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a b s t r a c t

This paper proposes an axiomatic form for cyclic foam topological field theories, that is,
topological field theories corresponding to string theories where particles are arbitrary
graphs. World surfaces in this case are 2-manifolds with one-dimensional singularities.
I prove that cyclic foam topological field theories are in one-to-one correspondence with
graph-Cardy–Frobenius algebras that are families (A, B?, φ) where A = {As|s ∈ S} are
families of commutative associative Frobenius algebras, B? =

⊕
σ∈Σ Bσ is an associative

algebra of Frobenius type graduated by graphs, and φ = {φsσ : A
s
→ End(Bσ )|s ∈ S, σ ∈

Σ} is a family of special representations. Examples of cyclic foam topological field theories
and graph-Cardy–Frobenius algebras are constructed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Two-dimensional topological field theories were introduced by Segal [1], Atiyah [2] and Witten [3]. An example of
such a theory is the rough topological approach of string theory. It treats particles as one-dimensional objects. A path of
a particle is represented by a world sheet, that is, a two-dimensional space. The rough topological approach assumes that
the probability of a world sheet depends only on the state of the particle at the moments of creation/annihilation and on
the topological type of the world surface. The standard properties of the measure on world lines extend to properties of
correlators of primary fields [4].
The topological field theory is a direct axiomatization of this model. The topological field theory is also a function on

the set of two-dimensional spaces endowed with marked points (points of creation/annihilation of a string) and also with
vectors at the marked points (vectors, describing states of the string). The function depends on the vectors, linearly. The
additive properties of strings measure can be reformulated as properties of correlators with respect to a surgery of surfaces.
The simplest model treats particles as closed contours. Thus its world sheet is a closed surface, that is, a two-dimensional

topological manifold without a boundary. The corresponding topological field theory was constructed in [2,5] for orientable
surfaces and in [6] for arbitrary (orientable and non-orientable) surfaces.
In this case, the values of a topological field theory on spheres with one, two and three marked points determine the

values of the topological field theory on all oriented surfaces. Also, the values of a topological field theory on spheres
with one, two and three marked points are structure constants for some associative, commutative Frobenius algebra A
with a unit. Moreover, this construction gives a one-to-one correspondence between topological field theories on closed
orientable surfaces and associative, commutative Frobenius algebras with a unit [5]. To extend a topological field theory to
non-orientable surfaces one has to add new structures to A, namely, an involution of A and an element U ∈ Awhich defines
the value of the topological field theory on a projective sphere with a marked point [6].
If particles are closed contours and segments, then sheet surfaces are surfaces without a boundary or with a boundary

consisting of closed contours. If, in addition, the surfaces are orientable, that leads to open–closed topological field
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Fig. 1.

theory, which gives rise to a pair of Frobenius algebras, connected by a special homomorphism φ [7,8]. The first algebra
A corresponds to closed surfaces. The second algebra B, which in general is non-commutative, corresponds to disks with
marked points at the boundary. The one-to-one correspondence between open–closed topological field theories and the
families (A, B, φ)was proved in [6] and later, independently, in [9,10].
The topological field theory for orientable and non-orientable surfaces with a boundary was constructed in [6]. We call

it Klein topological field theory. Klein topological field theories are in one-to-one correspondence with Cardy–Frobenius
algebras, which are the tuples (A, B, φ)with equipments [6].
In the present paper I construct cyclic foam topological field theories that correspond to particles that are arbitrary

graphs (for a physical motivation see [11], and also [12] and references therein). In this case the world sheets are CW-
complexes that glued from finitely many surfaces (‘‘patches’’) by segments of the boundaries. The glued boundaries of
surfaces form a ‘‘seamed graph’’ which is the singular part of the complex. Complexes of this type are called ‘‘foam’’
or ‘‘seamed surfaces’’. They appear also in A-models [13] and Landau–Ginzburg models [14]. Foams are used also in a
description of link invariants [15–20].
In this paper I consider a special class of foams which I call cyclic foams. They satisfy the following conditions: (1)

glued boundary contours of patches have compatible orientation; (2) different boundary contours of a patch are included to
different connected components of the seamed graph. I assume also that any patch has a ‘‘color’’ from a set S and that the
closures of two patches have no intersections if they have the same color.
We startwith thedefinition of cyclic foam topological field theories on cyclic foamswhere all patches are disks (Section 2).

In Section 3 we define ‘‘graph-Frobenius algebras’’ and we prove that topological field theories from Section 2 are in one-to-
one correspondence with graph-Frobenius algebras. A graph-Frobenius algebra is presented as a sum of finite dimensional
vector spaces B? =

⊕
σ∈Σ Bσ whereΣ is the set of oriented colored graphs.

In Section 4 we define topological field theories for arbitrary cyclic foams. Later (Section 5) we prove that cyclic foam
topological field theories are in one-to-one correspondence with families (A, B?, φ), where A = {As|s ∈ S} is a family of
commutative associative Frobenius algebras with units and φ = {φsσ : A

s
→ End(Bσ )|s ∈ S, σ ∈ Σ} is a special family of

representations in Bσ .
In Section 6 of the present paper we construct examples of cyclic foam topological field theories and corresponding

graph-Cardy–Frobenius algebras. These examples extend to cyclic foams the Klein topological field theories for Hurwitz
numbers from [21,6,22–25].

