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Abstract We consider the coloring problem for hereditary graph classes, i.e. classes
of simple unlabeled graphs closed under deletion of vertices. For the family of the
hereditary classes of graphs defined by forbidden induced subgraphs with at most
four vertices, there are three classes with an open complexity of the problem. For
the problem and the open three cases, we present approximation polynomial-time
algorithms with performance guarantees.

Keywords Coloring problem · Computational complexity ·
Approximation algorithm · Performance guarantee

1 Introduction

A graph H is called an induced subgraph of G if H is obtained from G by deletion of
vertices. A class of graphs is called hereditary if it is closed under deletion of vertices.
It is well-known that any hereditary (and only hereditary) class X can be defined by
a set of its forbidden induced subgraphs Y . We write X = Free(Y) in this case, and
graphs in X are said to be Y-free.

An independent set in a graph is a subset of its pairwise non-adjacent vertices. The
size of a maximum independent set of a graph G is called the independence number
of G and denoted by α(G). The independent set problem is to verify, for a given graph
G and a natural number k, whether α(G) ≥ k or not. It is a classical NP-complete
problem.
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A coloring of a graph G is a mapping c : V (G) −→ N, such that c(u) �= c(v)

for any adjacent vertices u, v ∈ V (G). This notion can be defined in another way
via partition into independent sets. A coloring of a graph is partitioning the set of its
vertices into independent sets called color classes. The minimum number of colors in
colorings of G is called the chromatic number of G and denoted χ(G). The chromatic
number problem is to verify, for a given graph G and a natural number k, whether
χ(G) ≤ k or not. It is a classical NP-complete problem.

Byχ∗(G)we denote theminimal number of color classes in the colorings of a graph
G having at most two vertices in every color class. Clearly, for any n-vertex graph
G, we have χ∗(G) = n − π(G), where π(H) is the matching number of a graph H ,
i.e. the maximum number of pairwise non-adjacent edges of H . It is well-known that
the matching number of a n-vertex graph can be computed in O(n4) time (Edmonds
1965). Hence, for any n-vertex graph G, χ∗(G) can be computed in the same amount
of time.

The computational complexity of the coloring problem in the hereditary classes of
graphs defined by forbidden induced subgraphs with at most four vertices was stud-
ied in the paper Lozin and Malyshev (2015). For all but three classes in this family,
it was shown either NP-completeness or polynomial-time solvability of the prob-
lem. The three exceptional cases are the classes Free({O4,C4}), Free({K1,3, O4}),
Free({K1,3, O4, K2 + 2K1}). Moreover, it was shown in Lozin and Malyshev
(2015) that the coloring problem for Free({K1,3, O4}) is polynomially equiva-
lent to the same problem for Free({K1,3, O4, K2 + 2K1}). In this paper, we
do not find out the complexity of the problem for the two open cases. We
present approximation polynomial-time algorithms for the problem with some
“asymptotic” performance guarantees. More specific, for a graph G, we present
a polynomial-time algorithm for computing a number p(G), such that χ(G) ≤
p(G) ≤ r · χ(G) + O(1), where r = 3

2 if G is {O4, K3,3}-free and r =
4
3 if G is {K1,3, O4, K2 + 2K1}-free. As Free({O4,C4}) ⊆ Free({K3,3, O4}),
the performance guarantee for {K3,3, O4}-free graphs also holds for {O4,C4}-free
graphs.

2 Notation

We use the standard notation Kn, On,Cn for a complete, an empty graph, a chordless
cycle with n vertices, respectively. A graph Kp,q is a complete bipartite graph with
p vertices in the first part and q in the second. The graph f ork is obtained from a
K1,3 by subdividing an arbitrary its edge. The graph K4 − e is obtained from a K4 by
deleting an arbitrary its edge.

The formula N (x) denotes the neighborhood of a vertex x .
The sum G1 + G2 is the disjoint union of graphs G1 and G2 with non-intersected

sets of vertices. A graph G is the complement of a graph G. A graph kG is the disjoint
union of k copies of G. For a graph G and a subset V ′ ⊆ V (G), G \ V ′ denotes the
subgraph of G obtained by deleting all elements of V ′.
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3 Approximation algorithms

3.1 The case of {O4, K3,3}-free graphs

For a {O4, K3,3}-free graph G, χ∗(G) computed in polynomial time gives an approx-
imation for χ(G) with the performance guarantee almost 3

2 , as the following theorem
shows.

Theorem 1 For any {O4, K3,3}-free graphG,wehaveχ(G) ≤ χ∗(G) ≤ 3
2 ·χ(G)+1.

