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a b s t r a c t

Submodular functions are powerful tools to model and solve either to optimality or approximately many
operational research problems including problems defined on graphs. After reviewing some long-stand-
ing theoretical results about the structure of local and global maxima of submodular functions, Chere-
nin’s selection rules and his Dichotomy Algorithm, we revise the above mentioned theory and show
that our revision is useful for creating new non-binary branching algorithms and finding either approx-
imation solutions with guaranteed accuracy or exact ones.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we give some theoretical results fundamental to
the problem of finding a global maximum of a general submodular
(or, equivalently, global minimum of a general supermodular) set
function which we call the Problem of Maximization of Submodu-
lar Functions (PMSF) [34]. By a set function we mean a mapping
from 2N to the real numbers, where N ¼ f1;2; . . . ;ng. Another
well-known term for an arbitrary set function is a pseudo-Boolean
function [29] which is a mapping from f0;1gn to the real numbers.

PMSF is known to be NP-hard [20] but the problem of minimi-
zation of submodular functions (or, equivalently, the problem of
finding a global maximum of a supermodular function) is known
to be polynomially solvable [42]. In this paper, we are not dealing
with these polynomially solvable problems.

Enormous interest in studying PMSF arises from the fact that
several classes of important combinatorial optimization problems
belong to PMSF, including the Simple or ‘‘uncapacitated” Plant
(facility) Location Problem (SPLP) [4,9,16] and its competitive ver-
sion [8], the Quadratic Cost Partition Problem (QCP) with non-neg-
ative edge weights [27], and its special case – the Max-Cut Problem,
the generalized transportation problem [37,39]. Genkin et al. [21]
have reduced many different problems of data mining and knowl-
edge discovery in biomedical and bioinformatics research (e.g.,
diagnostic hypothesis generation, logical methods of data analysis,
conceptual clustering, and proteins functional annotations) to the

PMSF. Many models in mathematics [35], including the rank
function of elementary linear algebra, which is a special case of
matroid rank functions [15,18] require the solution of a PMSF.
Ballester et al. [5] studied the properties and the applicability of
policies affecting the structure of the network. They show that this
problem is computationally hard and that a simple greedy algo-
rithm used for maximizing submodular set functions finds an
acceptable approximation. Submodular functions are used as utility
functions in the so called combinatorial auctions (see e.g. [17] and
references within) and supermodular functions are applied to mod-
el different preferences of choice [11].

Although the general problem of the maximization of a sub-
modular function is known to be NP-hard, there has been a sus-
tained research effort aimed at developing practical procedures
for solving medium and large-scale instances of the PMSF. Often
the approach taken has been problem specific, and submodularity
of the underlying objective function has been only implicit to the
analysis. For example, Barahona et al. [6] have addressed the
Max-Cut Problem from the point of view of polyhedral combina-
torics and developed a branch and cut algorithm, suitable for appli-
cations in statistical physics and circuit layout design. Beasley [7]
applies Lagrangean heuristics to several classes of location prob-
lems including SPLPs and reports results of extensive experiments
on a Cray supercomputer. Lee et al. [34] have made a study of the
quadratic cost partition problem (QCP) of which max-cut with
nonnegative edge weights is a special case, again from the stand-
point of polyhedral combinatorics.

There have been fewer published attempts to develop algo-
rithms for minimization of a general supermodular function. We
believe that the earliest attempt to exploit supermodularity is the
work of Petrov and Cherenin [40], who identified a supermodular
structure in their study of railway timetabling. Their procedure
was subsequently published by Cherenin [14] as the ‘‘method of
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successive calculations”. Their algorithm however is not widely
known in the West [3] where, as far we are aware of, the only gen-
eral procedures that have been studied in depth are the greedy
approximation algorithm from Nemhauser et al. [37], and the algo-
rithm for maximization of submodular functions subject to linear
constraints from [39]. In a comment to a note by Frieze [19], Bab-
ayev [3] demonstrated that Frieze’s Property P and Cherenin’s the-
orem Ch (Theorem 3 in this paper) are equivalent. Moreover, Frieze
[19] has defined two sets of conditions, namely OP1 and OP2, the
application of which in a search procedure are equivalent to the
so called Cherenin’s ‘‘selection rules” for PMSF [14] (see Section 3
in this paper). Note that Alcouffe and Muratet’s [2] algorithm is
based on a special case of Cherenin’s [14] ‘‘method of successive
calculations”.

Indeed the only practical algorithmic implementation of solu-
tion procedure known in the West appears to be the ‘‘accelerated
greedy” (AG) algorithm of Minoux [36], which has been applied
to optimal planning and design of telecommunication networks.
We note that the AG algorithm has also been applied to the prob-
lem of D-optimal experimental design [41]; see also Ko et al. [32]
and Lee [33] for further examples of ‘‘hard” D-optimal design prob-
lems in environmental monitoring. In Genkin and Muchnik [22] an
optimal algorithm is constructed with exponential time complex-
ity for the well-known Shannon max–min problem. This algorithm
is applied to the maximization of submodular functions subject to
a convex set of feasible solutions, and to the problem of – what is
known as – decoding monotonic Boolean functions.

Recently based on an elegant pipage rounding technique, intro-
duced by Ageev and Sviridenko [1], many authors (see e.g. Vondrák
[43] and references within) are trying to create an approximation
algorithm for maximization of submodular functions with addi-
tional constraints similarly to the seminal work of Nemhauser
and Wolsey [38]. We are not going to address such approximations
issues in this paper because they deserve a separately written
manuscript.

In this paper, we present a fundamental theorem of Cherenin
and our revision of this theorem, both of which provide the basis
of selection (preservation) rules, and in particular, for the justifica-
tion of the Preliminary Preservation (Dichotomy) algorithm. We
also revise Cherenin’s selection rules dealing with local maxima
in the form of our ‘‘preservations rules” dealing with global max-
ima. These rules have been used in Benati [8], Goldengorin [24],
Goldengorin et al. [25], and Goldengorin and Ghosh [27]. Moreover,
our preservations rules can be used for implicit enumeration of sub-
problems in a Branch-and-Bound (BnB) approach for solving PMSF.

The paper is organized as follows: In Section 2, we motivate a
theoretical development of selection rules based on the essential
structural results for local and global maxima of submodular func-
tions due to Cherenin [14] and Khachaturov [30,31]. In this section,
a fundamental theorem of Cherenin is stated, which provides the
basis of ‘‘the method of successive calculations”. Section 2 contains
an important characterization of local maxima as disjoint compo-
nents of ‘‘strict” and ‘‘saddle” vertices which greatly assists the
understanding of the difference between the properties of Chere-
nin’s ‘‘selection rules” and our ‘‘preservation rules” discussed in
Section 3. In Section 4, we present our main Theorem 11 from
which generalized bounds for implicit enumeration can be derived,
and allow the rules of Section 3 to be extended to other cases (e-
optimality). We present the two different representations (a) and
(b) of the partition of the current set of feasible solutions (vertices)
defined by a strictly inner vertex with respect to this set. By using
our main Theorem 11 and representations (a) and (b) we prove the
correctness of Cherenin’s selection rules in the form of our preser-
vation rules. These rules are the basis of Cherenin’s Preliminary
Preservation Algorithm (PPA) [40]. In Section 5, we outline the
main steps of the PPA and illustrate how our new preservation

rules (see Corollary 18) can be applied to a small example of the
SPLP. We show that if the PPA terminates with a global maximum
then the given submodular function has exactly one strict compo-
nent of local maxima. We introduce the so called non-binary
branching rules, based on Theorem 11 in Section 6. Non-binary
branching rules are illustrated by means of a SPLP instance. Section
7 gives a number of concluding remarks.

