicitly, which
construction we shall discuss in a while. At first we need to account for
a dynamic nature of information flows by defining on each information
set It and for each player i the set:

(4) &m:{BﬂMGN@%BzﬂmﬁxHG%
ieN
In words, B(I}) collects all members of Q which include those strate-
gies whose possibility has not been precluded by the set of histories
S!(h') which brought up the information set I{. To ensure consistent
sets of probability measures over B(I!), define for each ¢ the conditional
probability system (Myerson, 1986), i.e. maps of the form

p F x B(Ih) - [0,1]

such that
(1) VB € B(I}) : n(B|B) =
(2) VB € B(I}) : u(-|B) is a probablhty measure on (B(I}), %)
(3) VA € Z.B,C € B(I') : A C B C C = p(AB)u(B|C) =
n(A|C)

The first two properties ensure that g is a probability measure with
unit mass on B(I}). The last property says that conditional probabilities
given two different subsets B,C € B(I}) do not contradict one another.
Note that each of these conditional probabilities are conditioned upon
the sequences of observable strategies h? and are defined on set of con-
tinuation histories H! for player i through I?.

Now let us return to the set of spaces, which naturally have to depend
on histories, and incorporate individual beliefs. To build them, observe
first that each conditional probability system is a subset of the set of
all mappings from the set of information sets J; to the set of probability
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distributions over S x [[;c 5y ©; = S x O, denoted A(S x ©) and endowed
with the topology of weak convergence. Let the subset of conditional
probabilities system be denoted A% (S x ©), so that the set X = S x
© x AT (S x O) is also a Polish space endowed with product topology.

An infinite hierarchy of beliefs (Brandenburger and Dekel, 1993) can
be built on these notions. At any stage of the game ¢, define recursively®
for all players,

Xt = S
N
(5) X, = X)X HAX'fzfl‘
i=1
Infinite hierarchies of beliefs of levels n = 1,2,... are built on the

products of spaces of the previous level and the set of all probability
distributions over that space (Brandenburger and Dekel, 1993). The
universal state space Qf = X{ x [[iw, XL, = S x O, where © = [[, 0,
and each type 6; € ©; of each player®. Individual beliefs about each
other types are associated with the sequences of probability distributions
of different orders pt, ut,,...put, ... for any ¢t. Since finite products of
Polish spaces, as well as the set of all probability distribution over Polish
space, are all Polish, the entire space Qf is Polish (complete separable
metric) and .#! the Borel o-algebra on !, which are exactly the sets
and families defined above!®.

The next traditional steps are those from Brandenburger and Dekel

(1993), who restrict the set of state-spaces in the following two ways:

Assumption 1 (Consistence). Type 0; € O; is called consistent if the

marginal on zt, at any levels of uncertainty over X must coincide with

t ; t t .. ; t
Ty, and the marginals of 3, on x;; must coincide with those of x3;. ;.

8In what follows we focus on the general properties of the universal types space.
Evolution of that space and players’ beliefs appears less problematic, and is left for
the future.

9By writing © = []; ©;, it is implicitly assumed that the projection of © on the
7" coordinate results in degenerate distribution, i.e. each individual knows her own
type.

10get Qt, being Polish (hence complete), is also compact with respect to product
topology by force of the Tiknonov theorem.

th
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This assumption says that individual beliefs of different levels do not
contradict each other; since beliefs of each level are defined over beliefs
of the opponents, consistence covers also beliefs of each player over those
of her opponents of level X! ;. This suffices to ensure homeomorphism
from the set of all consistent types O to the infinite hierarchy of beliefs
S x ©; this homeomorphism is denoted f : O Sx0. Itis important
to notice, however, that these beliefs are unconstrained: each player is
free to have any belief about beliefs of opponents, including those that
the opponents are not consistent. The second assumption rules out these
beliefs:

Assumption 2 (Common knowledge). Vk>2,0:,={0; € ©: f(8;)(S x
Oir—1)=1}.

In words, consistence must be common knowledge among all players.
Denote the set of types which satisfy both assumptions at any ¢ through
©?, and let ) be the corresponding set of states (subset of Q). This
assumption suffices to show that there is homeomorphism g : ©f —
A(S x ©%), which is the second main conclusion of Mertens and Zamir
(1985).