2. Film topological field theories

2.1. Film surfaces

In this paper a graph is a compact simplicial complex that consists of simplexes of dimension 1 (edges) and dimension 0
(vertices). An edge is either a segment or a loop depending on the topological type of its closure. A graph is said to be regular
if all of its edges are segments.
A compact CW-complex that consists of oriented cells of dimension 2 (disks), cells of dimension 1 (edges) and cells of

dimension 0 (vertices) is said to be regular if its edges form a regular graph. Thus the regular CW-complexΩ is defined by a
set (Ω̌,∆, ϕ), where Ω̌ = Ω̌(Ω) is a set of closed oriented disks,∆ = ∆(Ω) is a regular graph and ϕ : ∂Ω̌ → ∆ is a gluing
map, that is, a homeomorphism on any connected component of ∂Ω and ϕ(∂Ω̌) = ∆ (Fig. 1).
Recall that cyclic order on a set X with n elements is an arrangement of X as on a clock face, for an n-hour clock. A

cyclic order on X generates the cyclic order on any subset X ′ ⊂ X that we call induced by order on X . We say that a split of
X = X1∪X2 is compatiblewith the cyclic order on X if there exist indexings of elementsX1 = {x1, . . . , xm},X2 = {xm+1, . . . , xn}
that generate the cyclic order on X .
Denote byΩb the set of vertices of a regular CW-complexΩ . The orientation of a disk ω ∈ Ω̌(Ω) generates the standard

cyclic order on the set of vertices ωb = ω ∩ Ωb. We say that Ω is an almost cyclic complex if the vertices of any connected
component ofΩ are allotted in cyclic order inducing the standard cyclic order on vertices ωb for all ω ∈ Ω̌(Ω).
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Fig. 2.

A connected regular graph γ ⊂ Ω on a connected almost cyclic complexΩ is called a graph-cut if:

• the restriction of γ to any disk ω ∈ Ω̌ either is empty or forms one of the edges of γ ;
• γ divides Ω into two connected components that split the vertices of Ω into two non-empty groups, compatible with
the cyclic order onΩ (Fig. 2).

An almost cyclic complexΩ is called a cyclic complex if for any division of vertices ofΩ compatible with the cyclic order
there exists a graph-cut that realizes it. A small neighborhood of a vertex q of a CW-complex is a cone over a regular vertex
graph σq, with an orientation of edges generated by the orientation of the disks outside the neighborhood. It is obvious that
vertex graphs of cyclic complexes are connected.
Fix a set S of colors. A graph (resp., CW-complex) is called colored if a color s(l) ∈ S is assigned to each of its edges (resp.,

disks) l and all the colors are pairwise different for any connected component. A colored cyclic complex is called a film surface.
The vertex graph σq of the vertices q of a film surface is a colored graph, where colors of edges are generated by the colors
of the disks.

2.2. Topological field theory

Below we assume that all vector spaces are defined over a field K ⊃ Q. Let {Xm|m ∈ M} be a finite set of n = |M|
vector spaces Xm over the field of complex numbers C. The symmetric group Sn on {1, . . . , n} induces an action on the sum
of the vector spaces

(
⊕σ Xσ(1) ⊗ · · · ⊗ Xσ(n)

)
where σ runs over the bijections {1, . . . , n} → M; an element s ∈ Sn takes

Xσ(1)⊗· · ·⊗Xσ(n) to Xσ(s(1))⊗· · ·⊗Xσ(s(n)). Denote by⊗m∈M Xm the subspace of all invariants of this action. The vector space
⊗m∈M Xm is canonically isomorphic to the tensor product of all Xm in any fixed order; the isomorphism is the projection of
⊗m∈M Xm to the summand that is equal to the tensor product of Xm in that order.
Two regular oriented colored graphs are said to be isomorphic if there exists a homeomorphism that maps one to the

other preserving the colors and the orientations. Denote by Σ = Σ(S) the set of all isomorphism classes of connected
oriented colored graphs. The inversions of the orientations generate the involution ∗ : Σ → Σ . Denote this by σ 7→ σ ∗.
Consider a family of finite dimensional vector spaces {Bσ |σ ∈ Σ} and a family of tensors {K⊗σ ∈ Bσ ⊗ Bσ∗ |σ ∈ Σ}.

Using these data, we define now a functorV from the category of film surfaces to the category of vector spaces. This functor
assigns the vector space VΩ = (⊗q∈Ωb Bq) to any film surfaceΩ . Here Bq is the copy of Bσq that is a vector space with a fixed
isomorphism Bq → Bσq .
We are going to describe all morphisms of the monoidal category S of film surfaces and morphisms of the category of

vector spaces that correspond to it.
(1) Isomorphism. Let φ : Ω → Ω ′ be a homeomorphism of film surfaces, preserving the cyclic orders, orientations of

disks and colors. Define V(φ) = φ∗ : VΩ → VΩ ′ as the linear operator generated by the bijections φ|Ωb : Ωb → Ω ′b.
(2) Cut. LetΩ be a connected film surface and γ ⊂ Ω be a graph-cut. The graph γ is represented by two graphs γ+ and

γ− on the closureΩ \ γ ofΩ \γ . Contract these graphs to points q+ = q+[γ ] and q− = q−[γ ], respectively. The contraction
produces a film surfaceΩ ′ = Ω[γ ]. Its verticesΩ ′ = Ω[γ ] are the vertices ofΩ and the points q+, q−. The cyclic order, the
orientation and the coloring ofΩ induce an orientation and a coloring ofΩ ′. Thus we can assume thatΩ ′ is a film surface
and VΩ ′ = VΩ ⊗ Bq+ ⊗ Bq− . The functor takes the morphism V(η)(x) = η∗(x) = x ⊗ K⊗σ , where σ = σq+ = σ

∗
q− , to the

morphism η : Ω → Ω ′ (Fig. 3).
(3) The tensor product in S defined by the disjoint union of surfacesΩ ′ ⊗ Ω ′′ → Ω ′

∐
Ω ′′ induces the tensor product

of vector spaces θ∗ : VΩ ′ ⊗ VΩ ′′ → VΩ ′tΩ ′′ .
The functorial properties of V can be easily verified.
Fix a tuple of vector spaces and vectors {Bσ , K⊗σ ∈ Bσ ⊗ Bσ∗ |σ ∈ Σ}, defining the functor V . A family of linear forms

F = {8Ω : VΩ → K} defined for all film surfacesΩ ∈ S is called a film topological field theory if it satisfies the following
axioms:
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1◦ Topological invariance.