2. The structure of local and global maxima of submodular set
functions

In this section, we present results of Cherenin–Khachaturov
[14,30], which are hardly known in the Western literature [3].

Let z be a real-valued function defined on the power set 2N of
N ¼ f1;2; . . . ; ng; n P 1. For each S; T 2 2N with S # T , define

½S; T� ¼ fI 2 2NjS # I # Tg:

Note that ½;;N� = 2N . Any interval ½S; T� is, in fact, a subinterval of ½;;N�
if ;# S # T # N; notation ½S; T�# ½;;N�. In this paper, we mean by an
interval always a subinterval of ½;;N�. Throughout this paper we
consider a set of PMSFs defined on any interval ½S; T�# ½;;N� as
follows:

maxfzðIÞjI 2 ½S; T�g ¼ z�½S; T�; for all ½S; T�# ½;;N�:

The function z is called submodular on ½S; T� if for each I; J 2 ½S; T� it
holds that

zðIÞ þ zðJÞP zðI [ JÞ þ zðI \ JÞ:

Expressions of the form S n fkg and S [ fkg will be abbreviated to
S� k and Sþ k.

The following theorem given in Nemhauser et al. [37] gives a
number of equivalent formulations for submodular functions
which is useful for a clearer understanding of the concept of sub-
modularity. Since sometime we use the incremental or decremen-
tal value of zðSÞ, we define dþj ðSÞ ¼ zðSþ jÞ � zðSÞ and d�j ðSÞ ¼
zðS� jÞ � zðSÞ.

Theorem 1. All the following statements are equivalent and define a
submodular function.

(i) zðAÞ þ zðBÞP zðA [ BÞ þ zðA \ BÞ; 8A;B # N:
(ii) dþj ðSÞP dþj ðTÞ; 8S # T # N and j 2 N n T:

(iii) dþj ðSÞP dþj ðSþ kÞ; 8S # N and j 2 N n ðSþ kÞ and k 2 N n S:
(iv) zðTÞ 6 zðSÞ þ

P
j2TnSdþj ðSÞ; 8S # T # N:

(v) zðSÞ 6 zðTÞ þ
P

j2TnSd�j ðTÞ; 8S # T # N:

As an example consider the Quadratic Cost Partition Problem
(QCP), for which it is well known that the objective function zðQÞ
is a submodular function [34]. For given real numbers pi and non-
negative real numbers qij with i; j 2 N, the QCP is the problem of
finding a subset Q of N such that the weight zðQÞ ¼

P
i2Q pi�

1
2

P
i;j2Q qij is as large as possible. Let N be the vertex set, E # N � N

the edge set of an edge-weighted graph G ¼ ðN; EÞ, and wij P 0
are edge weights. For each Q # N, the cut dðQÞ is defined as the edge
set for which each edge has one end in Q and the other one in N n Q .
It is easy to see that the Max-Cut Problem with nonnegative edge
weights is a QCP where pi ¼

P
j2Nwij and qij ¼ 2wij; for i; j 2 N.

Lemma 2. The objective zðSÞ of the Quadratic Cost Partition problem
is submodular.

Proof. According to Theorem 1(iii) a function is submodular if

dþl ðSÞP dþl ðSþ kÞ; 8S # N and l 2 N n ðSþ kÞ and k 2 N n S:

Substituting dþl ðSÞ ¼ zðSþ lÞ � zðSÞ we get
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zðSþ lÞ � zðSÞP zðSþ kþ lÞ � zðSþ kÞ:

Substituting zðSÞ ¼
P

i2Spi � 1
2

P
i;j2Sqij gives

X
i2Sþl

pi �
1
2

X
i;j2Sþl

qij �
X
i2S

pi �
1
2

X
i;j2S

qij

 !

P
X

i2Sþkþl

pi �
1
2

X
i;j2Sþkþl

qij �
X

i2Sþk

pi �
1
2

X
i;j2Sþk

qij

 !
:

Canceling out terms involving pi we obtain

�
X

i;j2Sþl

qij þ
X
i;j2S

qij P �
X

i;j2Sþkþl

qij þ
X

i;j2Sþk

qij:

This result, after some bookkeeping, implies

qkl þ qlk P 0:

Since qij is nonnegative for all i; j 2 N, the proof is completed. h

Hence, the QCP problem is a special case of the PMSF.
A subset L 2 ½;;N� is called a local maximum of z if for each i 2 N

zðLÞP maxfzðL� iÞ; zðLþ iÞg:

A subset S 2 ½;;N� is called a global maximum of z if zðSÞP zðIÞ for
each I 2 ½;;N�. We will use the Hasse diagram (see e.g. Fig. 1 [28])
as the ground graph G ¼ ðV ; EÞ in which V ¼ ½;;N� and a pair ðI; JÞ
is an edge iff either I � J or J � I, and jI n Jj þ jJ n Ij ¼ 1.

The graph G ¼ ðV ; EÞ is called z-weighted if the weight of each
vertex I 2 V is equal to zðIÞ; notation G ¼ ðV ; E; zÞ. In terms of
G ¼ ðV ; E; zÞ the PMSF means finding a vertex S 2 V of the weight
zðSÞ which is as large as possible. An example of the weighted G
with N ¼ f1;2;3;4g is depicted in Fig. 2, where the weight zðIÞ is
indicated inside the corresponding vertex I.

Here among others the vertices {1,2,3} and {4} are local max-
ima, and {4} is a global maximum (see Fig. 2).

A sequence C ¼ ðI0; I1; . . . ; InÞ of subsets It 2 2N , t ¼ 0;1; . . . ;n
such that jIt j ¼ t and

; ¼ I0 � I1 � I2 � � � � � It � � � � � In�1 � In ¼ N

is called a chain in ½;;N�. An example of the chain
; � f2g � f2;4g � f1;2;4g � f1;2;3;4g in Fig. 3 is shown.

Similarly, a chain of any interval ½S; T� can be defined. A submod-
ular function z is nondecreasing (nonincreasing) on the chain C if
zðIlÞ 6 zðImÞ (zðIlÞP zðImÞ) for all l, m such that 0 6 l 6 m 6 n; con-
cepts of increasing, decreasing and constant (signs, respectively,
<;>;¼) are defined in an obvious manner (see e.g. Fig. 4).

The following theorem [14] shows the quasiconcavity of a sub-
modular function on any chain that includes a local maximum (see
Fig. 5).Fig. 1. The Hasse diagram of {1,2,3,4}.

Fig. 2. Example of local maxima {1,2}, {1,2,3}, {1,3}, {2,3}, {3}, and the global
maximum {4} on the Hasse diagram.

Fig. 3. Example of the chain ; � f2g � f2; 4g � f1; 2; 4g � f1; 2; 3; 4g in the Hasse
diagram of {1,2,3,4}.

Fig. 4. Example of a nondecreasing (nonincreasing) function on the chain in the
Hasse diagram of {1,2,3,4}.
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Theorem 3. Let z be a submodular function on 2N and let L be a local
maximum. Then z is nondecreasing on any chain in ½;; L�, and
nonincreasing on any chain in ½L;N�.