Given these two assumptions, rational player should commonly choose
the action which maximizes his payoffs in the entire game given his beliefs
against the opponents’ expected strategy, provided the opponents’ types
belong to ©f, i.e. the equilibrium strategy s!* = [al*,...al*] should
satisfy

© st =argmax [ (i), () )W),
steSt Juteht

This specification has to be relaxed under our interpretation because
(observation 1) beliefs held by player i in state w! about other play-
ers’ types (and hence their actions) need not be the same as the actual
beliefs which guide the opponents’ actions. This simple fact precludes
utilization of the above construction (and equation (6) as a criterion for
optimality — see Dekel and Gul, 1997 for an extensive discussion). We
propose an alternative criterion for optimization, which disposes of the
common knowledge assumption of the standard framework. Alongside
with the space (Qf, .Z!) of the factual, or true uncertainty, take another
copy of that space, label it (£¢, &), and interpret as believed uncertainty
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of player i. Consider the set of all continuous images'' 7} from (Qf, . #?)
to (£%,&"). These images establish correspondence between possible ac-
tual states and possible perceptions of these states by individual 4, hence
they will be called theories of player i at t.

Definition 1. A set E' C & is called analytic (or A-set, or Souslin
set) if it is a projection of a subset B of a Polish space Qt x & onto &*.

According to this definition, analytic sets emerge as members of the
family of all continuous images of a Borel set whose images are located in
the same space (€, &"). Any theory 7/, of player i defines an analytic set
on the space of individual beliefs (£, &®), which can be identified with
the subset QY C QFf, again consisting of infinite hierarchies of beliefs
©4 =[], ©;4. Applying consistency requirement (1) to the state space
Q,, define the mapping f : ©4 — S x ©4 to obtain Qf — the desired
analytic counterpart of the universal types space.

Intuitively, the Souslin scheme extends the universal state space Q?
in a way which (another standard property of analytic sets) is so large
that an iterative application of the scheme adds nothing 'new’ to that
collection of sets. By contrast, a single application of the Souslin scheme
to By, ...k, C QY given by all finite collections of indices ki, ...,k
already covers all possible types, and dispenses of the assumption 2'2.
Analytic sets are relatively well studied object in descriptive set theory
and general topology (see Kuratowski, 1966). In particular, these can
also be defined as the sets which result from the A-operation, or the
Souslin scheme:

(7) A= U () Brohe
n=1

k1yeoskin ...

The collection of all analytic sets over (£%,&%) at t, together with an
empty set, is called paved analytic space, and any set A : By, . —

11Assumption of continuity is more than mathematical convenience: inter alia, it
implies that an event from & which player i believes to be possible is indeed possible
at some event in .Zt.

12This does not preclude, of course, the possibility of such refinements for different
Q%’s: we still may interpret .A? as the (evolving) system of beliefs of every players 4
about the strategy-types pairs of all players other than ¢, which system includes the
possible strategies s_;(h') of this player’s opponents (not necessarily consistent with
common knowledge of rationality or consistence.)
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&*, is called kernel (or nucleus) of the Souslin scheme. This defini-
tion allows us to characterise analytic state space as a result of the A-
operation applied for every ¢ to subsequent orders of the spaces Y0 ==
S, Y=Y x AMTIN, VO, Y =Y 1 x A" [V, V™1, where each
By, ok = A" Hfil Y;"~!. Taking n — oc, the analytic state space is
just 4 = xS AR, VL

Containing by construction the standard types space of Mertens and
Zamir (1985) as proper subset, the analytic types space is large enough to
contain all possible beliefs, beliefs about beliefs etc., including those that
provide for inconsistencies in opponents’ beliefs with common knowledge
of rationality, thus offering a proper types space for the argument by
Kreps e.a. In particular, as analytic types do allow a reformulation of
the maximization problem (6) by maximizing payoffs over analytic types
spaces:

® st magmax [ (sl ), s,
s{est w’eQﬁ‘

Yet before using (8), we need to make sure that this specification
makes sense, or that analytic types spaces are indeed well-defined. The
answer to that question turns out to be affirmative: Analytic types spaces
do indeed exist, and possess properties (2) — (3) of Harsanyi-Mertens-
Zamir. Moreover, analytic types spaces can be effectively constructed
in two steps. At first step, repeat the procedure used to obtain con-
sistent types space (Qt,ﬁﬁ). At the second, apply the Souslin scheme
to that space, that is, encompass straight away any combination of the
opponents’ beliefs, beliefs about beliefs etc. contained in the same space.

Proposition 2. Application of operation (1) to belief hierarchies ob-
tained as the result of the Souslin operation results in a set (O, .ZY)
satisfying fl’fA =85 x Hfil ©;4, which is property (2) of Mertens and
Zamir (1985).