8Ω ′(φ∗(x)) = 8Ω(x)

for any isomorphism φ : Ω → Ω ′ of film surfaces.
2◦ Non-degeneracy. Let Ω be a film surface with only two vertices q1, q2. Then σq2 = σ ∗ if σq1 = σ . Denote by (., .)σ

the bilinear form (., .)σ : Bσ × Bσ∗ → K, where (x′, x′′)σ = 8Ω(x′q1 ⊗ x
′′
q2). Axiom 2

◦ asserts that the forms (., .)σ are
non-degenerate for all σ ∈ Σ .
3◦ Cut invariance.

8Ω ′(η∗(x)) = 8Ω(x)

for any cut morphism η : Ω → Ω ′ of film surfaces.
4◦ Multiplicativity.

8Ω(θ∗(x′ ⊗ x′)) = 8Ω ′(x′)8Ω ′′(x′′)

forΩ = Ω ′
∐
Ω ′′, x′ ∈ VΩ ′ , x′′ ∈ VΩ ′′ .

Note that a topological field theory defines the tensors {K⊗σ ∈ Bσ ⊗ Bσ∗ |σ ∈ Σ}, since it is not difficult to prove the
following:

Lemma 2.1. Let {8Ω} be a film topological field theory. Then (K⊗σ , x1 ⊗ x2)σ = (x1, x2)σ , for all x1 ∈ Bσ , x2 ∈ Bσ∗ .

3. Graph-Frobenius algebras

3.1. Definitions

We say that a connected film surface Ω is a compatible surface for colored graphs σ1, σ2, . . . , σn if these graphs are
vertex graphs of Ω and the numeration the graphs σi generates the cyclic order of vertices of the film surface Ω . Denote
byΩ(σ1, σ2, . . . , σn) the set of all isomorphism classes of compatible surfaces for σ1, σ2, . . . , σn. ThenΩ(σ1, σ2, . . . , σn) is
either empty or consists of a single element.
Let Ω(σ1, σ2, σ3, σ4) 6= ∅. Then there exist unique classes of graph-cuts σ(1,2|3,4), σ(4,1|2,3) ∈ Σ such that Ω(σ1, σ2,

σ(1,2|3,4)) 6= ∅, Ω(σ(3,4|1,2), σ3, σ4) 6= ∅, Ω(σ4, σ1, σ(4,1|2,3)) 6= ∅, Ω(σ(4,1|2,3), σ2, σ3) 6= ∅ and σ(3,4|1,2) = σ ∗(1,2|3,4),
σ(2,3|4,1) = σ

∗

(4,1|2,3).
Consider a tuple of finite dimensional vector spaces {Bσ |σ ∈ Σ}. Its direct sum B? =

⊕
σ∈Σ Bσ is called a colored graph-

graded vector space.
A colored graph-graded vector spacewith a bilinear form (., .) : B?×B? → K and a 3-linear form (., ., .) : B?×B?×B? →

K is called a graph-Frobenius algebra if

• (Bσ1 , Bσ2) = 0 for σ1 6= σ
∗

2 ;
• the form (., .) is non-degenerate;
• (Bσ1 , Bσ2 , Bσ3) = 0 forΩ(σ1, σ2, σ3) = ∅;

•
∑
i,j

(
x1, x2, b

(1,2|3,4)
i

)
F ij(1,2|3,4)

(
b(3,4|1,2)j , x3, x4

)
=
∑
i,j

(
x4, x1, b

(4,1|2,3)
i

)
F ij(4,1|2,3)

(
b(2,3|4,1)j , x2, x3

)
.

Here xk ∈ Bσk , {b
(s,t|k,r)
i } is a basis of B(s,t|k,r) and F

ij
(s,t|k,r) is the inverse matrix for

(
b(s,t|k,r)i , b(k,r|s,t)j

)
.

We will consider B∗ as an algebra with the multiplication (x1x2, x3) = (x1, x2, x3), for xk ∈ Bσk . The axiom
∑
i,j(x1, x2,

b(1,2|3,4)i )F ij(1,2|3,4)(b
(3,4|1,2)
j , x3, x4) =

∑
i,j(x4, x1, b

(4,1|2,3)
i )F ij(4,1|2,3)(b

(2,3|4,1)
j , x2, x3) is equivalent to associativity for the alge-

bra B∗. Moreover it is a Frobenius algebra in the sense of [26] if its dimension is finite.
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3.2. One-to-one correspondence

Theorem 3.1. Let F = {8Ω : VΩ → K} be a film topological field theory on a tuple of finite dimensional vector spaces
{Bσ |σ ∈ Σ}. Then the multilinear forms

• (x′, x′′) = 8Ω(σ1,σ2)(x
′
q1 ⊗ x

′′
q2), where x

′
∈ Bσ1 , x

′′
∈ Bσ2

• (x′, x′′, x′′′) = 8Ω(σ1,σ2,σ3)(x
′
q1 ⊗ x

′′
q2 ⊗ x

′′′
q3), where x

′
∈ Bσ1 , x

′′
∈ Bσ2 , x

′′′
∈ Bσ3

generate a structure of graph-Frobenius algebra on B? =
⊕

σ∈Σ Bσ .