Proof Let us consider an optimal coloring ofG. Let k1 be the number of its three-vertex
color classes, k2 be the number of its color classes with at most two vertices. SinceG is
O4-free, χ(G) = k1 + k2. As G is K3,3-free, any two of the k1 color classes have two
non-adjacent vertices in distinct classes. Hence, the union of the k1 color classes can
be partitioned into 
 3k1

2 � subsets, each of which induces a O1 or a O2. Therefore, G

has a coloring with 
 3k1
2 � + k2 color classes, each of which has at most two elements.

Hence, χ∗(G) ≤ 
 3k1
2 � + k2 ≤ 3k1

2 + k2 + 1 ≤ 3
2 · (k1 + k2) + 1 = 3

2 · χ(G) + 1.
Clearly, χ∗(G) ≥ χ(G). �


3.2 The case of {O4, K1,3, K2 + 2K1}-free graphs

Let G be a graph. By T (G) we denote the graph, whose vertices are the triangles of
G and two its vertices are adjacent if and only if the corresponding triangles intersect.
Given G, T (G) can be constructed in polynomial time on |V (G)|. Let α∗(G) �
α(T (G)).

Lemma 1 If G is {K4, K4−e, K3+K1}-free, then the independence number of T (G)

can be computed in polynomial time on |V (G)|.
Proof Firstly, we will show that T (G) is f ork + 56K1-free. Any triangle (x, y, z)
of G defines a “3-coloring” of G \ V ′ as follows, where V ′ = {x, y, z}. We use the
term “3-coloring” in a non-classical sense assuming that some adjacent vertices can
have the same color. As G is {K4, K4 − e, K3 + K1}-free, each of the elements of
V (G)\V ′ is adjacent to exactly one element of V ′. All neighbors of an element a ∈ V ′
in V (G) \ V ′ have the same color.

Assume that T (G) contains an induced f ork. Hence, G contains five pair-
wise distinct triangles (x1, x2, x3), (y1, y2, y3), (z1, z2, z3), (x1, y1, u1), (u1, u2, u3),
where z1 = u3 (see the figure below). Additionally, assume that there is a triangle
(a1, a2, a3) of G non-intersecting with each of the five triangles. Let c : V (G) \
{a1, a2, a3} −→ {1, 2, 3} be the “3-coloring” defined above, where c(w) = i for
every w ∈ V (G) \ {a1, a2, a3} adjacent to ai . Since G is {K4, K4 − e}-free, vertices
of each of the five triangles have pairwise distinct colors. Hence, there is an element
of {x2, x3}, an element of {y2, y3}, an element of {z2, z3} having the same color as the
color of u1. Without loss of generality, c(x3) = c(y3) = c(z3) = c(u1) = 3, c(x1) =
c(u2) = c(y2) = c(z2) = 1, c(y1) = c(x2) = c(u3) = 2 (Fig. 1).

We will show that there is an edge (v′, v′′) ∈ E(G), such that v′ and v′′ belong
to some two of the five triangles and c(v′) = c(v′′). Assume that there is no such an
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Fig. 1 The configuration of the
triangles

x2 x1 u1 z1 = u3 z2

x3 y1
u2 z3

y2 y3

edge. As G is {K4, K4 − e, K3 + K1}-free, (x1, z3) ∈ E(G) and (z3, y2) ∈ E(G).
Similarly, (y2, z1) ∈ E(G). We have a contradiction, as y2 is adjacent to two vertices
of the triangle (z1, z2, z3). So, for any triangle of G non-intersecting with each of the
five triangles, there is a triangle of G intersecting with T , whose two vertices belong

to
3⋃

i=1
{xi , yi , zi , ui }. The subgraph of G induced by

3⋃

i=1
{xi , yi , zi , ui } has at most

11·(11−1)
2 = 55 edges.Hence, by the pigeonhole principle, T (G)must be f ork+56K1-

free, otherwise it contains an induced K4 or K4 − e.
Clearly, the equality α(H) = max(α(H \{v}), α(H \N (v))) holds for any graph H

and its vertex v. Hence, the independent set problem for f ork+56K1-free graphs can
be polynomially reduced to the same problem for f ork-free graphs. The independent
set problem for f ork-free graphs can be solved in polynomial time (Alekseev 2004).
Hence, the lemma holds. �


Lemma 2 For every n-vertex {K1,3, O4, K2 + 2K1}-free graph G, the inequalities

0 < χ∗(G) − α∗(G)+1
2 ≤ χ(G) ≤ min(χ∗(G), n − 2α∗(G)) hold.

