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INTRODUCTION

The evolution of the atmosphere could be
described by the system of gas dynamics equations
supplemented by nonadiabatic terms, which corre�
spond to turbulent viscosity, solar radiation, phase
transitions, etc. The discontinuities in solutions of the
ideal system (i.e. without additional terms) could be
classified as shock�wave discontinuities and tangencial
discontinuities of the solutions of the quasi�linear sys�
tem of partial differential equations.

Shock waves can be natural or anthropogenic and
they propagate at the speed of sound. Long (on the
order of thousands of kilometers) tangential disconti�
nuities are interpreted as atmospheric fronts.

In the wind field (on the atmospheric front line),
the wind component tangential to this line is discon�
tinuous, whereas the perpendicular wind component
is continuous but has a kink. In the real world, the
atmospheric front clearly visible in one of the fields
might be negligible in the other. All available informa�
tion about meteorological fields must be used for prac�
tical numerical analysis of the front geometry.

This work is dedicated to the diagnostics of atmo�
spheric fronts on the basis of objective analysis of wind,
geopotential, and temperature on a regular three�
dimensional grid in a p coordinate system. Our method
is also applicable to analogous prognostic fields.

In the ideal three�dimensional model [1], the
atmospheric front is a surface in a three�dimensional
space inclined with respect to the sea level. A typical
inclination angle is ~1°.

For the ideal system, it is possible to prove instabil�
ity of tangential discontinuities with respect to small
disturbances [2]. However, for a viscous model taking
into account the vertical stratification of the atmo�
sphere, tangential discontinuities can exist for a finite
time, which is supported by meteorological observa�
tions. When the model includes turbulent viscosity, the
two dimensional surface is replaced by the atmo�
spheric front that is about tens of kilometers wide and
sometimes moves with time. The atmospheric fronts
that are less than one kilometer are very rare.

We shall look for the atmospheric front in the form of
the intersection with one of the following surfaces: the
baric surface p = const, a level in a σ coordinate system,
the Earth, and the real or imaginary sea level. Our initial
data come either from observations (at a discrete set of
stations) or from a regular prognostic grid.

In a three�dimensional objective analysis, it is also
necessary to establish the relation between frontal lines
at adjacent baric levels and to construct an inclined
surface in the three�dimensional space, i.e., the atmo�
spheric front. In this case the surface we are looking for
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may not necessarily be smooth; it may have specific
features, holes, etc.

The figure 1 shows an example of the wind field
that is changing from the South�West one to the
North�West one. At each height, the time of the
change in direction to the opposite one took 1–2 h,
even if the wind velocity component normal to the
front was very small. The temporal vertical geometry of
the changes presented in Fig. 1 is rather complex and,
consequently, it is impossible to assume that the fron�
tal surface is well approximated globally by a moving
inclined plane. On the other hand, the results of mea�
surements at the neighboring levels are rather close to
each other here. Consequently, approximately the
same density of vertical levels is required for an ade�
quate description of the atmospheric front geometry.

The following definitions for the free atmosphere
are proposed in [3]: the baroclinic zone (whose usual
width is 200–800 km), if  > 1°C/100 km, and the
frontal zone (50–200 km), if  > 3°С/100 km. Our
criteria for the atmospheric front are more complex
but give better results.

To describe the front geometry properly, we should
find the definition of the front that suits computational
methods best. In our opinion, the adequacy of the sep�
aration of synoptic air masses by the drawn fronts can
be taken as the optimality criterion. In other words,
the criterion of the front should satisfy the following

T∇

T∇

condition: the difference between the values of corre�
lation function for the meteorological fields in the case
when two points are separated by the front line and are
not separated by the front line should be the largest
possible.

1. ESTIMATING DERIVATIVES 
OF METEOROLOGICAL FIELDS

AND CONSTRUCTING THE FIELDS
OF PREDICTORS OF THE ATMOSPHERIC 

FRONT

In this section of both main meteorological fields
we shall construct a predictor field. This will be a scalar
field, whose larger values correspond to bigger proba�
bility to find the atmospheric somewhere nearby. We
emphasize that the term “predictor” field has no con�
nection to “prediction” here.