Proof. Only the last axiom is not obvious. Let us consider a film surface Ω ∈ Ω(σ1, σ2, σ3, σ4), and a graph-cut between
the pairs of vertices σ1, σ2 and σ3, σ4. Then the cut-invariant axiom and Lemma 2.1 give

∑
i,j(x1, x2, b

(1,2|3,4)
i )F ij(1,2|3,4)

(b(3,4|1,2)j , x3, x4) = 8Ω(x1, x2, x3, x4). Similarly,
∑
i,j(x4, x1, b

(4,1|2,3)
i )F ij(4,1|2,3)(b

(2,3|4,1)
j , x2, x3) = 8Ω(x1, x2, x3, x4). �

Theorem 3.2. Let B? =
⊕

σ∈Σ Bσ be a graph-Frobenius algebra with multilinear forms (., .) and (., ., .). Then it generates a film
topological field theory on {Bσ |σ ∈ Σ} by means of the following construction. Fix a basis {bσi } of any vector space Bσ , σ ∈ Σ .
Consider the matrix F ijσ that is the inverse matrix for F

σ
ij = (b

σ
i , b

σ∗

j ). Define the linear functionals on connected film surfaces by

• 8Ω(σ1,σ2...,σn)

(
x1q1 ⊗ x

2
q2 ⊗ · · · ⊗ x

n
qn

)
=

∑
ς1,ς2,...,ςn−3∈Σ

(
x1, x2, bς1i1

)
Fς1i1j1

(
b
ς∗1
j1
, x3q3 , b

ς2
i2

)
Fς2i2j2

(
b
ς∗2
j2
, x4q4 , b

ς3
i3

)
. . . . . .

Fςn−4in−4jn−4

(
b
ς∗n−4
jn−4

, xn−2qn−2 , b
ςn−3
in−3

)
Fςn−3in−3jn−3

(
b
ς∗n−3
jn−3

, xn−1qn−1 , x
n
qn

)
,

where xiqi ∈ Bσi .
Define the linear functionals on non-connected film surfaces by the multiplicativity axiom.

Proof. The topological invariance follows from the invariance under cyclic renumbering of the vertices ofΩ . The invariance
under the renumbering qi 7→ qj, where j ≡ i+1(mod n), follows from the last axiom for the 3-linear form. The cut invariance
follows directly from the definition of8 if we renumber the vertices marking the cut dividing the vertices q1, q2, . . . qk and
qk+1, qk+2, . . . qn. �

These two theorems determine the one-to-one correspondence between film topological field theories and isomorphic
classes of graph-Frobenius algebras.

4. Cyclic foam topological field theories

4.1. Cyclic foams

Cyclic foams.Ω is defined by a 4-tuple (Ω̌,
−→
∂Ω,∆, ϕ), where

• Ω̌ = Ω̌(Ω) is a compact 2-manifold with a boundary ∂Ω̌ that consists of pairwise non-intersecting circles; moreover,
some of these circles are oriented;
•
−→
∂Ω ⊂ ∂Ω̌ is the subset of all oriented circles; the rest of the circles are called free circles;
• ∆ = ∆(Ω) is a regular graph;
• ϕ :

−→
∂Ω → ∆ is a gluing map, that is, a homeomorphism on any circle and ϕ(

−→
∂Ω) = ∆.

Here:

• the cyclic foam Ω has a cyclic order; this means that the vertices of any connected component of ∆ have cyclic order
that agrees with the orientation of ϕ(

−→
∂Ω);

• the cyclic foamΩ is colored; this means that a color s(ω) ∈ S corresponds to each connected component of ω ∈ Ω̌ and
the colors s(ω) are pairwise different for any connected component ofΩ;
• for any connected componentω ∈ Ω̌ different connected components of ∂ω∩

−→
∂Ω aremappedbyϕ to different connected

components of∆;
• consider a tuple of disks Ω̃ with ∂Ω̃ =

−→
∂Ω with colors and orientation generated by the colors and orientation of

−→
∂Ω;

then the cluing map ϕ generates a film surface Ω̇;
• a finite set ofmarked points is fixed onΩ:

(a) marked points from Ω̌ \ ∂Ω̌ are said to be interior and form a set Ωa; a point a ∈ Ωa is equipped with a local
orientation and the color s(a) = s(ω) for a ∈ ω ∈ Ω̌;
(b) the remainingmarked points form a setΩb of vertices ofΩ; they are all the vertices of∆ and themarked points on

the free circles; a vertex graph σq for the vertex q ∈ ∆ is defined as the vertex graph for q ∈ Ω̇; we assume that each free
circle contains a vertex; the graph of this vertex q is a segment with an orientation (the local orientation of the marked
point) and the color s(q) = s(ω) for q ∈ ω ∈ Ω̌ .
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Fig. 4.

Thus the family of cyclic foams contains the family of film surfaces defined in Section 2 and the family ofmarked compact
2-manifolds with a boundary considered in [6] (Fig. 4).
Cuts of cyclic foam do not contain marked points. We assume three kinds of cuts:

• a contour-cut, that is a simple closed contour γ ∈ (Ω̌ \ ∂Ω̌);
• a segment-cut, that connects without self-intersections segment γ ∈ Ω̌ with ends on free contours, without other in-
tersections with ∂Ω̌;
• a regular graph γ ∈ Ω , that generates a graph-cut on Ω̇ .

Denote by Is ∈ Σ the isomorphism class of oriented segments of color s. Then I∗s = Is. Consider families of finite dimen-
sional vector spaces {As|s ∈ S} and {Bσ |σ ∈ Σ}. Fix families of tensors {K⊗s ∈ As ⊗ As|s ∈ S} and {K

⊗
σ ∈ Bσ ⊗ Bσ∗ |σ ∈ Σ}.