Proof. We show that z is nondecreasing on any chain in ½;; L�. If
either L ¼ ; (we obtain the nonincreasing case) or jLj ¼ 1, the asser-
tion is true, since L is a local maximum of z. So, let jLj > 1 and
I; J 2 ½;; L� such that J ¼ I þ k, k 2 L n I.

Note that ;# � � � # I � J # � � � � L. The submodularity of z
implies zðJÞ þ zðL� kÞP zðIÞ þ zðLÞ, or zðJÞ � zðIÞP zðLÞ � zðL� kÞ.
Since L is a local maximum, zðLÞ � zðL� kÞP 0. Hence zðJÞP zðIÞ,
and we have finished the proof of nondecreasing case. The proof for
½L;N� is similar. h

Corollary 4. Let z be a submodular function on 2N and let L1 and L2 be
local maxima with L1 # L2. Then z is a constant on ½L1; L2�, and every
L 2 ½L1; L2� is a local maximum of z.

Proof. First we show that z is a constant function on ½L1; L2�. Let us
apply Theorem 3 to a chain including ;# � � � # L1 # L2 # � � � # N,
first to the single (isolated) local maximum L2 and second to the
single local maximum L1. For the first case we obtain
zð;Þ 6 � � � 6 zðL1Þ 6 � � � 6 zðIÞ 6 zðL2Þ. For any subchain of the inter-
val ½L1; L2� we have zðL1Þ 6 � � � 6 zðL2Þ. By the same reasons for the
second case we have zðL1ÞP � � �P zðL2Þ. Combining both
sequences of inequalities we have proved the constancy of z.

Now we show that every L 2 ½L1; L2� is a local maximum of z.
Assume to the contrary that there exists L 2 ½L1; L2� that is not a local
maximum of z. Then either there is a L� i R ½L1; L2� with
zðLÞ < zðL� iÞ or there is a Lþ i R ½L1; L2� with zðLÞ < zðLþ iÞ. For
the first case we get according the definition of submodularity
zðLÞ þ zðL2 � iÞP zðL� iÞ þ zðL2Þ or zðLÞ � zðL� iÞP zðL2Þ�
zðL2 � iÞP 0. This contradicts zðLÞ < zðL� iÞ. For the second case a
similar argument holds by using L1 instead of L2. h

In Corollary 4, we have indicated two important structural
properties of a submodular function considered on intervals whose
end points are local maxima. Namely, on such an interval a sub-
modular function preserves a constant value and every point of
this interval is a local maximum. It will be natural to consider
the widest intervals with above mentioned properties.

A local maximum L 2 2NðL 2 2NÞ is called a lower (respectively,
upper) maximum if there is no another local maximum L such that
L � L (respectively, L � L). For example, in Fig. 6 the vertex {1,2,3}
is an upper local maximum and the vertices {1,2}, {3} are lower lo-
cal maxima. If an interval ½L; L�with L # L has as its end points lower
and upper maxima then it is the widest interval on which the sub-
modular function is a constant and each point is a local maximum.
We call a pair of intervals ½Li; Li� with Li # Li, i ¼ 1;2 connected iff
½L1; L1� \ ½L2; L2�–;. The intervals of local maxima form a set of com-
ponents of local maxima. Two intervals belong to the same compo-

nent if they are connected. Hence, two local maxima L1 and L2 are
in the same component if there is a path in G ¼ ðV ; E; zÞ with end
vertices L1 and L2, and all intermediate vertices of this path are lo-
cal maxima.

By the following definitions Khachaturov [30] (see also Ref.
[24]) introduced two kinds of components of subgraphs of local
maxima.

Let V0 be the subset of V corresponding to all local maxima of z
and let H0 ¼ ðV0; E0; zÞ be the subgraph of G induced by V0. This
subgraph consists of at least one component. We denote the com-
ponents by Hj

0 ¼ ðV
j
0; E

j
0; zÞ, with j 2 J0 ¼ f1; . . . ; rg. Note that if L1

and L2 are vertices in the same component then zðL1Þ ¼ zðL2Þ.
A component Hj

0 is called a strict local maximum component
(STC) if for each I R Vj

0, for which there is an edge ðI; LÞ with
L 2 Vj

0, we have zðIÞ < zðLÞ. A component Hj
0 is called a saddle local

maximum component (SDC) if for some I R Vj
0, there exists an edge

ðI; LÞ with L 2 Vj
0 such that zðIÞ ¼ zðLÞ. An example of the SDC de-

fined by two intervals [{1,2}, {1,2,3}] and [{3}, {1,2,3}] in Fig. 6 is
shown. The values of a submodular function in Fig. 6 are printed
inside the vertices. Here a trivial STC by the vertex {4} is defined.
Note that {3,4} is not a local maximum because its neighbor {4}
is the global maximum with value zðf4gÞ ¼ 11.

All vertices in a component Hj
0 are local maxima of the same

kind. Therefore, the index set J0 of these components can be split
into two subsets: J1 being the index set of the STCs, and J2 being
the index set of the SDCs.

The following theorem of Khachaturov [30] is an application of
Theorem 3 to the case of a nontrivial STC (see Fig. 7).

Theorem 5. Let z be a submodular function on 2N and let L and L be
lower and upper maxima with L # L, both located in an STC. Then z is
strictly increasing on each subchain ;# � � � # L of ½;; L�, constant on
½L; L�, and strictly decreasing on each subchain L # � � � # N of ½L;N�.

Proof. We first show that z is strictly increasing on ½;; L�. The proof
of the strictly decreasing case is similar. If either L ¼ ; (we obtain
the decreasing case) or jLj ¼ 1, the assertion is true, since L is a local
maximum of z. So, let jLj > 1 and I; J 2 ½;; L� such that J ¼ I þ k,
k 2 L n I. Note that ;# I � J # � � � # L. The submodularity of z
implies zðJÞ þ zðL� kÞP zðIÞ þ zðLÞ, or zðJÞ � zðIÞP zðLÞ � zðL� kÞ.
Since L 2 Vj

0 for some j 2 J1, zðLÞ � zðL� kÞ > 0. Hence zðJÞ > zðIÞ,
and we have finished the proof of the strictly increasing case.

The property that z is constant on ½L; L� follows from Corollary
4. h

Fig. 5. A quasi-concave behaviour of a submodular function on the chain with a
local maximum L (Cherenin’s theorem).

Fig. 6. Lower local maxima: {1,2}, {3}; upper local maximum: {1,2,3}; SDC
(shadowed); global maximum: {4}.
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Note that L and L need not be lower and upper maxima in The-
orem 5. It is clear from the proof of Theorem 5 that any pair of
embedded local maxima L1 and L2 located on a chain ;# � � � #

L1 � i � L1 # � � � # L2 � L2 þ k # � � � # N such that zðL1 � iÞ < zðL1Þ
and zðL2 þ kÞ < zðL2Þ will imply that z is strictly increasing on each
subchain ;# � � � # L1 � i � L1 and strictly decreasing on each sub-
chain L2 � L2 þ k # � � � # N. We call such a local maxima boundary
local maxima. In other words, a boundary local maximum is con-
nected with vertices outside the component.

Lemma 6. Let L 2 Vj
0 for some j 2 J1, and let I satisfy zðIÞ ¼ zðLÞ with

ðI; LÞ 2 E. Then I 2 Vj
0 for the same j 2 J1.