1.1. Atmospheric Front and Pressure Field 

It is known (see, for example, [4, 5]) that the atmo�
spheric front manifests itself in the pressure field ps as
“a hidden hollow.” According to the classical
approach, the Laplacian Δps is estimated based on grid
values. At the front line, this parameter takes large val�
ues.

For the hollow, the second derivative is large (com�
pared with second derivatives at points not located on
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Fig. 1. (From [6]). Horizontal wind field (designation by arrows) measured with a profiler during the atmospheric front passage
over the Lindenberg station (Germany) in the variables t (h) and z (m). The long feather on the arrow corresponds to 5 m/s, and
the short one corresponds to 2.5 m/s.
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the front) only in the direction perpendicular to the
front line. The Laplacian is the sum of the second
derivatives of ps in two orthogonal directions, for
example, along and across the front. The second
derivative of ps along the front is bounded, and, if it is
assumed to be statistically independent of the second
derivative in the orthogonal direction, the addition of
this derivative to the hollow predictor will deteriorate

its quality, on average,  times.
To get rid of the second derivative along the front

line, we use a different functional indicator, i.e., the
largest eigenvalue L(x, y) of the Hessian, which for a
plane and a sphere takes the forms

(1)

respectively.
To calculate the function L(x, y), it is necessary to

estimate all second derivatives. We estimate them
using special discrete Fourier transform (see para�
graph 1.4) and compact schemes [7] on the sphere and
on the plane, respectively.

1.2. Discrete Fourier Transform for Functions
on a Two�Dimensional Sphere and Calculation 

of Their Derivatives

Let An be the Euclidean space of functions on a reg�

ular n�polygon. The functions  form an
orthogonal basis in this space. The Fourier transform
of the function f(x) ∈ An is a set of function’s coeffi�

cients f(x) with respect to the basis = :

Similarly, the inverse Fourier transform (proto�

type) is  = :

If f takes only real values, for any number 1 ≤ j < n,
the values of  and  are conjugated to
each other.
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The image of the Fourier transform of the deriva�

tive  at f ∈ An is equal to . Therefore,

(2)

Now we can calculate the derivative with respect to
the longitude of any order from a function discretely
specified on a sphere.

For meteorological problems on the globe, the
Fourier transformation in terms of longitude is natural
and useful. However, as the pole is approached, the
grid step decreases many times; therefore, the closer
one gets to the pole, the larger the number of longitu�
dinal modes must be nullified (because modes with
large numbers are mostly due to errors in discretiza�
tion during the transmission through communication
channels). We did not nullify modes with indices
smaller than m = 2 + mmax(n – 1)sinϕ, where ϕ is the
colatitude, mmax = 1/2 in the temperature gradient cal�
culation, and mmax = 1/4 in other cases. For smoothing
the results, after the differentiation, the jth mode was

additionally multiplied by 

1.3. Calculation of Derivatives with Respect to Longitude 
using the Fourier Transform 

Let us consider a smooth scalar function on a
sphere P(λ, ϕ) and the result of its Fourier transforma�
tion with respect to longitude 
The asymptotics at the pole (i.e., at ϕ → 0) for the jth
mode takes the form (see [8–10]):

(3)

With respect to the pole point, the odd mode
behaves as an odd function; i.e., the function

is smooth at the poles (ϕ = 0 , π) and it can be consid�
ered as a smooth function on a circle  The
even mode is an even function with respect to the pole
points and, consequently, the function

is smooth at the points ϕ = 0, π and it can also be con�
sidered as a smooth function on a circle.

We shall differentiate the function  of latitude
using Fourier transform and formula (2) in particular.
The restriction of the result onto the interval , will
give us the derivative  at 
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However, if we replace the scalar function by the
one of the components of the vector field, the asymp�
totics for the jth mode in the pole vicinity will be [10]:

(4)

This makes it possible to use the same algorithm of
the vector field components for calculating derivatives
as was used for scalar functions by interchanging the
cases of even and odd modes. The boundary condi�
tions and asymptotics for vector fields in the pole
vicinity are considered more comprehensively in [8].