Fix families of elements {1As ,Us ∈ As|s ∈ S} and {1BIs ∈ BIs |s ∈ S}. Fix families of involutions {∗s : As → As|s ∈ S} and
{∗Is : BIs → BIs |s ∈ S}.
Define a functorV from the category of cyclic foams to the category of vector spaces. This functor extends the functor on

film surfaces from Section 2, and the functor on marked compact 2-manifolds with a boundary considered in [6].
The functor V associates the vector space VΩ = (⊗p∈Ωa Asp) ⊗ (⊗q∈Ωb Bq) with any cyclic foamΩ . Here Ap is a copy of

As(p), and Bq is a copy of Bσq . We are going to describe all morphisms of a monoidal category of cyclic foams and morphisms
of the category of cyclic foams that correspond to it.
(1) Isomorphism. Let φ : Ω → Ω ′ be a homeomorphism of cyclic foams preserving colors, orientations and other

structures. Define V(φ) = φ∗ : VΩ → VΩ ′ as a linear operator generated by the bijections φ|Ωa : Ωb → Ω ′a and φ|Ωb :
Ωb → Ω ′b.
(2) Cut. LetΩ be a connected film surface and γ ⊂ Ω be a cut.
(a) Let γ ⊂ ω ∈ Ω̌ be a non-co-orientable contour-cut. It is represented by a simple co-orientable contour γ ′ on the

closureΩ \ γ ofΩ \ γ . Contracting γ ′ to a point p′ with arbitrary local orientation gives the cyclic foamΩ ′, where VΩ ′ =
VΩ ⊗ As(ω). We associate the morphism V(η)(x) = η∗(x) = x⊗ Us(ω) with the morphism η : Ω → Ω ′

(b) Let γ ⊂ ω ∈ Ω̌ be a co-orientable contour-cut. It is represented by simple contours γ+ and γ− on the closureΩ \ γ
of Ω \ γ . Contracting γ+ and γ− gives points p+ = and p−. We assume that their local orientations are not generated by
an orientation of γ . Thus we have a cyclic foam Ω ′ and VΩ ′ = VΩ ⊗ As(ω) ⊗ As(ω). We associate the morphism V(η)(x)
= η∗(x) = x⊗ K⊗s(ω) with the morphism η : Ω → Ω ′.
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(c) If γ ⊂ ω ∈ Ω̌ is a segment-cut, then we define the result of the cutting by γ and the value of the functor on it by
analogy with case (b), changing Ks to KIs .
(d) If γ ⊂ ω ∈ Ω̌ is a graph-cut, thenwe define the result of the cutting by γ and the value of the functor on it by analogy

with Section 2.
(3) Addition of a marked point.
(a) Let us add an unmarked point p ∈ Ω̌ \∂Ω̌ with a local orientation to the setΩa. This operation generates amorphism

ξ : Ω → Ω ′, where VΩ ′ = VΩ ⊗ As(ω) and p ∈ ω ∈ Ω̌ . Associate the morphism V(ξ)(x) = ξ∗(x) = x⊗ 1s(ω) with it.

(b) Similarly, let us add an unmarked point q ∈
−→
∂Ω \ ∂Ω̌ with a local orientation to the setΩb. This operation generates

a morphism ξ : Ω → Ω ′, where VΩ ′ = VΩ ⊗ BIs(ω) and p ∈ ω ∈ Ω̌ . Associate the morphism V(ξ)(x) = ξ∗(x) = x⊗ 1BIs(ω)
with it.
(4) Change of local orientations of marked points.
Letψ : Ω → Ω ′ be a morphism of the change of a local orientation of a marked point p ∈ Ωa or q ∈ Ωb. It generates an

involution ∗s(p) : Ap → Ap or ∗Is(q) : Bq → Bq and thus the homomorphism V(φ) = ψ∗ : VΩ → VΩ ′ .
(5) The tensor product in S defined by the disjoint union of surfacesΩ ′ ⊗ Ω ′′ → Ω ′

∐
Ω ′′ induces the tensor product

of vector spaces θ∗ : VΩ ′ ⊗ VΩ ′′ → VΩ ′tΩ ′′ .
The functorial properties of V can be easily verified.

4.2. Topological field theory

Fix families of vector spaces {As|s ∈ S} and {Bσ |σ ∈ Σ} and families of tensors, elements and involutions defining the
functor V .
A family of linear forms F = {8Ω : VΩ → K}, defined for all cyclic foamsΩ ∈ S, is called a cyclic foam topological field

theory if it satisfies the following axioms:
1◦ Topological invariance.

8Ω ′(φ∗(x)) = 8Ω(x)

for any isomorphism φ : Ω → Ω ′ of cyclic foams.
2◦ Non-degeneracy.
LetΩ (resp.,Ω∗) be a sphere with exactly two marked locally oriented points, where their orientations are induced by

an orientation of the sphere (resp., there is no orientation that induces the orientations of the points). Define the bilinear
forms (., .)s, (., .)∗s : As × As → K by (x′, x′′)s = 8Ω(x′p1 ⊗ x

′′
p2) and (x

′, x′′)∗s = 8
∗
Ω(x
′
p1 ⊗ x

′′
p2).

Define also the bilinear forms (., .)Is , (., .)
∗

Is : BIs ×BIs → K. Their definitions are similar to the definitions of (., .)s, (., .)∗s
after a change of the sphere to a disk and the interior marked points to vertices. Axiom 2◦ says that the forms (., .)s, (., .)∗s ,
(., .)Is , (., .)

∗

Is and the forms (., .)σ from Section 2.2 are non-degenerate.
Let Ω be a film surface with only two vertices q1, q2. Then σq2 = σ ∗ if σq1 = σ . Denote by (., .)σ the bilinear form

(., .)σ : Bσ × Bσ∗ → K, where (x′, x′′)σ = 8Ω(x′q1 ⊗ x
′′
q2). Axiom 2

◦ asserts that the forms (., .)σ are non-degenerate for all
σ ∈ Σ .
3◦ Cut invariance.

8Ω ′(η∗(x)) = 8Ω(x)

for any cut morphism η : Ω → Ω ′ of film surfaces.
4◦ Invariance under addition of a marked point.