Proof. Any sequence {u;}52, of probability distribution over (QF,.74)
partitions all lower-level distributions probabilities. Imposing consis-
tency on the sequences of distributions, and repeating the argument of

Brandenburger and Dekel (1993, p.192) yields the result through the
Kolmogorov existence theorem. O

Now let us turn to the second property, (3).
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Proposition 3. The analytic types space (04, FY) satisfies ©;a ue
h
A (S X Hj\;z OjA) (where W denotes homeomorphism), which is prop-

erty (3) of Mertens and Zamir (1985).

Proof of proposition 3 is technical, and contained in the Appendix.

As long as analytic sets contain Borel sets (and the inclusion is proper
on any uncountable space), analytic types spaces indeed generalize the
standard types spaces: they contain all types described by Mertens-
Zamir (1985) and many more, allowing for broader set of preferences
without controversial technical assumptions, such as common knowledge
of rationality. This descriptive potential comes at a cost of greater tech-
nicalities, which leads to a natural question of whether the analytic types
space is tractable. A positive answer to this question is contained in the
following proposition:

Theorem 1. For any real number € > 0 it is possible to choose analytic
sets A,B C Q%, AN B = @, such that

e there exists an open subset E C QY such that
e ACE and BNE =0, and
e the distance between A and B is less than e.

Proof. The theorem statement is essentially a variant of the regularity
(T3) property of topological spaces, and immediately follows from the
Lusin separation theorem for analytic sets (Kuratowski, 1966, p.497). O

This proposition implies that at worst the analytic state space can
be approximated by the standard (Borel) ones. Combined with theorem
3.1 in Mertens and Zamir (1985) (which shows that the standard types
spaces can be approximated by finite ones), we conclude that any rep-
resentation of analytic types spaces can be approximated by the finite
ones to a desired degree of precision, the only difference being that this
approximation is one step further.

5. RELATED LITERATURE

Let us now discuss a few implications of analytic types spaces, as well
as their potential use in economic analysis. Being a proper generaliza-
tion of the standard ones, they allow for greater variety of preferences,
including those that do not require common knowledge of rationality,
while still allowing for maximizing behaviour in in the Bayesian sense
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(Tan and Werlang, 1988). Inter alia, this types space allows for miscoor-
dination of rationalities (particularly, differences in depths of individual
judgments about each other beliefs); and yet it is exactly this misco-
ordination, or failure to locate the Nash equilibrium strategy which is
required to sustain Pareto-efficient outcome in the PG game. In fact, one
might guess that coordination of actions (on cooperative outcome) is the
consequence of this miscoordination of rationalities can be analysed in
the framework of epistemic games, pioneered by Aumann and Branden-
burger (1995). However, our setup is rather different from theirs, in that
it allows for a much broader class of beliefs which may result in a model of
player who is simultaneously rational (expected utility maximizer) and
consistent (has non-contradictory beliefs), but not necessarily chooses
the strategy that is equilibrium or even dominant (i.e. rationalizable).
Inasmuch as our approach it does allow for conflicting rationalities,
it opens new way to incorporate a bulk of results from social sciences
and humanities into game-theoretic and economics literature. This cov-
ers (but is not limited to) various aspects of human action, including
social constituents of individual preferences, psychological motives for
reciprocity, altruism and trust, efficiency of PR campaigns, political pref-
erences, and even philosophical aspects of ethics, aesthetic and cognition.
The concept of analytic types space settles a theoretical platform for
rigorous analysis of these issues, which seems to go beyond the potent of
all existing works. Perhaps the closest in motivation to ours are works by
Vladimir Lefebvre (1977, 2001). The motivating stories for his approach
is an intuitive argument that human actions are often governed not by
what the agents find most appropriate or reasonable to do on their own,
but what they think other people will do. Moreover — and unlike most
of purely game-theoretic tradition — Lefebvre explicitly articulates that
when making their decisions, individual agents may and do form mental
models of each others’ beliefs. In terms of modern economics, this idea
is pertinent to the recent literature on multiple rationalities or multiple
selves, together with biases and imperfections. However, all these ap-
proaches (including Lefebvre’s) are essentially algebraic: they consider
the effect of particular attribute or belief of the agent on the optimal
strategy in interaction with another individual. The power of this anal-
ysis is necessarily limited to the listing of possible attributes or beliefs,
which listing is inevitably closed in some predefined sense. Our approach
is different: instead of asking what kind of beliefs can arise in individual
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interaction, we construct the space that is rich enough to contain all pos-
sible beliefs, delimited only by the very basic property of consistency, and
bearing on the infinitely large set of possibilities. An important implicit
assumption that underlies this construction is that mental models of the
other guy are akin (in fact, homeomorphic) to mathematical concepts,
such as sequences of countably branching systems. In that sense, our
approach may be termed topological, but suggests a departure from the
standard use of topological concepts. Instead of being a descriptive tool
of analysis of an objective and independent individual (which necessarily
imposes very specific and sometimes adverse structure on the space of
individual beliefs), in our view, these beliefs are mathematical objects by
their nature, and hence can and should be analyzed in their own, proper
terms.