1.4. More Efficient Method for Calculating
the Derivative with Respect to Latitude 

Now, we present a method for calculating the
derivative with respect to latitude, which does not
require the calculation of the forward and inverse Fou�
rier transforms in terms of longitude and, consequently,
is faster than the method described in Section 1.3.

In the case of differentiating a scalar function with
respect to latitude, we consider this function on the
meridian given, which is supplemented to a periodic
function by the values on the opposite meridian:

(5)

In the case of the vector field components, this func�
tion is supplemented by the opposite values:

(6)

The negative sign appears in (6) due to the fact that,
during the transition through the pole, the positive
directions of the zonal and meridional wind compo�
nents in spherical coordinates become negative.

On the latitude–longitude grids, which are used at
present in analytical and prognostic operational
schemes, the number of points in longitude is even and
the grid function values on the meridian opposite to
the given meridian are also known. The continuations
of functions (5) and (6) are induced by the sphere
mapping onto a tore on which all values of the initial
function are repeated twice. For passing back to the
sphere, it is sufficient to restrict the function by posi�
tive values of ϕ.

1.5. Extrapolation to Pole Points 

Many formulas given below contain the operation
of division by sinϕ, which is uncertain at the pole
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points. However, in all these formulas, the numerator
at the pole point is also zero. In order to accomplish
the division at the pole point, we first perform it at all

other points, whereupon we extrapolate1 the result
along the colatitude into the pole points, using asymp�
totics (3) and (4).

Let us construct formulas of the fifth order of accu�
racy for the extrapolation of the smooth scalar func�
tion into the North Pole point. All modes with non�
zero indices in longitude,  are zero at the pole
points. Rewrite formula (3) for j = 0:

The values corresponding to the zero mode
  , are assumed to be

known. We obtain the system of linear equations for γ0,
γ1, and γ2:

from which we find that f0(0) = γ0 = (15y1 – 6y2 +
y3)/10.

The formula for extrapolating the vector field com�
ponent differs from the formula for the scalar function
only by the fact that, instead of j = 0, the modes with
j = 1 and n –1 are nonzero at the pole point.

1.6. Hesse Matrix in Spherical Coordinates 

Suppose that we know the values of a certain real
function P(λk, ϕn), 0 ≤ p ≤ n, 0 ≤ k ≤ m, where ϕ is the
latitude and λ is the longitude, at the vertices of the lat�
itude–longitude grid.

Let us find the expression for the Hesse matrix at
the point of the sphere with the coordinates (λ0, ϕ0) for
a function in spherical coordinates. In local geodetic
coordinates x and y, where y corresponds to the colat�
itude and x corresponds to the longitude, this expres�
sion coincides with expression (1) for the tangent Car�
tesian plane at x = y = 0.

The differentiation with respect to y yields the same
result as the differentiation with respect to ϕ, because
y = ϕ – ϕ0 and, consequently, the geodetic coordinate

x = 0 coincides with the curve .
The geodetic coordinate y = 0 touches upon the

parallel ϕ = ϕ0 (Fig. 2); therefore, the first derivative

1 This is actually not an extrapolation but interpolation, because
the points located near the pole completely surround it.
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with respect to longitude coincides with the first deriv�
ative with respect to x divided by sinϕ0:

Let us find the second derivative of the function P
with in terms of x. We rewrite the equation for the geo�
detic coordinate y = 0 in spherical coordinates:

Twice differentiating the λ�function

with respect to λ and dividing it by sin2ϕ0, we obtain

Thus, the Hesse matrix for a smooth function in
spherical coordinates has form (1), and, after the Fou�
rier transformation in terms of longitude 
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Note that the difference of the functions 

and  vanishes at the pole point; however, speaking

generally, not all of them vanish separately at .
Now, to estimate the largest eigenvalue of the Hesse

matrix for the function specified on the latitude–lon�
gitude grid, it is necessary to approximate the first and
second derivatives with respect to ϕ of the functions 

and  perform the inverse Fourier transforms in

terms of longitude, and solve the problem of finding
the eigenvalues for the second�order matrix at all
points of the sphere.

1.7. Atmospheric Front in the Wind Field 

Intersections of the wind field with the front sur�
face can be also detected from the wind field at a spec�
ified baric level p = const, because the tangential (to
the front surface) component of the wind (which can
be “blurred” under the action of turbulent viscosity) is
discontinuous here.