8Ω ′(ξ∗(x)) = 8Ω(x)

for any morphism of addition of a marked point ξ : Ω → Ω ′ of the film surfaces.
5◦ Invariance under a change of local orientations.

8Ω ′(ψ∗(x)) = 8Ω(x)

for any morphism of change of the local orientation of a marked point ψ : Ω → Ω ′.
6◦ Multiplicativity.

8Ω(θ
∗(x′ ⊗ x′)) = 8Ω ′(x′)8Ω ′′(x′′)

forΩ = Ω ′ ∪Ω ′′, x′ ∈ VΩ ′ , x′′ ∈ VΩ ′′ and the morphism of the tensor product θ : Ω ′ ×Ω ′′ → Ω .
Note that a topological field theory defines the families of tensors, elements and involutions, defining the functorV . This

follows from Lemma 2.1 and [[23], Lemma 3.1].
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5. Graph-Cardy–Frobenius algebras

5.1. Definitions

A 3-tuple (D, lD, ∗D) is called an equipped Frobenius algebra (see [25]) if D is an associative Frobenius algebra with unit
1D, lD : D→ K is a linear functional such that the bilinear form (x1, x2)D = lD(x1x2) is non-degenerate and ∗D : D→ D is
an involution such that lD(x∗) = lD(x) and (x1x2)∗ = x∗2x

∗

1 (here and below x
∗
= ∗(x)).

Consider a basis {di|i = 1, . . . , n} ⊂ D, the matrix FDij = (di, dj)D and the matrix F
ij
D inverse to F

D
ij . The elements KD =

F ijDdidj and K
∗

D = F
ij
Ddid

∗

j are called the Casimir and the twisted Casimir elements, respectively. They do not depend on the
choice of the basis.
We say that a pair of equipped Frobenius algebras ((A, lA, ∗A), (B, lB, ∗B)), a homomorphism φ : A→ B and an element

U ∈ A form a Cardy–Frobenius algebra if

• A is commutative and the image φ(A) belongs to the center of B;
• φ(x∗) = (φ(x))∗;
• (φ∗(x), φ∗(y))A = trWx,y, where x, y ∈ B, (a, φ∗(b)) = (φ(a), b)B,W ∈ End(B) andW (z) = xzy;
• U2 = K ∗A and φ(U) = KB.

It is proved in [6] that Cardy–Frobenius algebras are in one-to-one correspondence with Klein topological field theories
that are topological field theories on two-dimensional manifolds with a boundary. The paper [6] also contains a complete
classification of semi-simple Cardy–Frobenius algebras.
Define now a graph-Cardy–Frobenius algebra as a family that consists of:

• a family of Cardy–Frobenius algebras {(As, lsA, ∗
s
A), (B

s, lsB, ∗
s
B), φ

s,U s|s ∈ S};
• a graph-Frobenius algebra B? with a bilinear form (., .)B : B?×B? → K, and a 3-linear form (., ., .)B : B?×B?×B? → K;
• a family of homomorphisms {φsσ : A

s
→ End(Bσ )|s ∈ S, σ ∈ Σ}, where φsσ = 0 if s is not the color of an edge of σ .

Here:

• Bs coincides with BIs ⊂ B? and φ
s
Is(a)(b) = φ

s(a)b for a ∈ As, b ∈ Bs;
• (φsσ1(a)(x1), x2)B = (x1, φ

s
σ2
(a)(x2))B, where a ∈ As, xi ∈ Bσi ;

• (φsσ1(a)(x1), x2, x3)B = (x1, φ
s
σ2
(a)(x2), x3)B = (x1, x2, φsσ3(a)(x3))B, where a ∈ A

s, xi ∈ Bσi .

5.2. One-to-one correspondence

Let F = {8Ω : VΩ → K} be a cyclic foam topological field theory. Then its restriction to two-dimensional manifolds
with a boundary forms a Klein topological field theoryFK and, therefore, a family of Cardy–Frobenius algebras {((As, lsA, ∗As),
(Bs, lsB, ∗Bs), φ

s,U s)|s ∈ S}F . The restriction to film surfaces forms the film topological field theory FN and, therefore, a
graph-Frobenius algebra (B?, (., .)B, (., ., .)B)F .
Let us define the homomorphisms {φsσ : A

s
→ End(Bσ )|s ∈ S, σ ∈ Σ}F . Let Ω be a cyclic foam with two vertices q1,

q2 and one interior marked point p. Put σ = σq1 . The functional 8Ω generates the homomorphism φsσ of As to the space E
of linear functionals on Bσ ⊗ Bσ∗ . The bilinear form (., .)σ generates the isomorphism between Bσ∗ and the space of linear
functionals on Bσ . Thus we can identify E with Hom(Bσ , Bσ ).

Theorem 5.1. Let F = {8Ω : VΩ → K} be a cyclic foam topological field theory on families of vector spaces {As|s ∈ S},
{Bσ |σ ∈ Σ}. Then the Cardy–Frobenius algebras {((As, lsA, ∗As), (B

s, lsB, ∗Bs), φ
s,U s)|s ∈ S}F , the graph-Frobenius algebra

(B?, (., .)B, (., ., .)B)F and the homomorphisms {φsσ : A
s
→ End(Bσ )|s ∈ S, σ ∈ Σ}F form a graph-Cardy–Frobenius algebra.

Proof. The properties Bs = BIs , and φsIs(a)(b) = φs(a)b follow from the corresponding axiom. Let us prove that (φsσ1(a)
(x1), x2)B = (x1, φsσ2(a)(x2))B. Consider a cyclic foamΩ that is the film surfaceΩ(σ1, σ2)with an interior marked point p of
color s. Then the cut axiom gives (φsσ1(a)(x1), x2)B = 8Ω(a⊗ x1 ⊗ x2) and (x1, φsσ2(a)(x2))B = 8Ω(a⊗ x1 ⊗ x2). The proof
of the identities (φsσ1(a)(x1), x2, x3)B = (x1, φ

s
σ2
(a)(x2), x3)B = (x1, x2, φsσ3(a)(x3))B is similar. �

Theorem 5.2. The correspondence from Theorem 5.1 generates a one-to-one correspondence between cyclic foam topological
field theories and isomorphism classes of graph-Cardy–Frobenius algebras.