Proof. Let L 2 Vj
0 for some j 2 J1. If I R Vj

0, then zðIÞ < zðLÞ, since
ðI; LÞ 2 E and L is a local maximum of the STC. h

Khachaturov [30] has observed that any global maximum be-
longs to a STC.

Theorem 7. Let S be a global maximum of the submodular function z
defined on 2N. Then S 2 Vj

0 for some j 2 J1.

Proof. Suppose, to the contrary, that S 2 Vi
0 with i 2 J2. Then there

exists an I 2 V n V0, adjacent to some J 2 Vi
0 with zðIÞ ¼ zðJÞ. This I is

not a local maximum and hence, I has an adjacent vertex M with
zðMÞ > zðIÞ. Thus, zðSÞ ¼ zðJÞ ¼ zðIÞ < zðMÞ, contradicting the
assumption that S is a global maximum of z. h

Theorem 7 implies that we may restrict the search for a global
maximum of a submodular function z to STC’s. Based on Corollary
4, and definitions of strict and saddle components we can represent
each component of local maxima as a maximal connected set of
intervals whose end points are lower and upper local maxima.

3. Selection rules: An old proof

There are two ‘‘selection rules” [40,19,2], that can be used to
eliminate certain subsets from ½;;N� when determining a global
maximum of a submodular function.

Theorem 8. Let z be a submodular function on ½;;N� and Vj
0 with

j 2 J0 be the components of local maxima. Then the following
assertions hold.

(a) First Strict Selection Rule (FSSR).If for some T1 and T2 with
;# T1 � T2 # N we have zðT1Þ > zðT2Þ, then Vj

0 \ ½T2; T� ¼ ;
for all j 2 J0.

(b) Second Strict Selection Rule (SSSR).If for some S1 and S2 with
;# S1 � S2 # N we have zðS1Þ < zðS2Þ, then Vj

0 \ ½S; S1� ¼ ; for
all j 2 J0.

Proof. We prove case (a) because a proof of case (b) is similar. Let
us consider a chain ;# � � � # T1 � T2 # L # T � � � � � N with
L 2 Vj

0 \ ½T2; T�–; for some j 2 J0. Applying Theorem 3 to the sub-
chain ;# � � � # T1 � T2 # L we have zð;Þ 6 � � � 6 zðT1Þ 6 zðT2Þ 6
zðLÞ which contradicts zðT1Þ > zðT2Þ. h

This theorem states that by applying the strict rules we do not
exclude any local maximum. In other words, we preserve all local
maxima. In the following theorem of Khachaturov [30], we will
see that applying selection rules with nonstrict inequalities
(nonstrict rules) will preserve at least one local maximum
of each STC. We will call such a maximum a representative of
the STC.

Theorem 9. Let z be a submodular function on ½S; T�# ½;;N� and for
every j 2 J1;V

j
0 \ ½S; T�–;. Then the following assertions hold.

(a) First Selection Rule (FSR). If for some T1 and T2 with S # T1 �
T2 # T holds that zðT1ÞP zðT2Þ, then Vj

0 \ ð½S; T� n ½T2; T�Þ–;
for all j 2 J1.

(b) Second Selection Rule (SSR). If for some S1 and S2 with S # S1 �
S2 # T holds that zðS1Þ 6 zðS2Þ, then Vj

0 \ ð½S; T� n ½S; S1�Þ–; for
all j 2 J1.

Proof. We prove case (a) because the proof of case (b) is similar.
Let us consider two cases:

Case 1: zðT1Þ > zðT2Þ. Theorem 8 implies that Vj
0 \ ½T2; T� ¼ ; for

all j 2 J0 ¼ J1 [ J2. Since for every j 2 J1;V
j
0 \ ½S; T�–; and

½T2; T� � ½S; T� we have ð½S; T� n ½T2; T�Þ \ Vj
0–; for all j 2 J1.

Case 2: zðT1Þ ¼ zðT2Þ. If we can construct a chain through two
boundary local maxima L1 and L2 that also contains T1

and T2, then we have just two possibilities:
(1) L1 # T1 � T2 # L2;
(2) all others.

Each case of the possibility (2) contradicts Theorem 5. There-
fore, L1 # T1 � T2 # L2, and L1 # T1 2 ð½S; T� n ½T2; T�Þ \ Vj

0–; for all
j 2 J1. h

In Section 6, we will give an example of the SPLP in which by
application of a nonstrict selection rule we discard the local mini-
mum {2,4} of the corresponding supermodular function. This local
minimum is an analogue of the trivial SDC for the corresponding
supermodular function.

By applying Theorem 9a (respectively, 9b) we can discard
2jTnT2 j (respectively, 2jS1nSj) subsets of interval ½T2; T� (respectively,
½S; S1�) because this interval does not include a local maximum of
any STC from ½S; T�. If T1 ¼ S and T2 ¼ Sþ i then in case of Theo-
rem 9a the interval ½Sþ i; T� can be discarded. If S1 ¼ T � i and
S2 ¼ T then in case of Theorem 9b the interval ½S; T � i� can be
discarded. These two special cases are important because we
may exclude a half subinterval of the current interval while we
preserve at least one representative from each STC. Based on
the last special cases of selection rules, we present Cherenin’s
Preliminary Preservation (Dichotomy) Algorithm for the maximi-
zation of submodular functions in Section 5. Before we present
the Dichotomy Algorithm we give in Theorem 10 an alternative
proof of the correctness of these special cases of selection rules
which is based only on Lemma 6, the definitions of a STC and
a submodular function z. This proof shows that in case of sub-
modular functions the definition of a STC is an insightful notion
for understanding the correctness of Cherenin’s Dichotomy Algo-
rithm. Therefore, it is not necessary to use all the statements of
the previous section in order to justify both prime rules. In the
next section, we present a revision and a simple justification of
the same rules.

Fig. 7. The behaviour of a submodular function on a chain with lower and upper
local maxima (Khachaturov’s theorem).
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Theorem 10. Let z be a submodular function on 2N. Suppose that for
;# S � T # N and for every j 2 J1, V j

0 \ ½S; T�–;. Then the following
assertions hold.

(a) First Prime Selection Rule (FPSR). If for some i 2 T n S it holds
that zðSþ iÞ 6 zðSÞ, then ½S; T � i� \ Vj

0–; for all j 2 J1.
(b) Second Prime Selection Rule (SPSR). If for some i 2 T n S it holds

that zðT � iÞ 6 zðTÞ, then ½Sþ i; T� \ Vj
0–; for all j 2 J1.

Proof. We prove only part (a). The proof of part (b) is similar.

