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Eigenvalue tunneling and decay of quenched random network
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We consider the canonical ensemble of N -vertex Erdős-Rényi (ER) random topological graphs with quenched
vertex degree, and with fugacity μ for each closed triple of bonds. We claim complete defragmentation of large-N
graphs into the collection of [p−1] almost full subgraphs (cliques) above critical fugacity, μc, where p is the
ER bond formation probability. Evolution of the spectral density, ρ(λ), of the adjacency matrix with increasing
μ leads to the formation of a multizonal support for μ > μc. Eigenvalue tunneling from the central zone to the
side one means formation of a new clique in the defragmentation process. The adjacency matrix of the network
ground state has a block-diagonal form, where the number of vertices in blocks fluctuates around the mean value
Np. The spectral density of the whole network in this regime has triangular shape. We interpret the phenomena
from the viewpoint of the conventional random matrix model and speculate about possible physical applications.
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I. INTRODUCTION

Investigation of critical and collective effects in graphs
and networks has become a new rapidly developing inter-
disciplinary area, with diverse applications and a variety of
questions to be asked (see [1] for review). Ensembles of ran-
dom Erdős-Rényi (ER) topological graphs (networks) provide
an efficient laboratory for testing collective phenomena in
statistical physics of complex systems, being also tightly linked
to the conventional random matrix theory. Triadic interactions,
being the simplest interactions beyond the free-field theory,
play a crucial role in the network statistics. Presence of such
interactions is responsible for emergence of phase transitions
in complex distributed systems. The first example of a phase
transition in random networks, known as Strauss clustering
[2], has been treated by the random matrix theory (RMT) in
[3]. It was argued that, when the fugacity, μ, having a sense
of a chemical potential of closed triads of graph edges in the
canonical ensemble, is increasing, the system develops two
phases with essentially different triad concentrations. At large
μ the system falls into the Strauss phase with the single clique
(almost full subgraph) of nodes. The condensation of triads
is a nonperturbative phenomenon identified in [4] with the
first-order phase transition in the framework of the mean-field
cavitylike approach.

Similar critical behavior has been found in [5] for the
vertex-degree-conserved ER graphs. It was demonstrated in
the framework of the mean-field approach that phase transition
occurs here as well. The hysteresis for the dependence
of the triad concentration on the fugacity of triads, μ,
also has been observed in [5]. For bi-color vertex-degree-
conserved networks a phenomenon of a wide plateau formation
in the concentration of black-white bonds as a function
of the fugacity of unicolor bond triples has been found
in [6].

All these models are essentially athermic: in absence of
an external field, the network partition function is a purely
combinatorial object with no interactions and no temperature
dependence; its evolution can be regarded as a Langevin
dynamics in the stochastic quantization framework. The
solution to the corresponding Fokker-Planck equation at the
infinite stochastic time yields the exact ground state of the
model.

Here we provide deeper insight into the phase transition
structure of nondirected vertex-degree-conserved ER random
graphs, with the number of fully connected triads of vertices,
n�, controlled by the chemical potential μ. Numerical simu-
lations possess a number of striking phenomena.

(1) The network splits above some critical value μc into the
maximally possible number of clusters, identified as cliques.

(2) The number of cliques for large graphs is fixed
exclusively by the average vertex degree at the network
preparation, p.

(3) The distribution of the eigenvalues of adjacency ma-
trices (spectral density) above μc has the triangular shape,
usually observed for scale-free networks [7,8]. This behavior
differs significantly from the unconstrained Strauss model,
where above the transition point the single clique is formed.

Qualitatively the formation of the Strauss condensate in
the unconstrained network can be understood as follows.
For μ = 0 the system lives in the largest entropic basin
corresponding to some equilibrium distribution of triads. As μ

is increasing, the triad distribution gets gradually more skewed.
In the limit μ → ∞, the entropic effects become irrelevant,
and the network approaches the state with the largest energy,
μn�. Depending on the shape of the entropy, the function
n�(μ) can be either a smooth function or can undergo an abrupt
jump typical for the first-order phase transition. In contrast,
in the vertex-degree-conserved model, constraints prevent the
complete mixing of links, thus prohibiting the formation of
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a single large clique. The system does its best under specific
“conservation laws” and splits into the maximally possible
number of allowed cliques, which is again the true ground state
for the network with the quenched vertex degree. The same
decay we observe as well for the “regular random networks”
(graphs, having one and the same degree Np in all vertices).

