VIII Международная отраслевая научно-техническая конференция
"ТЕХНОЛОГИИ ИНФОРМАЦИОННОГО ОБЩЕСТВА"

20-21 февраля 2014 г.

ТЕЗИСЫ
НАУЧНО-ТЕХНИЧЕСКИХ СЕКЦИЙ

Москва
2014
20-21 февраля 2014 г.

Место проведения:
Россия, Москва, ул. Аннамоторная, д. 8а,
Московский технический университет связи и информатики
(ФГБУ ВПО МТУСИ)

Пленарное заседание
20 февраля 2014 г.

Конгресс-центр МТУСИ
(Москва, ул. Аннамоторная, д.8а)

Адрес оргкомитета
Россия, 111024, Москва,
ул. Аннамоторная, 8а, МТУСИ
Тел.: +7 (495) 362-25-25
Информационные сеансы
aub@asd-ntrust.ru

Тел.: +7 (495) 957-77-05,
Информационные сеансы
foodina@ntrust.ru
ОРГКОМИТЕТ КОНФЕРЕНЦИИ

Аджемов А.С. — ректор ФГОБУ ВПО МГУСИ, д.т.н., профессор (председатель)
Духовницкий В.Г. — Руководитель Федерального агентства связи (Россия)
Кайков О.Ж. — Руководитель Международного союза электросвязи (МСЭ) — Зональное отделение для стран СНГ
Мухитдинов Н.Н. — Генеральный директор Исполнительного комитета Регионального содружества в области связи (РСС)
Ивановский Р.Ю. — директор физико-математического института инженеров по электротехнике и электронике (ИИС)
Абдуллин В.С. — профессор ФГОБУ ВПО МГУСИ по научной работе, к.т.н., с.н.с
Алексеев Б.Б. — начальник отдела ИРИС ФГОБУ ВПО МГУСИ, д.т.н., профессор
Орлов В.Г. — начальник отдела ИВД ФГОБУ ВПО МГУСИ, к.т.н.

ОРГАНИЗАТОРЫ КОНФЕРЕНЦИИ

• Московский технический университет связи и информатики (ФГОБУ ВПО МГУСИ МГТУ)
• Федеральное агентство связи (Россия)
• Международный союз электросвязи (МСЭ) — Зональное отделение для стран СНГ
• Региональное содружество в области связи (РСС)
• Институт инженеров по электротехнике и электронике (ИИС)

ПРИ УЧАСТИИ

• Международной академии связи (МАС)
• Международной академии информатизации (МАИ) — отделение "Информатика и связь"
• Инфокоммуникационного Совета
• Ассоциации защиты информации (АЗИ)
СОДЕРЖАНИЕ

ПЛЕНАРНОЕ ЗАСЕДАНИЕ .. 4

НАПРАВЛЕНИЕ 1. СЕТИ И СИСТЕМЫ СВЯЗИ
(сетевые технологии электроснабжения следующего поколения, метрология и сертификация в поддержании радиочастоты, технологии и компоненты оптических транспортных сетей и сетей доступа, начальные сети и системы спутника, проектирование и технологии эксплуатации современных цифровых транспортных систем)

СЕКЦИЯ 1. Сетевые технологии электроснабжения следующего поколения 8

СЕКЦИЯ 2. Направляющие схемы, технологии и компоненты оптических транспортных сетей и сетей доступа, Вопросы эксплуатации, метрология и сертификация 20

СЕКЦИЯ 3. Качество инфокоммуникационных услуг, расчет и оптимизация систем связи 30

НАПРАВЛЕНИЕ 2. РАДИО, ТЕЛЕВИДЕНИЕ И СИСТЕМЫ ПОДВИЖНОЙ СВЯЗИ
(средства электромагнитной и радиоинформационной, системы подвижной связи и радиолокации, системы подвижной связи и телерадиовещания, обеспечение ЭМС, защита окружающей среды и взаимодействие с системами связи и вещания, радиоуправление радиоцентрами, системы передачи данных и обработки радиосигналов, системы спутниковой связи и навигации)