To find the atmospheric front zone at a baric level,
we calculate the vertical component of the wind veloc�
ity vortex, i.e., the scalar function of u and  where u
and  are the wind components corresponding to y
and x in Cartesian coordinates, respectively:

The vortex in spherical coordinates (u is the zonal
component of the wind, and  is its meridional com�
ponent)

The wind component tangential to the front line
can undergo a discontinuity; however, the orientation
of the discontinuity line is unknown beforehand.

Now, we introduce a unit vector perpendicular to
the discontinuity line  and denote the
wind projection  on b as w. We try to determine R,
i.e., the maximal (with respect to s) value of the deriv�
ative of w in the direction  which is
perpendicular to b. On the tangential discontinuity, R
is infinite. The velocity vortex will be obtained if the
derivative of the wind projection on b along b is added
to R. This second term on the front line is a bounded
function even in an ideal model, and its addition in
approximate calculations only noises the result. The
direct calculation proves the following lemma.
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Lemma 1. The value R is equal to the largest eigen�
value of the matrix:

in the spherical and planar cases, respectively.
Remark 1. If the wind is geostrophic [5, 9], Hesse

matrix (1) for the geopotential coincides with the

matrix K(ϕ, λ). In this case, any of the terms 

and  can be taken as extradiagonal elements.

Remark 2. The wind component normal to the
front may have a kink on the front line; however, this
fact cannot be used for the front diagnostics in a
numerical analysis. Indeed, inaccuracies in the front
direction calculation lead to the fact that the calcu�
lated wind field component normal to the front will
not coincide with the true component and will not
necessarily be continuous. The subsequent calculation
of the second derivative will yield an incorrect result.

1.8. Atmospheric Front in the Temperature Field 

In the temperature field at a fixed baric level, the
atmospheric front in an ideal model will represent a

( ) ( )

( )
or

sin sin1
21

sin sin1
2

u u

K
u

∂ ϕ ∂ ϕ⎛ ⎞∂−⎜ ⎟∂ϕ ∂ϕ ∂λ⎝ ⎠
=

ϕ ∂ ϕ⎛ ⎞∂ ∂− −⎜ ⎟∂ϕ ∂λ ∂λ⎝ ⎠

v

v v

1
2

1
2

u u
y y x

K
u

y x x

⎛ ⎞∂ ∂ ∂−⎜ ⎟
∂ ∂ ∂⎝ ⎠

=
⎛ ⎞∂ ∂ ∂− −⎜ ⎟
∂ ∂ ∂⎝ ⎠

v

v v

( )sin∂ ϕ

∂ϕ

v

u∂
−
∂λ

jump line of a two�dimensional function. In order to
diagnose the atmospheric front from temperature data
at a certain baric level, the absolute value of the hori�
zontal temperature gradient  is calculated
according to our algorithm, although other variants
are possible [11].

2. CONSTRUCTION OF FRONTAL ZONES

Three fields of the front predictors were con�
structed on the basis of the main meteorological fields
(geopotential, wind, and temperature) on the lati�
tude–longitude grid with the step h (the curvature of
the geopotential plot L(ϕ, λ), the largest eigenvalue
R(ϕ, λ) of the matrix K(ϕ, λ), and the temperature
gradient magnitude, respectively). These fields take
comparatively large values near the front. Now, we
construct frontal zones on the basis of these predictor
fields (or their combinations) and compare the results.

2.1. Normalization of Predictor Fields 

First, we normalize the predictor fields, having
divided them by the mean values, to exclude the
dependence of the used algorithm and constants on
neither the baric level nor the considered predictor
field. In this case, we can use various combined pre�
dictors, for example, the mean arithmetic of some two
initial predictors.