The exact potent of this approach is not clear yet, but several consid-
erations suggest that it may be very fruitful. First, it allows to reconcile
with individual rationality the fact that humans tend to deal with other
people in a way that ultimately depends on the mental picture of the oth-
ers. Humans tend to think of other people just as bad (or as good) as they
are themselves;; and these beleifs ultimately determine the behavioural
shape of the society we live in. This problem of social coordination on
Pareto-preferable action is in fact implicit in the Kantian ”categorical
imperative” which concisely captures this problem by requiring that one
ought deal with other people in the same way as we want them to deal
with us. In other words, the imperative requires that we think of other
people as if their motives are just like ours; and behave towards them by
choosing best response to the strategy they would choose given this be-
lief. Arguments of that sort tend to justify the long-standing judgment
that apparent irrationality of individual behaviour might in fact be not
only deeper than some examples of rational strategies, but be respon-
sible for the most important examples of cooperation and coordination
in those environments where traditional wisdom expects people to be
entirely selfish.

Another example we take is game-theoretic. Dekel and Gul (1997) in
a very deep and influential survey on rationality in game theory, argued
that in games of incomplete information it is not appropriate to ground
the analysis on an assumption that individual beliefs are derived from a
commonly known ex ante model (p.114). The two reasons they site are
that 1) individual rationalities may be conflicting, which precludes their
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common knowledge, and 2) priors are artificial constructs, rather than
actual states of the world. The concept of analytic types space imme-
diately addresses the first of these concerns by allowing for conflicting
rationalities. It also suggests a way to formally deal with the second.
People in reality do ground their decisions not just on facts, but also
on beliefs, dreams, and idols of all respects; and a bulk of important
decisions (including whether to marry someone, whether to support par-
ticular religion, or initiate a war), is taken on purely imaginary grounds.
The fact that these grounds, be these in belief, feeling or uncertainty
spaces, are not physically implemented does not make them ’irreal’; but
just underlies the difference between natural sciences, where the object
is always observable to an external observer, and economics as social
science, which must deal with less tangible, but not less real matters —
and the analytic types space allow exactly for that.

6. CONCLUSION

Experimental evidence suggests several conclusions whose validity seems
to go beyond the laboratory. In many contexts, players seem to be able
to elaborate specific coordination mechanisms which allow them to de-
part from the unique Nash equilibrium prediction in the PG game to
their mutual satisfaction. Our analysis suggests that the main reason
for this might be the failure of all players to properly assess the beliefs
of each other, i.e. possible imperfection of their rationality. Generalizing
from the experimental environment to more general and real-life settings,
imperfect rationality of the participants of a social interaction might be
the acting cause of the achievement of socially optimal outcome, which
result would have been impossible had their rationality been perfect.
While being rational in a weaker sense, this imperfection is in fact re-
sponsible for the possibility of coordination, and ultimately bridges the
gap between individual and social rationality.

A major result of our paper is the development of an analytical frame-
work for such an analysis. The concept of analytic types space is of
course not limited to the experimental games, but seems to allow for a
broad range of economic phenomena, such as cooperation, trust, reci-
procity and mutual action. Why is it the case that, in some societies
people are trusting each other — accept documents without verification,
leave unattended belongings, give customers paybacks; while in others
the same kind of actions are virtually impossible? Our model offers a line
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of explanation of these phenomena in terms of different mental models
underlying these behavioural strategies, again in the framework of epis-
temic games. All these problems seem to share the same key feature:
reaching a socially desirable outcome requires particular constellation
of individual beliefs and rationalities even though the parties may fail
to realize the exact motives of each other. As such the analytic types
space combine traditional game-theoretic analysis with boundedly ratio-
nal behaviour. Our analysis suggest that this failure not only does not
contradict maximizing behaviour, but does de facto make the socially
profitable interaction possible at all.

This conclusion immediately raises an important question: what are
the constellation of individual beliefs are most likely to arise in practice,
which of these possible rationalities favour particular equilibria in dy-
namic interactions, and how individual agents ’select’ the rules of thumb
to use in interactions of economic relevance and interest? This ques-
tion is pertinent to the issues of learning, interactive epistemology and
boundedly rational behaviour, and is also most interesting from the ap-
plications’ viewpoint, so we intend to address it in the near future.
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7. APPENDIX. PROOF OF PROPOSITION 3

We introduce first a definition and establish a number of preliminary
lemmata.