Any topological graph (collection of graphs) can be
encoded by the adjacency matrix, A [9]. In the model with a
quenched vertex degree, isolated eigenvalues of A form, within
the transition region in μ, the second zone in the spectrum
and correspond one by one to clusters in the large network
(see [10–12] for general description). Above the transition
point, μc, the spectral density (SD), ρ(λ), of the adjacency
matrix of each clique (almost fully connected subgraph) is
the same as the spectral density of the sparse matrix, and has
the Lifshitz tails typical for the one-dimensional Anderson
localization, as discussed in [13]. Besides, the spectral density
of the whole network has a trianglelike shape [7,8], typically
seen in scale-free networks. Note, however, that in our system
the set of vertex degrees is quenched at the preparation, having
the Poisson distribution, and cannot be transformed in the
entire graph in the course of redistribution of links.

II. THE MODEL

We consider the ensemble of topological Erdős-Rényi
graphs with quenched vertex degree. Each closed triple of
bonds (the closed triadic motif) is weighted with the fugacity
μ. The partition function of the system can be written as

Z(μ) =
∑

{states}

′
e−μn� (1)

where the prime in Eq. (1) means that the summation runs
over all possible configurations of nodes, under the condition
of fixed degree vi in each vertex i (i = 1, . . . ,N) of the graph.
The initial state of the ER network is prepared by connecting
any randomly taken pair of vertices with the probability p (the
double connections are excluded). When the initial pattern
is prepared, one randomly chooses two arbitrary links, say,
between vertices i and j , (ij ), and between k and m, (km),
and reconnect them, getting new links (ik) and (jm). Such
reconnection conserves the vertex degree [14]. Now, one
applies the standard Metropolis algorithm with the following
rules: (i) if under the reconnection the number of closed triads
is increased, a move is accepted; (ii) if the number of closed
triads is decreased by �n�, or remains unchanged, a move
is accepted with the probability e−μ�n� . Then the Metropolis
algorithm runs repeatedly for a large set of randomly chosen
pairs of links, until it converges. In [5] only the behavior of
〈n�(μ)〉 was considered. Here we turn to a more detailed
study of the constrained network ground state. In [15] it
was proven that such Metropolis algorithm converges to the
Gibbs measure eμN� in the equilibrium ensemble of random
undirected Erdős-Renyi networks with fixed vertex degree.

III. THE RESULTS

We state that, given the bond formation probability, p, in
the initial graph, the evolving network splits into the maximal
number of clusters. The maximal number of clusters is given

FIG. 1. The number of clusters Ncl as a function of the probability
p in the ER graph. The numerical data are obtained by averaging
over 100 randomly generated graphs of 512 vertices. For the chosen
number of nodes p2N > 2, which allows us to neglect the second
term in Eq. (2). Numerical values are fitted by the curve p−0.95; the
behavior in doubly logarithmic scale is shown in the inset.

by

Ncl =
[

N

Np + 1

]
≈

[
1

p
− 1

p2N

]
, (2)

where [. . .] means the integer part and the denominator (Np +
1) defines the minimal size of formed cliques. This expression
leads to the asymptotic ∼ [p−1], being independent on the
particular set of corresponding vertex degrees, {v1, . . . ,vN }
(see Fig. 1). Thus, the system falls into the new phase different
from the Strauss one. Below we confirm this by analyzing the
spectral density of the adjacency matrix.

For any particular quenched network pattern and μ < μc,
the spectral density has the shape typical for ER graphs with
moderate connection probability, p = O(1) < 1, being the
Wigner semicircle with a single isolated eigenvalue apart.
At μc the eigenvalues decouple from the main core and a
collection of isolated eigenvalues forms the second zone.
The number of isolated eigenvalues exactly coincides with
the number of clusters formed above μc. This perfectly fits
the result of [11]. Averaging over an ensemble of graphs
patterns smears the distribution of isolated eigenvalues in
the second zone. Above μc the support of SD in the first
(central) zone shrinks and the second zone becomes dense and
connected—see Fig. 2.

We have investigated SD inside each cluster (C) aiming to
prove that C is almost a full graph (clique). We see from Fig. 3
that the enveloping shape of the SD is drastically changed at
μc, where SDs in the first (main) zone below and above μc are
shown. One sees that as μ is increasing, the enveloping profile
of SD is gradually changing from the semicircle to the triangle,
typical for the scale-free networks [7,8]. However, in our case
the vertex degree is conserved at the network preparation and
can be only redistributed between cliques. The remarkable
point is that the SD evaluated for each particular clique exhibits
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FIG. 2. Spectral density of ensembles of ER graphs for different
μ. The numerical results are obtained for 50 ER graphs of 256 vertices
and p = 0.08.

a hierarchical set of resonance peaks typical for sparse matrices
(see [13] and references therein).