Proof The inequality χ(G) ≤ χ∗(G) is obvious. Consider a set of α∗(G) vertex-
disjoint triangles of G. There are n − 3α∗(G) vertices of G not belonging to the
triangles in the set. Hence, there is a coloring of G with n − 2α∗(G) color classes,
α∗(G) of them have three vertices and n − 3α∗(G) of them have one element. Hence,
χ(G) ≤ n−2α∗(G). Consider an arbitrary optimal coloring ofG. Every its color class
contains at most three vertices, asG is O4-free. Let k be the number of the color classes
in the coloring having exactly three vertices. As G is K1,3-free, any two of the color
classes with three vertices have two non-adjacent vertices in distinct classes. Hence,
the union of all k color classes with three vertices can be partitioned into 
 3k

2 � subsets,
each of them induces a O2 or a O1. Therefore, there is a coloring of G in at most
χ(G) + 
 3k

2 � − k colors, such that every color class has at most two vertices. Clearly,
χ(G) + 
 3k

2 � − k ≥ χ∗(G), i.e. χ(G) ≥ χ∗(G) + k − 
 3k
2 �. As k − 
 3k

2 � ≥ − k+1
2

and α∗(G) ≥ k, χ(G) ≥ χ∗(G) − α∗(G)+1
2 . The inequality χ∗(G) − α∗(G)+1

2 > 0
is trivial whenever G is the single-vertex graph. As χ∗(G) ≥ n

2 and α∗(G) ≤ n
3 ,

χ∗(G) − α∗(G)+1
2 ≥ 2n

3 −1
2 > 0 whenever n ≥ 2. �


Theorem 2 There is an approximation polynomial-time algorithm for the coloring
problem for {K1,3, O4, K2 + 2K1}-free graphs having the performance guarantee
almost 4

3 .
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Proof Let G be a n-vertex {K1,3, O4, K2 + 2K1}-free graph. The complement of any
{K1,3, O4, K2 +2K1}-free graph is {K4, K4 − e, K3 + K1}-free. By Edmonds (1965)
and Lemma 1, χ∗(G) and α∗(G) can be computed in polynomial time on n. Assume

that α∗(G) ≤ n
4 . Hence, χ∗(G) − α∗(G)+1

2 ≥ χ∗(G) − α∗(G)
2 − 1

2 ≥ 3
4χ

∗(G) − 1
2 ,

as χ∗(G) ≥ n
2 and α∗(G) ≤ n

4 . Therefore, χ
∗(G) approximates χ(G) with an factor

which is asymptotically at most 4
3 , since

χ∗(G)
χ(G)

≤ χ∗(G)

χ∗(G)− α∗(G)+1
2

(by Lemma 2) and

χ∗(G) ≥ χ(G). Assume that α∗(G) > n
4 . Hence, χ∗(G) ≥ n

2 > n − 2α∗(G). By

Lemma 2, 1 ≤ n−2α∗(G)
χ(G)

≤ n−2α∗(G)

χ∗(G)− α∗(G)+1
2

. Clearly, n−2α∗(G)

χ∗(G)− α∗(G)
2

≤ 2 n−2α∗(G)

n−α∗(G)
, as

χ∗(G) ≥ n
2 . Moreover, 2 n−2α∗(G)

n−α∗(G)
is equal to the value of the function f (x) = 21−2x

1−x

at the point x = α∗(G)
n . As f ′(x) = − 2

(1−x)2
, the function f (x) is monotonically

decreasing over the segment [ 14 , 1
3 ]. Hence, its maximum value over the segment is

equal to f ( 14 ) = 4
3 . Therefore, n−2α∗(G) approximates χ(G)with an approximation

ratio, which is asymptotically at most 4
3 . �


4 Concluding remarks

Recall that there are three hereditary classes defined by forbidden induced subgraphs
with atmost four vertices forwhich the computational complexity of the coloring prob-
lem is open. The cases are Free({O4,C4}), Free({K1,3, O4}), Free({K1,3, O4, K2+
2K1}). Theproblemseems tobeNP-complete for Free({K1,3, O4}), Free({K1,3, O4,

K2 + 2K1}) and polynomial-time solvable for Free({O4,C4}). Clarifying its com-
plexity status in the classes is an interesting problem for future research. For all of the
three classes, we presented polynomial-time approximation algorithms with specified
performance guarantees. Designing efficient approximation algorithms with better
performance guarantees for them is also an interesting problem for future research.
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