We normalize each field, having divided it by its
RMS value (see Table 1) taken from the values only at
the grid points located over the earth’s surface. With�
out this stipulation (about taking the parenthetical val�
ues in Table 1), we risk obtaining only fictitious frontal

,T∇

Table 1. RMS values of predictors

Level, 
hPa

RMS value of
|∇T|, 10–4 °C/km

RMS value of 
|L|, 10–8 km–1

RMS value of 
|R|, 10–6 s–1

Level, 
hPa

RMS value of
|∇T|, 10–4 °C/km

RMS value of 
|L|, 10–8 km–1

RMS value of 
|R|, 10–6 s–1

1000 175 (264) 50 (90) 19.3 (20.3) 200 98.9 34.1 34.2 

925 135 (158) 45.1 (72.4) 27.4 (28.2) 150 77.9 26.8 25.3 

850 130 (148) 41.6 (57.4) 27.2 (28.2) 100 77.7 23.6 20 

700 128 (138) 35.3 (37) 28 (28.7) 70 73.3 23.3 20.3 

500 101 42.4 35.1 50 67.6 25.3 22.4 

400 93.8 53.1 42.4 30 67.2 31.3 27.7 

300 86.4 55 48.1 20 73.1 36.4 32.6 

250 99.7 46.1 43.8 10 79.7 47.1 39.8 

Note: Averaging over 250 days from March to November 2007, inclusively, using the data of the 12�h NCEP forecast by 00:00 GMT on the
grid with a step of 1°. The values obtained from the averaging over the entire grid rather than only over the points located above the
earth’s surface are indicated in parentheses.
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zones coinciding with mountain massifs at low baric
levels (700 hPa and below).

Indeed, Table 1, together with the RMS values,
gives the values (substantially larger for  and )
averaged over the entire grid in parentheses and not
only over the points located above the earth’s surface.

Below, we use the predictors normalized in accor�
dance with Table 1 everywhere.

2.2. Construction of Frontal Zones at Baric Levels 

Now, we briefly describe the algorithm for the con�
struction of frontal zones, which obtains a discrete
field P at the input, i.e., a certain normalized predictor
of the atmospheric front, and yields a set consisting of
squares with sides equal to the grid step and centers

coinciding with grid points at the output.
2
 All sets con�

structed below consist of such squares; therefore, we
identify these squares and their centers.

The grid point  is called “suspicious” in belong�
ing to the frontal zone if  (it was assumed
that C0 = 0.6).

Suppose that A(P) is a set of squares with sides
equal to h and centers at “suspicious” points of the
grid. In this case, A(P) a fortiori contains all frontal
zones; however, it can be too thick (i.e., “includes
extra” points).

The main computational problem is to identify
among a set of close suspicious points the points near
which the front is most clearly pronounced. The cho�
sen points must form a certain line, which will be
called the frontal line.

Let us formalize the notion of the ridge (the ridge
in the predictor field will be interpreted as the atmo�
spheric front). The ridge for the two�dimensional field
P is the line whose points are characterized in the fol�
lowing way: the function P along the straight lines
close to its normal has a conditional local maximum
precisely at the ridge point. We call such straight lines
good for the given point of the ridge. If the ridge is a
thin (in the scale h) band, then at each point good
straight lines cover a fairly wide spectrum.

The ridge we were looking for B(P) is a subset of the
discrete set A(P). Without additional interpolation, we
can use on the grid not a continuum of straight lines
passing through the grid point  but only four
straight lines (two lines parallel to the axes and two
lines intersecting them at an angle of 45°) connecting
this grid point with two out of eight neighboring
points. We propose the following condition for “two
neighboring straight lines” (the TNL condition). Let
us consider two pairs of straight lines passing through
the point  The first pair includes straight lines par�

2 A detailed description of the algorithm is rather cumbersome
and will be presented in a separate publication.

T∇ L

*x

0( )
*

P C>x

( ),* A P∈x

*.x

allel to the coordinate axes; the second pair includes
straight lines located at an angle of 45° to the coordi�
nate axes. The square K (where  is the center of the
square K from A(P)) will be included into B(P) only if
at least one straight line from each pair is good for the
point . An equivalent formulation is as follows:
among four straight lines, we can identify two good
straight lines and the angle between them will be 45°.

Under the TNL condition, the set B(P) is not too
thick, which is stated by the following lemma.

Lemma 2. If for each point of the set B(P), either the
horizontal or the vertical straight line passing through it
is good, then B(P) will contain none of the four points of
the grid A1A2A3A4 which are forming the square with the
side h.