(a) Let zðSþ iÞ 6 zðSÞ for some i 2 T n S and let G 2 Vj
0 \ ½S; T� for

any j 2 J1. Then S � G.
Case 1: i 2 G. From the definition of submodularity applied to the

sets G� i and Sþ i

zðG� iÞ þ zðSþ iÞP zðG [ Sþ iÞ þ zðSÞ )
zðG� iÞ � zðG [ Sþ iÞP zðSÞ � zðSþ iÞP 0)
zðG� iÞP zðG [ Sþ iÞ ¼ zðGÞ ) ðG is a local maximumÞ
zðG� iÞ ¼ zðGÞ:G 2 Vj

0 ) ðby Lemma 6Þ
G� i 2 Vj

0 ) G� i 2 Vj
0 \ ½S; T � i� ) Vj

0 \ ½S; T � i�–;:

Case 2: i R G.

i R G) G 2 Vj
0 \ ½S; T � i� ) Vj

0 \ ½S; T � i�–;: �

Theorem 10a states that if zðSþ iÞ � zðSÞ 6 0 for some i 2 T n S,
then by preserving the interval ½S; T � i� we preserve at least one
strict local maximum from each STC, and hence we preserve at
least one global maximum from each STC containing a global max-
imum. Therefore, in this case it is possible to exclude exactly the
whole interval ½Sþ i; T� of ½S; T� from consideration when searching
for a global maximum of the submodular function z on ½S; T�#
½;;N�. For example, see Fig. 8, if zð;Þ � zð; þ 1ÞP 0, then the inter-
val [{1},{1,2,3,4}] can be excluded, i.e., the interval ½;; f2;3;4g�will
be preserved (FPSR). If zðf1;2;3;4gÞ � zðf1;2;3;4g � 1ÞP 0, then
the interval ½;; f2;3;4g� can be excluded, i.e., the interval
[{1},{1,2,3,4}] will be preserved (SPSR).

If the prime rules are not applicable it will be useful to discard
less than a half subinterval of the current interval ½S; T�# ½;;N�. In
the following section, we further relax most of the theoretical
results presented in the previous sections of this paper with the

purpose to show the correctness of all selection rules and their
revisions (preservation rules) based only on the definitions of sub-
modularity and the maximum value z�½S; T� of the function z on the
interval ½S; T�# ½;;N�.

4. Preservation rules: Revision and a simple justification

In the following theorem, we give an important interpretation
of the submodularity property which is based on two pairs of sub-
modular function values [26]. For this purpose we introduce an
upper (respectively, lower) partition of the current interval ½S; T� by
an inner vertex Q : S � Q � T into two parts ½Q ; T� and
½S; T� n ½Q ; T� (respectively, ½S;Q � and ½S; T� n ½S;Q �). In terms of the
maximum values of the function z defined on each of two parts
of the above mentioned partitions a special case of submodularity
can be read as either z�ð½S; T� n ½Q ; T�Þ þ zðQÞP zðSÞ þ z�½Q ; T� or
z�ð½S; T� n ½S;Q �Þ þ zðQÞP z�½S;Q � þ zðTÞ.

Here, the both maximal values of a submodular function and
their arguments (vertices) involved in each of the above indicated
inequalities are unknown. In other words, Theorem 11 establishes a
relationship of the difference between the unknown optimal val-
ues of z on the two parts of the partition, for example,
ð½S; T� n ½Q ; T�Þ and ½Q ; T� of ½S; T� and the corresponding difference
zðSÞ � zðQÞ (see the FSR in Theorem 9); a symmetrical result is ob-
tained for the SSR.

Theorem 11. Let z be a submodular function on the interval
½S; T�# ½;;N�. Then for any Q such that S � Q � T the following
assertions hold.

(a) z�ð½S; T� n ½Q ; T�Þ � z�½Q ; T�P zðSÞ � zðQÞ.
(b) z�ð½S; T� n ½S;Q �Þ � z�½S;Q �P zðTÞ � zðQÞ.

Proof. We prove only case (a) because the proof of case (b) is sim-
ilar. Let z�½Q ; T� ¼ zðQ [ JÞ with J # T n Q . Define I ¼ S [ J. Then
I 2 ½S; T� n ½Q ; T� since Q n S 6 # I. We have that z�ð½S; T�n
½Q ; T�Þ � zðSÞP zðIÞ � zðSÞ ¼ zðS [ JÞ � zðSÞ. From the submodularity
of z we have zðS [ JÞ � zðSÞP zðQ [ JÞ � zðQÞ. Therefore, z�ð½S; T�n
½Q ; T�Þ � zðSÞP z�½Q ; T� � zðQÞ. h

Theorem 11 is a reformulation of Cherenin’s Theorem 3 in terms
of global maxima compared to local maxima analyzed in Cherenin–
Khachaturov’s Theorems 3, 5, 7–9, Corollary 4, and Lemma 6. The-
orem 11 stating that the difference of values of a submodular func-
tion on any pair of embedded subsets is a lower bound for the
difference between the optimal values of z on the two parts of
the partition defined by this pair of embedded subsets. The theo-
rem can be used to decide either in which part of the partition
ð½S; T� n ½Q ; T�Þ and ½Q ; T� of ½S; T� a global maximum of z is located,
or to partition further the set of ð½S; T� n ½Q ; T�Þ such that each its
subset will contain at least one global maximum (Corollary 18).

We may represent the partition of interval ½S; T� from Theorem
11 by means of its proper subintervals as follows:

ðaÞ upper partition ½S; T� n ½Q ; T� ¼
[

i2QnS
½S; T � i�

and

ðbÞ lower partition ½S; T� n ½S;Q � ¼
[

i2TnQ
½Sþ i; T�:

Examples of upper and lower partitions in Figs. 9 and 10 are shown.
A disadvantage of representations (a) and (b) is a non-empty

overlapping of each pairwise distinct intervals involved in these
representations. As easy to see in Figs. 11 and 12 we can avoid such
an overlapping by representing the remaining parts ð½S; T� n ½Q ; T�ÞFig. 8. Example of prime selection rules.
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and ð½S; T� n ½S;Q �Þ with a sequence of ‘‘parallel” non-overlapping
intervals. For example, the difference ½;; f1;2;3;4g� n ½f1;2;3g;
f1;2;3;4g� ¼ ½f1;2g; f1;2;4g� [ ½f1g; f1;3;4g� [ ½;; f2;3;4g� (see
Figs. 9 and 12), and the difference ½;; f1;2;3;4g� n ½;; f1;2g� ¼
½f3g; f1;2;3g� [ ½f4g; f1;2;3;4g� (see Figs. 10 and 11).

The sequence of non-overlapping intervals can be created by
the following iterative procedure. We will use the value
d ¼ dimð½U;W�Þ of the dimension of an interval ½U;W � interpreted
as the corresponding subspace of the Boolean space f0;1gn which
is another representation of the interval ½;;N�.

If we have discarded the k-dimensional subinterval ½Q ; T� in the
upper partition of the interval ½S; T�, then the first non-overlapping
interval ½U1;W1� is the k-dimensional subinterval of the ðkþ 1Þ-
dimensional interval ½U1; T� ¼ ½Q ; T� [ ½U1;W1�. In other words, the
first non-overlapping interval ½U1;W1� is the k-dimensional com-
plement to the ðkþ 1Þ-dimensional interval ½U1; T� such that
½U1;W1� ¼ ½U1; T� n ½Q ; T�. The second non-overlapping interval
½U2;W2� is the ðkþ 1Þ-dimensional subinterval of the ðkþ 2Þ-
dimensional interval ½U2; T� ¼ ½U1; T� [ ½U2;W2�, and ½U2;W2� ¼
½U2; T� n ½U1; T�, etc. Finally, ½Uq;Wq� ¼ ½Uq; T� n ½Uðq�1Þ; T�. The num-
ber q of the non-overlapping intervals in the upper partition is
equal to n� k, where k ¼ dim½Q ; T�. The representation of a lower

partition by the sequence of non-overlapping intervals can be de-
scribed in similar lines. Note that the above indicated representa-
tion of lower (upper) partition by a sequence of non-overlapping
intervals has the minimum number of mutually disjoint intervals.