Using duality between the spectrum of sparse and almost
full graphs [16], we see from Fig. 4 that SD in almost the
complete graph fits perfectly the shifted SD of the sparse
matrix ensemble, meaning that our identification of clusters
with cliques and separated eigenvalues is true. The striking
difference between the SD of the single clique and the whole
network indicates that the triangle-shape SD of the whole
networks occurs due to the interclique connections.

It is instructive to compare typical adjacency matrices in the
ground state of ER networks with and without constraints at
the same value of p. The corresponding matrices are shown in
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FIG. 3. The spectral density in the ensembles of ER graphs
for different values μ. The numerical results are obtained for the
ensembles of 50 random ER graphs of 256 vertices and the probability
p = 0.08.

(a)

(b)

FIG. 4. The duality between spectral densities of ensembles of
almost fully connected graphs and their sparse complements: (a)
spectral density of almost full graphs and (b) spectral density of the
dual system of sparse graphs.

Fig. 5, where different phases of the ground states are clearly
seen. The ground state of the quenched network involves [p−1]
almost complete graphs corresponding to blocks (cliques) of
the adjacency matrix A with fluctuating sizes Ni (

∑
i Ni = N )

and the mean value in the clique, Ncl = 〈Ni〉 = N/[p−1] ≈
Np. In contrast, the ground state in the Strauss phase consists
of a single complete graph corresponding to only one block
of some size, k, in A. To visualize the kinetics, we enumerate
vertices at the preparation condition in arbitrary order and
run the Metropolis stochastic dynamics. When the system
is equilibrated and the cliques are formed, we re-enumerate
vertices sequentially according to their belongings to cliques.
Then we restore corresponding dynamic pathways back to the
initial configuration.

FIG. 5. Few typical samples of intermediate stages of network
evolution: (a) networks with fixed vertex degree and (b) networks
with nonfixed vertex degree.
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In the sparse regime the percolation transition in the ER
network occurs at pperc = N−1. Due to the duality, one could
expect the dual percolation phase transition in the clique at
p̄perc = 1 − N−1

cl . The dual percolation corresponds to the
creation of dislocations in the cliques extended through the
whole droplet. The right tail of the spectral density in the first
zone behaves as

ρ(λ)
∣∣
λ→λmax

∼ e−c/
√

λmax−λ (3)

(c is some positive constant) and is, as shown in [13] for sparse
ensembles, a manifestation of a Lifshitz tail for the Andersen
localization.

IV. COMPARISON WITH THE RANDOM
MATRIX MODELS

Found behavior has many parallels in RMT. The effective
potential of the Strauss model, proposed in [3], V (M) =
aTrM2 + μTrM3, involves the quadratic term, which fixes the
number of links, and the cubic term, encountering triangles
[TrM3 = n� and a = log(p−1 − 1) for the unconstrained ER
network]. The Strauss model exhibits the phase transition at
the critical value of the chemical potential for triangles, being
the “network counterpart” of the phase transition known in the
matrix model description of the pure two-dimensional (2D)
quantum gravity [17]. However, if the measure in the ensemble
of adjacency matrices is unknown, the fermionic statistics of
the eigenvalues coming from the Vandermonde factors in the
standard matrix ensembles cannot be applied.

There is a Riemann surface associated with any matrix
integral with the spectral density defined on the curve

y2 = [V ′(x)]2 + f (x) (4)

where y and x are complex variables, and the function y(x)
is related to the matrix model resolvent. For the potential
V = ax2 + μx3 the Riemann surface for the conventional
matrix model has genus 1. The coefficients of polynomial
f (x) are fixed by the filling fractions, Ni , around extrema
of the potential V (x) [V ′

eff(ai) = 0]. The distribution of
eigenvalues between two zones in the RMT corresponds to the
symmetry breaking U (N ) → U (N − k) × U (k), where k is
the number of eigenvalues in the second zone, and is essentially
nonperturbative. The eigenvalue tunneling between two zones
is fairly general phenomena in the matrix model framework
(see [18] for the review) meaning the formation of a kind of
extended coherent object, like a baby Universe. In our case,
such tunneling leads to the dense droplets (cliques) formation,
being the peculiar example of the global symmetry breaking.