Proof. Let ({((As, lsA, ∗As), (B
s, lsB, ∗Bs), φ

s,U s)|s ∈ S}, (B?, (., .)B, (., ., .)B), {φsσ : A
s
→ End(Bσ )|s ∈ S, σ ∈ Σ}) be a graph-

Cardy–Frobenius algebra. Let us construct a cyclic foam topological field theory F = {8Ω : VΩ → K} that generates it.
According to the cut axiom and the axiom φsIs(a)(b) = φ

s(a)b, the theory F is defined by its restrictions to:

• two-dimensional manifolds with a boundary and an arbitrary number of marked points;
• film surfaces without interior marked points;
• film surfaces with two vertices and one interior marked point.
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According to [6], topological field theories on two-dimensional manifolds with a boundary and an arbitrary number
of marked points are in one-to-one correspondence with isomorphism classes of Cardy–Frobenius algebras {((As, lsA, ∗As),
(Bs, lsB, ∗Bs), φ

s,U s)|s ∈ S}. According to 3.2, topological field theories on film surfaces without interior marked points are
in one-to-one correspondence with isomorphism classes of graph-Frobenius algebras (B?, (., .)B, (., ., .)B). Define the value
of F on surfacesΩ with two vertices and one interior marked point by8Ω(a⊗ x1⊗ x2) = (φsσ (a)(x1), x2)B. The properties
φsIs(a)(b) = φ

s(a)b, (φsσ1(x1), x2)B = (x1, φ
s
σ2
(x2))B and (φsσ1(a)(x1), x2, x3)B = (x1, φ

s
σ2
(a)(x2), x3)B = (x1, x2, φsσ3(a)(x3))B

guarantee that the values of F satisfy the axiom of cyclic foam topological field theory. �

Note. The category of cyclic foams contains the subcategory of oriented foamsΩ = (Ω̌,
−→
∂Ω,∆, ϕ), where the orientation

of
−→
∂Ω generates orientations of edges of ∆. Our constructions make it possible to define the topological field theories for

oriented foams and to prove that these topological field theories are in one-to-one correspondencewith the analog of graph-
Cardy–Frobenius algebraswhere arbitrary colored graphs change to bipartite colored graphs. The category of oriented foams
contains a subcategory ofstrong oriented foams that consists of oriented foams where the orientation of ∂Ω̌ is generated by
an orientation of Ω̌ .

6. Examples of cyclic foam topological field theories

In this section we construct an example of a cyclic foam topological field theory. Its restriction to two-dimensional
manifolds with a boundary is the Klein topological field theory of regular covering, constructed in [25].
For any color s ∈ S, let us consider an action of a group Gs on a set Xs. Consider the vector space As which is the center of

the group algebra of Gs. Associate XS̃ = ×s∈S Xs with any finite subset S̃ ⊂ S. The actions of Gs on Xs generate the action of
G =

⊕
s∈S Gs on XS̃ .

Let L = L(σ̃ ) be the set of edges of a colored graph σ̃ . Let s(l) be the color of l ∈ L. Denote by σ̃ X the set of all maps
ψ : L→ Xs(L) × Xs(L), where ψ(l) ∈ Xs(l) × Xs(l). Define the action of G on σ̃ X by g(ψ(l)) = g(x′)× g(x′′) for ψ(l) = x′ × x′′.
Let σ̃ XG be the set of orbits of this action.
A pair (σ̃ , ψG), where σ̃ is a colored graph and ψG ∈ σ̃ XG , is called an equipped colored graph, or a colored graph with

equipment ψG. An isomorphism ϕ : σ̃1 → σ̃2 of colored graphs is called an isomorphism of the equipped colored graphs
(σ̃i, ψ

i
G) if it takes ψ

2
G to ψ

1
G . Denote by |Aut(σ , ψG)| the order of the group {g ∈ G|gψ = ψ}, where ψ ∈ ψG ∈ σ̃ XG and

σ̃ ∈ σ ∈ Σ .
Consider the set Eσ̃ of equipments of a colored graph σ̃ . Isomorphisms of colored graphs generate the canonical bijections

between the corresponding sets Eσ̃ . Thus we can associate the set Eσ with any σ ∈ Σ . Let Bσ be a vector space generated
by Eσ . Denote by ∗ : Bσ → Bσ∗ the involution generated by changing the orientation of σ and changing the components of
Xs × Xs.
Construct a cyclic foam topological field theory with families of vector spaces {As|s ∈ S}, {Bσ |σ ∈ Σ} by its restriction to

• two-dimensional manifolds with a boundary and an arbitrary number of marked points;
• film surfaces without interior marked points;
• film surfaces with two vertices and one interior marked point.

We start with the description of F on film surfaces. Consider an additional structure on film surfaces. Let V = V (Ω) be
the set of edges of a film surfaceΩ . Denote by S(v) the set of the colors of the disks that are incident to v ∈ V . Consider the
setΩX of maps ψ : V →

⋃
v∈V XS(v), where ψ(v) ∈ XS(v). Denote byΩ

X the set of orbits for the action of G onΩX .
A pair (Ω, ψG), whereΩ is a colored graph andψG ∈ ΩXG , is called an equipped film surface or film surfacewith equipment

ψG. An isomorphism ϕ : Ω1 → Ω2 of film surfaces is called an equivalence of the equipment film surfaces (Ωi, ψ iG) if it takes
ψ2G to ψ

1
G . Denote by |Aut(Ω, ψG)| the order of the group {g ∈ G|gψ = ψ}, where ψ ∈ ψG ∈ Ω

XG . An equipment ψ of the
film surfaceΩ generates an equipment ψσ for the graph σ of any vertex ofΩ . We assume that ψσ (l) = (x1s(l), x

2
s(l)), where

l ∈ L(σ ) is an oriented edge from v1 ∈ V (Ω) to v2 ∈ V (Ω) and ψ(vi) = ×s∈S(vi) x
i
s.