For example (see Fig. 12), the complement interval to
[{1,2,3}, {1,2,3,4}] is [{1,2}, {1,2,4}] since ½f1;2g; f1;2;4g�[
½f1;2;3g; f1;2;3;4g� ¼ ½f1;2g; f1;2;3;4g�, and the complement to
[{1,2}, {1,2,3,4}] is [{1},{1,3,4}]. Finally, the complement
to [{1},{1,2,3,4}] is ½;; f2;3;4g�.

If, in Theorem 11, we replace Q by Sþ k in part (a), and Q by
T � k in part (b), we obtain the following reformulation of the
prime rules stated in Theorem 10.

Corollary 12. Let z be a submodular function on the interval
½S; T�# ½;;N� and let k 2 T n S. Then the following assertions hold.

(a) z�½S; T � k� � z�½Sþ k; T�P zðSÞ � zðSþ kÞ.
(b) z�½Sþ k; T� � z�½S; T � k�P zðTÞ � zðT � kÞ.

By adding the condition zðSÞ � zðSþ kÞP 0 to part (a) and the
condition zðTÞ � zðT � kÞP 0 to part (b) of Corollary 12 we obtain
another form (see Corollary 13) of two prime rules from Theorem

Fig. 10. A representation of the lower partition by Q ¼ f1;2g for the interval
½S; T� ¼ ½;; f1;2;3;4g� with T n Q ¼ f3;4g.

Fig. 11. The non-overlapping representation of the lower partition by parallel
intervals ½f3g; f1;2;3g� and ½f4g; f1;2;3;4g�.

Fig. 9. A representation of the upper partition of the interval ½S; T� ¼ ½;; f1;2;3;4g�
with Q n S ¼ f1;2;3g.

Fig. 12. The nonoverlapping representation of the upper partition by the parallel
intervals ½f1;2g; f1;2;4g�, ½f1g; f1;3;4g�, and ½;; f2;3;4g�.
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10 for preserving subintervals containing at least one global max-
imum of z on ½S; T�.

Corollary 13. Let z be a submodular function on the interval
½S; T�# ½;;N� and k 2 T n S. Then the following assertions hold.

(a) First Preservation (FP) Rule. If zðSÞP zðSþ kÞ, then z�½S; T� ¼
z�½S; T � k�P z�½Sþ k; T�.

(b) Second Preservation (SP) Rule. If zðTÞP zðT � kÞ, then z�½S; T� ¼
z�½Sþ k; T�P z�½S; T � k�:

Proof. (a) From Corollary 12a we have z�½S; T � k� � z�½Sþ k; T�P
zðSÞ � zðSþ kÞ. By assumption zðSÞ � zðSþ kÞP 0. Hence, z�½S; T� ¼
z�½S; T � k�P z�½Sþ k; T�. (b) The proof is similar. h

From the calculation point of view these rules are the same as in
Theorem 9 but Theorem 10 is more powerful than Corollary 13. In
Theorem 10, we preserve at least one strict local maximum from
each STC, and hence one global maximum from each STC that con-
tains global maxima. Corollary 13 only states that we preserve at
least one global maximum. However, we can use Corollary 13 for
constructing some extension of the preservation rules.

For e P 0, we may consider the problem of finding an approxi-
mate solution J 2 ½S; T� such that z�½S; T� 6 zðJÞ þ e; J is called an
e�maximum of z on [S; T]. The following corollary presents an
extension of the rules from Corollary 13 which is appropriate to
the problem of e-maximization.

Corollary 14. Let z be a submodular function on the interval
½S; T�# ½;;N�, and k 2 T n S. Then the following assertions hold.

(a) First h-Preservation(h-FP) Rule. If zðSÞ � zðSþ kÞ ¼ h < 0, then
z�½S; T� � z�½S; T � k� 6 �h, which means that ½S; T � k� contains
a jhj-maximum of ½S; T�.

(b) Secondg-Preservation (g-SP) Rule. If zðTÞ � zðT � kÞ ¼ g < 0,
then z�½S; T� � z�½Sþ k; T� 6 �g, which means that ½Sþ k; T�
contains a jgj-maximum of ½S; T�.

Proof. The proof of part (a) is as follows:

Case 1. If z�½S; T� ¼ z�½S; T � k� then z�½S; T � k� � z�½S; T � k� 6 �h or
z�½S; T� � z�½S; T � k� 6 �h.

Case 2. If z�½S; T� ¼ z�½Sþ k; T�, then from Corollary 12a follows that
z�½S; T � k� � z�½Sþ k; T�P h or z�½S; T � k� � z�½S; T�P h.
Hence z�½S; T� � z�½S; T � k� 6 �h. The proof of (b) is
similar. h

5. The preliminary preservation algorithm (PPA)

By means of Corollary 13 it is often possible to exclude a large part
of ½;;N� from consideration when determining a global maximum of
z on ½;;N�. The so called Preliminary Preservation Algorithm (PPA) [25]
determines the smallest subinterval ½S; T� of ½;;N� containing a global
maximum of z, by using the preservation rules of Corollary 13.

We call the PPA the dichotomy algorithm because in every suc-
cessful step it halves the current domain of a submodular function.

Let ½S; T� be an interval. For each i 2 T n S, define dþðS; T; iÞ ¼
zðTÞ � zðT � iÞ and d�ðS; T; iÞ ¼ zðSÞ � zðSþ iÞ; moreover, define
dþmaxðS; TÞ ¼maxfdþðS; T; iÞji 2 T n Sg, rþðS; TÞ ¼minfrjdþðS; T; rÞ ¼
dþmaxðS; TÞg. Similarly, for d�ðS; T; iÞ define d�maxðS; TÞ ¼maxfd�
ðS; T; iÞÞji 2 T n Sg, r�ðS; TÞ ¼minfrjd�ðS; T; rÞ ¼ d�maxðS; TÞg. If no
confusion is likely, we briefly write r�, rþ, d�, dþ instead of
r�ðS; TÞ, rþðS; TÞ, d�maxðS; TÞ, and dþmaxðS; TÞ, respectively. See Figs. 13.

Each time that either S or T are updated during the execution of
the PPA, the conditions of Corollary 13 remain satisfied, and

therefore z�½S; T� ¼ z�½U;W � remains invariant at each step of the
PPA. At the end of the algorithm we have that maxfdþ; d�g < 0,
and therefore zðSÞ < zðSþ iÞ and zðTÞ < zðT � iÞ for each i 2 T n S.
Hence Corollary 13 cannot be applied to further reduce the interval
½S; T� without violating z�½S; T� ¼ z�½U;W�. Note that this remark
shows the correctness of the procedure PP(.).

If we replace in the PPA the rules of Corollary 13 by those of
Corollary 14 we obtain an e-maximization variant of the PPA. In
this case the output of the e-PPA will be a subinterval ½S; T� of
½U;W� such that z�½U;W� � z�½S; T� 6 e with postconditions
zðSÞ þ e < zðSþ iÞ and zðTÞ þ e < zðT � iÞ for each i 2 T n S.

The following theorem can also be found in [25]. It provides an
upper bound for the worst case complexity of the PPA; the com-
plexity function is dependent only on the number of comparisons
of pairs of values for z.