Lemma 1. Let P = {p € P(X) : p(A) > ¢}, where P(X) is the set of
all probability measures on Borel measurable space (X, F), and A is
an analytic subset of X (equivalently, Y). The set P is analytic for each
ceR

Proof. The proof closely follows Bertsekas and Shreve (1978, p.166). Let
A be the nucleus of the Souslin scheme for Qf, . #t. Let .4 be the set
of irrationals (the Baire null space). For any finite collection of indices
k= (5 ...5,), define the sets

(9) N(%l---%n):{(CI,C%---)ef/VZCIZ}fla---Cn:%n}

(10) M(%l}fn) {(Cl,CQ,...) EJVZCl S}fla---gn S%n}

= U N(oy...0n)

01<5¢1...0n <3tp

Define also
(11) R(a...:)= | () A(x)
ZEM (51...5t,) K<Z
k
(12) K30 ... 30) = U () A1 ...om)

01<31...00,<3t, m=1

It follows that R(5¢ ...56,) C K(s¢...50,) and ()0 K(5e1...3¢,) C
A — hence each K (k) is closed. Let us now show that for each ¢ € R,
the set P is equivalent to

(13)
{peP(X):p(4)>ct=(] U ﬂ{pEP(X):p[K(n)]Zc—%}.

m=1ze N K<lz

Consider any measure p'(A) € P(X), and limit attention to p'(4) > c.
For all such measures, there exists a sequence ({],(}...) € 4 such
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that p(4) = p(R({]...¢,)) + ¢, where p = p', ¢ = L. Then for all
n =1,2,..., it holds true that

(14) PR G 2 (REGG) 2P () = > e

Hence p' belongs to the rhs of (13). Taken now the level of hierarchies
n to the limit, observe that there will always exist a sequence ((;,(s...) €
A such that

n—o00 m

(15 p (ﬂ K<<1...<;)> = Jim (G C) > - —
m=1

and since (2, K (5 ...5,) C A is closed, it follows that p'(A) >
¢ — L, Vm, which establishes (13). Since the set Ty, (k) = {p € P(X) :
plK (k)] > ¢ — £} is Borel-measurable for all m > 1 and all sequences &,
and since {p € P(X) : p(4) > ¢} = (\.°_, N(T),), the sets of measures

m=1
over &/ are analytic too. O

Lemma 2. In the PG game, the set P is compact.

Proof. Since in the PG game ¢ € R is bounded, any probability in P is
a continuous image of a compact space, and hence is itself compact. O

Equipped with the measurability properties of analytic sets, let us now
introduce the notion of analytic o-algebras and analytically measurable
functions. The rest of proof will be done in terms of them.

Definition 2. Analytic o-algebra .7 is the smallest o-algebra on the set
Y generated by the collection of all analytic subsets of Y.

Definition 3. Let A C Fx and B C &y be arbitrary subsets of Borel
spaces X and 'Y with the respective o-algebras. A function g: A — B is
called analytically measurable if g=1(B) € .Z4 for all B € &y .

Set Y =04 and X =Q_;4 =S x H;\;Z ©;4. Now we are ready to
prove the remainder of proposition 3

Proof. Any analytic set in QY by construction belongs to the product of

two Borel sets: ©;4 and Q_;4 =5 x H;\;Z ©;4. Define the projection

from any A C ©;4 X Q_;4 to O;4 through p, and let p(A) = B C

0;4 — an analytic subset of ©;4. Consider an analytically measurable
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mapping g : ©;4 — Q_;4, which maps an analytically measurable subset
0,4 € ¥ to the Borel space ;4. By the Jankov-von Neumann theorem
(Bertsekas and Shreve, 1978, p.182ff), for all B € ©,4, the graph of this
map, i.e. the set {g(B),B} € ©;a x _;4 is contained in A. The map
g thus defined is a composition of a continuous map A4 — ©;4 X Q_;a
and a projection, hence is continuous itself.

Since the graph of a continuous map ¢ is contained in a compact set
A C &, it constitutes a homeomorphic embedding of ©;4 in ©;4 X
Q_;a (Engelking, 1985 2.3.22, p.136). To show that g is one-to-one, it
suffices to notice that the space ©;4 = x5, A?Y;" was built from all
the sequences which attach some probabilities to every member of Yi"_1
for all n. Hence surjection follows from the construction of types space,
and the map g : ©;4 — Q_;4 is one-to-one, onto and continuous in both
directions, which establishes the desired homeomorphism. O
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