The seed for a second zone always exists for the cubic
potential, however in the unconstrained case all, but one,
eigenvalues belong to the first (central) zone with the Wigner
semicircle distribution. The situation in the constraint-driven
case is different since a fixed number of eigenvalues pass from
the first zone to the second one through the gap. The eigenvalue
tunneling was first discussed in the context of 2D gravity in
[19]. The review of general description of eigenvalue tunneling
in topological strings and the matrix models can be found in
[18]. Depending on the physics described by the matrix model,
it corresponds to the account of FZZT branes in noncritical

strings, baby Universe creation in quantum gravity, or creation
of the D-brane domain wall in supersymmetric gauge theories.

It is convenient to introduce the constraints into the matrix
model via Lagrangian multiplies. They yield the linear term
in the action Tr�X with �ij = {z1δ1j , . . . ,zNδNj } and one
has to integrate over all zi (i = 1..N ). The situation resembles
the symmetry breaking by the Wilson loop observables in the
matrix model framework. In our case the constraints provide
the global symmetry breaking down to the block-diagonal
form seen in Fig. 5. Therefore, qualitatively, the matrix model
framework is consistent with two results of the numerical
simulations: presence of multizonal support for the spectral
density, and the formation of cliques, by the mechanism of
interzone eigenvalue tunneling.

The transition from the Wigner semicircle to the trianglelike
SD is known in the matrix model description of the Dirac
operator spectrum in QCD [20,21] and admits deep physics
behind. If we scan QCD at finite volume at energies, smaller
then the Thouless energy, ET , which divides the “ergodic”
and “diffusive” regions in generic systems, the Dirac operator
considered as the Hamiltonian in the 4+1 space time enjoys the
Wigner semicircle spectral density. In this regime the spectrum
is evaluated via the instanton liquid chiral matrix model and
is saturated by the constant modes. On the other hand, at
E � ET , the nonconstant modes are important and the spectral
density at small λ reads as

ρ(λ) = ρ(0) − c|λ| (5)

where c > 0 is defined by the exchange of two soft Goldstone
modes between two coherent states with scalar quantum num-
bers [22]. Such soft modes occur due to the spontaneous chiral
symmetry breaking. This perfectly fits with our observation
that the trianglelike SD in the multiclique phase appears due
to the links connecting different cliques. The global symmetry
is broken in our model above the phase transition as well, hence
we could expect the presence of soft modes which would play
the role of diffusons and could provide the required interclique
interaction.

Nowadays the large-N matrix model is interpreted as the
theory of an open string tachyon on the N unstable D0 or ZZ
branes [23,24]. The final state of the evolution of the unstable
system is the coherent state of closed string modes or stable
D-branes. We have a clear counterpart of this phenomena in
our network as a formation of highly coherent states—the
set of cliques, the number of which is fixed from the very
beginning. The system on the stable FZZT branes, identified
as the Kontsevich-like matrix model [25,26], seems to be
relevant for the description of the multiclique phase of our
model.

V. CONCLUSION

In this paper we described a decay of the constrained
random topological network into new phase above some
critical value of the chemical potential for closed triads of
bonds. The decay has been analyzed via evolution of the
spectral density of the adjacency matrix. The ground state
of the system above the transition point is identified with
the interacting multiclique state. The eigenvalue tunneling
is the key point in our problem. We believe that our model
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sheds some light on the formation of stable D-brane from
unstable ones connected by strings. The imposed constraint is
not exotic, being typical for chemical, biological, and social
networks. The phenomena can be considered as the operational
tool to split the network into the optimal droplets of almost full
subgraphs (cliques) for generic random networks. Varying the
constraints, the required design of the network ground state
can be manufactured.

We conclude by mentioning the possible relation of a
random network having quenched vertex degree with some
known physical models. In the context of quantum gravity
(see [27–29]) the model under consideration is topological and
does not involve the metric structure. It is possible to interpret
clustering as the appearance of an effective metric, as discussed
in [30]. We conjecture that the transition discussed in our work
corresponds to the transition from the topological 〈gμν〉 = 0
phase to the “geometric” phase 〈gμν〉 �= 0 of the network,
where gμν is the metric tensor. The geometric phase could be
related with the polymer phase of 2D quantum gravity. Another

application deals with the budding phenomena (formation of
bubblelike vesicles due to spontaneous curvature) in lipid
membranes [31]. If the membrane is liquid, the material can
be redistributed over the whole tissue and only one vesicle is
typically formed. However, in presence of quenched disorder
in the membrane, the redistribution of the material over the
whole sample is blocked and the formation of multivesicle
phase seems plausible.
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