Theorem 15. The time complexity of the PP algorithm procedure is at
most Oðn2Þ.

Note that if the PPA terminates with S ¼ T , then S is a global
maximum of z. Any submodular function z on ½U;W� for which
the PP algorithm returns a global maximum for z is called a PP-
function.

An example of a set of PP-functions P is shown in Fig. 14. Here,
for all vertices without prespecified values of zðIÞ can be assigned
an arbitrary value of zðIÞ such that each corresponding set function
zðIÞ 2 P defined on the whole weighted graph G will be submodular.
For example, if for all vertices without prespecified values of zðIÞ in
Fig. 14 we set zðIÞ ¼ a, then for each constant a : 2 6 a 6 3 the cor-
responding function z is a submodular PP-function. It means that
by applying the Dichotomy algorithm we have found an optimal
solution to the PSMF for all PP-functions defined by a constant a.

Corollary 16 describes in terms of STCs some properties of the
variables S and T during the iterations of the PPA. A representative
Lj

1 2 Vj
0 with j 2 J1 which will be preserved through all iterations

during the execution of the PPA by FPSR (Lj
1 2 Vj

0 \ ½S; T � i�–; with
j 2 J1) or SPSR (Lj

1 2 Vj
0 \ ½Sþ i; T�–; with j 2 J1) is called a PP-repre-

sentative of STC Hj
0 with j 2 J1 (see Theorem 8 and its discussion).

Corollary 16. If z is a submodular PP-function on ½U;W�# ½;;N�, then
at each iteration of the PPA S #\j2J1

Lj
1 and T � [j2J1

Lj
1.

Fig. 13. The Dichotomy (preliminary preservation) algorithm.
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Proof. Theorem 10a says that if zðSþ iÞ � zðSÞ 6 0 for some i 2 T n S,
then by preserving the interval ½S; T � i�we preserve at least one PP-
representative Lj

1 from each STC Hj
0, and hence i R Lj

1. In case of The-
orem 10b we preserve PP-representatives Lj

1 such that i 2 Lj
1 for all

STCs in ½S; T�. Therefore, i 2 S #\j2J1
Lj

1 and T � [j2J1
Lj

1. h

The following theorem gives a property of PP-functions in terms
of STCs.

Theorem 17. If z is a submodular PP-function on ½U;W�# ½;;N�, then
½U;W� contains exactly one STC.

Proof. From \j2J1
Lj

1 � S ¼ T � [j2J1
Lj

1 we obtain \j2J1
Lj

1 ¼ [j2J1
Lj

1 or
Lj

1 ¼ L for all j 2 J1. h

Note that not each submodular function with exactly one STC on
½;;N� is a PP-function. For example, let N ¼ f1;2;3g and consider the
submodular function z defined by zðIÞ ¼ 2 for any I 2 ½;; f1;2;3g�n
ðf;g [ f1;2;3gÞ and zðIÞ ¼ 1 for I 2 ðf;g[ f1;2;3gÞ. The vertex set
of the unique STC defined by this function can be represented by
½f1g; f1;2g� [ ½f1g; f1;3g� [ ½f2g; f1;2g�[ ½f2g; f2;3g�[½f3g; f1;3g�
[½f3g; f2;3g�. The PPA terminates with ½S; T� ¼ ½;; f1;2;3g� and so,
z is not a PP-function.

6. Non-binary branching rules

Usually in BnB type algorithms we use a binary branching rule
by which the original set ½S; T� of feasible solutions will be split
by an element k into two subsets ½Sþ k; T� and ½S; T � k�. Let us con-
sider an interval ½S; T� for which the postconditions of the PPA are
satisfied, i.e., zðSÞ < zðSþ iÞ and zðTÞ < zðT � iÞ for each i 2 T n S.
Thus, the PPA cannot make the interval ½S; T� smaller. By using Cor-
ollary 18 we can sometimes find two subintervals ½S; T � k1� and
½S; T � k2� such that the postconditions of the PPA algorithm for
each of these intervals are violated.

Corollary 18. Let z be a submodular function on the interval ½S; T�#
½;;N� and let k1; k2 2 T n S with k1–k2. Then the following assertions
hold.

(a) maxfz�½S; T � k1�; z�½S; T � k2�g � z�½Sþ k1þ
k2; T�P zðSÞ � zðSþ k1 þ k2Þ.

(b) maxfz�½Sþ k1; T�; z�½Sþ k2; T�g�
z�½S; T n fk1; k2g�P zðTÞ � zðT n fk1; k2gÞ:

Proof. We prove only part (a) because the proof of part (b) is sim-
ilar. Replace Q by Sþ k1 þ k2 in Theorem 11a. Then, z�ð½S; T�n
½Q ; T�Þ � z�½Q ; T� ¼ z�

S
i2QnS½S; T � i�

� �
� z�½Q ; T� ¼ z�ð½S; T � k1�[

½S; T � k2�Þ � z�½Sþ k1 þ k2; T� ¼ maxfz�½S; T � k1�; z�½S; T � k2�g�
z�½Sþ k1 þ k2; T�P zðSÞ � zðQÞ ¼ zðSÞ � zðSþ k1 þ k2Þ. h

In the case that zðSÞ � zðSþ k1 þ k2ÞP 0 we can discard the inter-
val ½Sþ k1 þ k2; T� and continue the search for an optimal solution by
applying the PPA separately to each remaining interval ½S; T � k1�
and ½S; T � k2�, which are obtained by subtracting an element ki from
T. The symmetrical case will be obtained if zðTÞ � zðT n fk1; k2gÞP 0.
Corollary 18 can easily be generalized to the case of m-ary branching
by elements k1; k2; . . . ; km with m 6 jT n Sj.

We conclude this section with a simple plant location exam-
ple borrowed from Boffey [10] which the data are presented in
Table 1.

For solving the SPLP it suffices to solve the problem
minfzðIÞjI 2 ½;;N�g ¼ z�½;;N� ¼ zðGÞ with N ¼ f1;2;3;4g;m ¼ 5 and

zðIÞ ¼
X
i2I

fi þ
Xm

j¼1

min
i2I

cij:

As usual for the SPLP, fi is the fixed cost of opening a plant at loca-
tion i, cij is the cost of satisfying the demand of customer j by plant i,
and zðIÞ is a supermodular function. Note that if in the definition of a
submodular function we change the sign ‘‘P” to the opposite sign
‘‘6” then we obtain the definition of a supermodular function. For
sake of completeness, let us show that zðIÞ of the SPLP is
supermodular.

Lemma 19. The objective zðIÞ of SPLP is supermodular.

Proof. According to Theorem 1(i) a function is supermodular if

zðAÞ þ zðBÞ 6 zðA [ BÞ þ zðA \ BÞ; 8A;B # N:

We use the following representation of this definition

zðAÞ þ zðBÞ � zðA [ BÞ � zðA \ BÞ 6 0; 8A;B # N:

Substituting

zðIÞ ¼
X
i2I

fi þ
Xm

j¼1

min
i2I

cij

gives

X
i2A

fi þ
Xm

j¼1

min
i2A

cij þ
X
i2B

fi þ
Xm

j¼1

min
i2B

cij �
X

i2A[B

fi �
Xm

j¼1

min
i2A[B

cij

�
X

i2A\B

fi �
Xm

j¼1

min
i2A\B

cij

¼
X
i2A

fi þ
X
i2B

fi �
X

i2A[B

fi �
X

i2A\B

fi

" #
þ
Xm

j¼1

½ðmin
i2A

cij �min
i2A[B

cijÞ

þ ðmin
i2B

cij �min
i2A\B

cijÞ�:

Fig. 14. The idea of the Dichotomy algorithm: zðf1;3gÞ ¼ 4 is the global maximum
for all submodular functions from the subclass of P.