СЕКЦИЯ 4. Цифровое телерадиовещание и аудиовидеоинформатика 36

СЕКЦИЯ 5. Системы мобильної связи и радиоподстилая, спутниковой спутника...
НАПРАВЛЕНИЕ 3. ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ И УСЛУГИ
(информационно-телекоммуникационные технологии и услуги информационного общества, качество информационно-телекоммуникационных услуг, расчет пропускной способности каналов связи, защита информации в защищенных системах связи, математическое моделирование систем и средств связи, информационные технологии на предприятии)

СЕКЦИЯ 8. Информационно-телекоммуникационные технологии и услуги информационного общества и защита информации 73
СЕКЦИЯ 9. Массовые информационно-управляющие сети 87
СЕКЦИЯ 10. Математическое моделирование систем и средств связи 94

НАПРАВЛЕНИЕ 4. ЭКОНОМИКА И УПРАВЛЕНИЕ В СВЯЗИ
(экономика и менеджмент в телекоммуникациях, аналитическая экономика и менеджмент, информационные технологии в экономике и управлении)

СЕКЦИЯ 11. Экономика информационных технологий
Политическая экономика и политология 101
СЕКЦИЯ 12. Экономика и менеджмент в телекоммуникациях 107
СЕКЦИЯ 6
УСТРОЙСТВА ПЕРЕДАЧИ, ПРИЕМА
И ОБРАБОТКИ РАДИОСИГНАЛОВ.
ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ И СВЧ-УСТРОЙСТВА

СОПРЕДСЕДАТЕЛИ:
Н.А. Елышев, д.т.н., профессор
П.А. Песков, д.т.н., профессор

Андреевич Т.М., МНЭМ ИНУ ВШЭ
О возможности одновременного разъема нескольких телевизионных каналов широкополосной мощности ЛВВ

Рассмотрены возможности использования в качестве основного носителя телевизионного сигнала цифровых каналов ЛВВ для организации телевизионных эфирных телевизионных каналов. Показано, что таким каналам могут быть приданы высокие и большой коэффициент устойчивости. Проведено моделирование процессов преобразования многоканальных систем, в том числе телевизионного сигнала. Методика анализа передачи цифрового сигнала в многополосном канале диктует использование специализированных методов анализа. В данной работе используются цифровые методы, которые позволяют выявить тонкую структуру телевизионного сигнала и упростить его модуляцию. Ключевые слова: телевизионный канал, многополосный канал, многочастотность, цифровая модуляция.

Артюхов М.А., МНЭМ ИНУ ВШЭ
Влияние низкочастотной радиации на СВЧ-устройства

Радиочастотные устройства, используемые в гражданских и военных целях, подвержены воздействию низкочастотной радиации, что может привести к снижению их эффективности. В данной работе рассмотрено влияние низкочастотной радиации на СВЧ-устройства. Показано, что при воздействии низкочастотной радиации на СВЧ-устройства происходит снижение их параметров, что может привести к потере работоспособности. Выводы статьи позволяют сделать вывод о необходимости проведения дополнительных исследований в данной области.
Рыков К.С., Tampere University of Technology (TUT), Финляндия
Исследование квантовых систем в антеннах с усилением мощности
Введение. В последние годы разработка антенн с усилением мощности и направленностью становится одним из ключевых направлений в области радиоэлектроники. Одним из таких направлений является использование квантовых систем в антеннах, что позволяет получать высокую эффективность и направленность. В данной работе рассмотрены различные аспекты использования квантовых систем в антеннах, включая их проектирование, изготовление и тестирование.

Савченко И.М., Еролиев А.А., МГЭИ имени В.И. Ленина
Исследование источника питания на основе СВЧ-диода в режиме электронного диода в циклотронном резонаторе
Постановка задачи. В данном исследовании рассмотрен вопрос о возможности использования СВЧ-диода в режиме электронного диода в циклотронном резонаторе. Целью данного исследования является оценка возможности и эффективности данной конфигурации для применения в различных приложениях, включая радиоэлектронику и радиотехнику.

Смирнов А.В., МГУ
Выбор класса работы транзистора для работы в схеме с автоматической регулировкой режима по напряжению
В данной статье рассмотрены различные классы работы транзистора в схемах с автоматической регулировкой режима по напряжению. Анализ проведен на примере работы транзистора в схемах с использованием автоматической регулировки по напряжению, которая позволяет эффективно регулировать режим работы транзистора в зависимости от требований, предъявляемых к схеме.

62