We say that a connected equipped film surface (Ω, ψG) is a compatible surface for equipped colored graphs ς1, ς2, . . . , ςn
if these graphs are the vertex graphs of Ω and the numeration the graphs σi generates the cyclic order of vertices of film
surfaceΩ . Denote by9(ς1, ς2, . . . , ςn) the set of all isomorphism classes of compatible surfaces for ς1, ς2, . . . , ςn.
Define a set of linear functionalsFN = {8Ω : VΩ → K} on connected equipped film surfaces by8Ω(ς1⊗ς2⊗· · ·⊗ςn) =∑
9∈9(ς1,ς2,...,ςn)

1
|Aut(9)| .

Lemma 6.1. The set FN = {8Ω : VΩ → K} generates a film topological field theory.

Proof. It follows from our definition that (ς1, ς∗2 )σ =
δς1,ς

∗
2

|Aut(ς1)|
for ς1, ς2 ∈ Eσ , and thus Kσ =

∑
ς∈Eσ |Aut(ς)|ς ⊗ ς

∗. Let us
prove the cut invariance.
Consider an equipment film surface 9 ∈ 9(ς1, ς2, . . . , ςn) = (Ω(σ1, σ2, . . . , σn), ψG). Let η be the cut morphism

produced by graph-cut γ ⊂ Ω(σ1, σ2, . . . , σn). It associates the pair of film surfaces Ω(σ1, σ2, . . . , σk, σ ′), Ω(σ ′′, σk+1,
σ2, . . . , σn) with the film surface Ω(σ1, σ2, . . . , σn). Any equipment of Ω(σ1, σ2, . . . , σn) generates equipments of
Ω(σ1, σ2, . . . , σk, σ

′),Ω(σ ′′, σk+1, σ2, . . . , σn). Thuswe obtain equipment film surfaces9 ′ and9 ′′ and an equipment of σ ′.
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Fix an equipped colored graph ς ′ = (σ ′, ψ ′G) and consider the set of equipped film surfaces 9ς ′(ς1, ς2, . . . , ςn) ⊂
9(ς1, ς2, . . . , ςn) that generate the equipment ψ ′G on σ

′. Then
∑

9∈9ς ′ (ς1,ς2,...,ςn)
1

|Aut(9)| =
|Aut(ς)|

|Aut(9′)||Aut(9′′)| . Summation

over all equipments ψ ′G of σ
′ gives 8Ω(ς1 ⊗ ς2 ⊗ · · · ⊗ ςn) =

∑
9∈9σ (ς1,ς2,...,ςn)

1
|Aut(9)| =

∑
ς∈Eσ

|Aut(ς)|
|Aut(9+)||Aut(9−)|

=

8Ω ′η∗(ς1 ⊗ ς2 ⊗ · · · ⊗ ςn). �

It follows from the previous section that FN is generated and is defined by the graph-Frobenius algebra B∗. This algebra
has the basis E =

⋃
σ∈Σ Eσ and is defined by multilinear forms

• (ς1, ς2)B =
∑

9∈9(ς1,ς2)
1

|Aut(9)| =
δς1,ς

∗
2

|Aut(ς1)|
for ς1, ς2 ∈ E;

• (ς1, ς2, ς3)B =
∑

9∈9(ς1,ς2,ς3)
1

|Aut(9)| for ς1, ς2, ς3 ∈ E.

Define now the action of the group algebra As on Bσ . It is identical if there are no edges of color s between the edges of σ .
Let s(l) = s, ψ ∈ ψG ∈ σ XG , ψ(l) = (x′, x′′) and a = Σg∈Gλgg . Then we assume that φsσ (a)(ψ) = (Σg∈Gλggx

′, x′′) on l and
φsσ (a)(ψ) = ψ on the other edges of σ . The function φ

s
σ (a)(ψ) depends only on its orbit ψG, and thus generates the linear

operator φsσ (a) : Bσ → Bσ .
Define now the system of linear operators FC = {8Ω : VΩ → K} on cyclic foams with two vertices by 8Ω(a1 ⊗ · · · ⊗

ar ⊗ x1 ⊗ x2) = (φs(a
1)

σ (a1) · · ·φs(a
r )

σ (ar)(x1), x2)B.
Define a system of linear operators Fs = {8Ω : VΩ → K} on two-dimensional manifolds with a boundary of color s. We

set it to be the Klein topological field theory of the Gs-regular covering with a trivial stationary subgroup from [25].

Theorem 6.1. There exists a unique cyclic foam topological field theory F with the restrictions FN , FC and Fs.

Proof. It follows from Lemma 6.1 and [25] that the families FN and Fs satisfy the axioms of cyclic foam topological field
theory. By our definitions, the value of FC onΩ is equal to the product of the values Fs on the disks that formΩ . Thus FC
also satisfies the axioms of cyclic foam topological field theory. Moreover, the families FN , FC , and Fs coincide on common
areas of the definition.
To define F on an arbitrary cyclic foam one can use the cut axiom and cut the surface into two-dimensional manifolds

with a boundary, film surfaces without interior marked points and surfaces with two vertices. The result does not depend
on the cut system because any two such systems are different only on two-dimensional manifolds with a boundary, film
surfaces without interior marked points or surfaces with two vertices. �
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