Table 1
The data of the SPLP

Location Delivery cost to site

i fi j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4 j ¼ 5

1 7 7 15 10 7 10
2 3 10 17 4 11 22
3 3 16 7 6 18 14
4 6 11 7 6 12 8
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Note that

X
i2A

fi þ
X
i2B

fi �
X

i2A[B

fi �
X

i2A\B

fi

" #
¼ 0;

hence it is enough to show that for each j ¼ 1; . . . ;m

½ðmin
i2A

cij �min
i2A[B

cijÞ þ ðmin
i2B

cij �min
i2A\B

cijÞ� 6 0:

Let us consider two cases. Case 1: mini2A[Bcij ¼ caj for some a 2 A.
Then mini2Acij ¼mini2A[Bcij and mini2Bcij 6mini2A\Bcij.

Case 2: mini2A[Bcij ¼ cbj for some b 2 B. Then
mini2Bcij ¼ mini2A[Bcij and mini2Acij 6mini2A\Bcij. h

We use this example for illustrating that the supermodular
function defined by data from Table 1 is not a PP-function. Of
course, here we mean the corresponding definition of a PP-function
obtained by replacing the definitions of local, global maxima of a
submodular function by the local, global minima of a supermodu-
lar function. It is easy to check that this supermodular function has
two trivial analogues of STCs: {1,4}, {1,3} and one trivial analogue
of SDC: {2,4} (see Fig. 15).

After the first execution of Step 3 of the PPA, we have that
½S; T� ¼ ½f1g; f1;2;3;4g�, because dþ ¼ zðf1;2;3;4gÞ � zðf2;3;4gÞ ¼
0 and rþ ¼ 1. Together with interval ½f;g; f2;3;4g� the PPA has dis-
carded the trivial SDC {2,4}. After the second execution of Steps 2
and 3 the PPA terminates with interval ½S; T� ¼ ½f1g; f1;2;3;4g�, be-
cause all postconditions of the PPA are satisfied. Hence, this func-
tion is not a PP-function. A global minimum of this SPLP can be
found by application the following analogue of the inequality from
Corollary 18b:

minfz�½Sþ k1; T�; z�½Sþ k2; T�g � z�½S; T n fk1; k2g�
6 zðTÞ � zðT n fk1; k2gÞ:

Let us substitute all possible pairs fk1; k2g into the right-hand side of
this inequality with S ¼ f1g and T ¼ f1;2;3;4g. Then, we have that
only zðf1;2;3;4gÞ � zðf1;2;3;4g � f3;4gÞ ¼ 52� 53 < 0. Hence,
we can discard the interval ½f1g; f1;2;3;4g � f3;4g� and we may
continue to find z�½f1g; f1;2;3;4g� by solving two remaining sub-
problems z�½f1;3g; f1;2;3g� and z�½f1;4g; f1;2;3;4g� defined on
‘‘parallel” intervals ½f1;3g; f1;2;3g� and ½f1;4g; f1;2;3;4g� (with dis-
joint set of feasible solutions) instead of two corresponding subprob-
lems z�½Sþ k1; T� ¼ z�½f1;3g; f1;2;3;4g� and z�½Sþ k2; T� ¼ z�½f1;4g;
f1;2;3;4g� which have the non-empty intersection on ½f1;3;4g;

f1;2;3;4g�. Each of these subproblems can be solved by the corre-
sponding analogue of the PPA.

7. Concluding remarks

We have considered a submodular function z defined on the
Boolean hypercube to which we can apply a classic theorem of
Cherenin saying that z is quasi-concave on any chain that inter-
sects a local maxima component. This result enables a clearer
understanding of the structure of a submodular function in terms
of components of the graph of local maxima. Specifically we may
state that each component of the graph of local maxima is a max-
imal connected set of intervals whose end points are lower and
upper local maxima. Cherenin’s theorem provides a justification
of ‘‘the method of successive calculations”. This method was suc-
cessfully applied to solve problems arising in railway logistics
planning [12,13,40], and for constructing BnB type algorithms
[30,31,19,2,24,25] for solving a number of NP-hard problems.

We have shown that if the Dichotomy algorithm (PPA) termi-
nates with S ¼ T then the given submodular function has exactly
one strict component of local maxima (STC). Hence the number
of subproblems created in a branch without bounds type algo-
rithm, which is based on the Dichotomy algorithm, can be used
as an upper bound for the number of the STCs. In a similar way,
an upper bound for the number of all components (STCs and SDCs)
by using strict selection rules can be calculated. This information
can be used for complexity analysis in terms of the number of local
optima for a specific class of problems arose in practice (computa-
tional experiments).

We next proposed a reformulation of Cherenin’s fundamental
Theorem 3 dealing with local maxima in the form of our Theorem
11 analyzing only global maxima. Theorem 11 provides implicit
enumeration bounds for a recursive implementation of any BnB
procedure incorporating the Dichotomy algorithm. This reformula-
tion is useful in three respects. Firstly we have shown that the ori-
ginal Cherenin’s selection rules essentially are preservation rules
which preserve at least one local maximum from each strict com-
ponent of local maxima. Theorem 11 keeps the form of Cherenin’s
selection rules and explains that these rules are also preservation
rules of at least one global maximum from some strict component
of global maxima. Secondly it is suitable for use in e-optimal proce-
dures which obtain an approximate global maximum within spec-
ified bounds. Thirdly the theorem allows the derivation of
alternatives to the prime selection rules by which we are able to
discard subintervals of smaller cardinality than half original subin-
terval. We show that the remaining part of the current interval can
be represented by a set of subintervals, some of which may include
just one strict component. In other words, we try to prepare the
necessary conditions for the Dichotomy algorithm to terminate
on each subinterval. Moreover, Theorem 11 is based only on the
definition of the maximum value of PMSF for an interval of ½;;N�,
and relaxed Cherenin–Khachaturov’s theory presented in Sections
2 and 3 (which is based on notions of monotonicities on a chain,
local and global maxima, strict and saddle components in the
Hasse diagram).

Corollary 12 can be considered as the basis of our Data Correct-
ing (DC) algorithm presented in Goldengorin [23] and Goldengorin
et al. [25]. It states that if an interval ½S; T� is split into ½S; T � k� and
½Sþ k; T�, then the difference between the submodular function val-
ues zðSÞ and zðSþ kÞ, or between the values of zðTÞ and zðT � kÞ is an
upper bound for the difference of the (unknown!) optimal values on
the two subintervals. This difference is used for ‘correcting’ the cur-
rent data (values of a submodular function z) in the DC algorithm.
Our computational experiments with the Quadratic Cost Partition
Problem presented in [25,27] show that we can substantiallyFig. 15. The SPLP example: illustration of non-binary branching rule.
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reduce the calculation time for data correcting algorithms by recur-
sive application of Theorem 11.

An interesting subject for future research is the investigation of
the computational efficiency of m-ary branching rules (see Corol-
lary 18) for specific problems which can be reduced to the maximi-
zation of submodular functions.
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