One can see from the Fig. 3 that this algorithm may
give too many connected components of the set B(P)
and the final result will contradict to  the expected one.
Let us join some connected components together via
returning certain points from A(P) back to B(P). In
other words, we construct the set C(P) consisting of
points belonging to B(P) and squares from A(P),
which are simultaneously neighboring two different
connectivity components of B(P) (we assume that
each square of the grid has eight neighboring squares).
However, as Fig. 3 shows, we have added an excessive
number of squares into C(P). Therefore, the algorithm
must be refined by adding only the squares for whose
centers at least one of four straight lines is good.

Further, to suppress possible noises, we eliminate
from C(P) connected components whose area (note
that the area of the grid square at the colatitude ϕ is

 ≈ ) is smaller than 5h2 or con�
nected components where maximal value of the field P
is smaller than a certain constant C1 (for example,

C1 = 1).3 Otherwise, the front is regarded as too short
or weakly pronounced, respectively (Fig. 4).

We shall refer to the set C(P) as “the set of possible
frontal zones.”

2.3. Vertical Correlation of Frontal Zones 

To construct frontal zones we have used the fields of
objective analysis (OA) field and forecasts for 12, 24,
and 36 h with the vertical resolution 50 hPa and the
horizontal resolution 0.5° × 0.5°. Therefore, in the
three�dimensional problem, in passing by one level
downward, the horizontal displacement of a real fron�
tal zone cannot exceed 1–2 grid steps along the hori�
zontal (otherwise we deal with different frontal zones).
In our experiments, the highest quality frontal zones
were constructed at levels of 400–300 hPa; the lower

3 These noises can be caused, for example, by the criterion insta�
bility: at a small disturbance of the field P, a square previously
included into B(P) can be rejected.

*x

*x

2 sin( 2)sinh h ϕ
2 sinh ϕ
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the level is, the worse the quality of construction is,
i.e., some front sites are pronounced less clearly and
the front becomes discontinued. An example of the
vertical meridional section with the drawn fronts is
presented in Fig. 5.

On the contrary, frontal zones near the earth’s sur�
face and at small heights are synoptically most inter�
esting. During the successive (from top to bottom)
construction of frontal zones, at each new baric level,
we take into account the result of an analysis of the
construction at the previous level. The level 400 hPa
will be assumed as basic, and, at this level, the constant

 = 0.2 will be added to the predictor field. Each
time, passing to the construction of frontal zones at

lower levels, we add the constant “bonus”  to the
predictor field near the front zone at a higher level
(directly over the front points at the higher level, as
well as at a distance of no more than three steps along
the horizontal toward the temperature gradient, i.e.,
1.5° of latitude or longitude). At such a vertical con�
nection, frontal zones will be more continuous along
the vertical and, since the bonus is constant, there will
be no displacements of frontal zones caused by the
bonus (the maximum is attained at the same ridge as
without the bonus).

B
v

.B
v

3. CALCULATION OF CORRELATION 
FUNCTIONS

The distinction between the air masses separated by
the constructed frontal regions is the main quality cri�
terion of the algorithm used for the construction.
Assuming the hypothesis of homogeneity and isotropy
of meteorological fields inside the air mass, we esti�
mate from horizontal variables [7, 12–14] two�dimen�
sional auto� and cross�correlation functions (CFs) of
the temperature, geopotential, and longitudinal and
transverse wind components at different baric levels
from the distance along the horizontal. Three�dimen�
sional CFs were estimated in [12, 13]; however, we
thought that the calculation of two�dimensional CFs
was sufficient for the purposes of this article.

The anisotropy was estimated in [7, 13], and it was
shown that the isotropy hypothesis has the largest error
in the tropical stratosphere. In the region of interest to
us (extratropical troposphere), this hypothesis is ade�
quate for observations.

3.1. Determination of the Belonging of Two Points 
at One Level to Different Air Masses 

Suppose that the two points W and Q are given at
one baric level, and it is necessary to determine
whether the front passes between them, i.e., whether
these points belong to the same air mass or to different

1.2 2.2 2.8 2.4 1.7 1.1 0.03 –0.18

1.7 2.2 2.6 2 1.3 1.2 0.95 1.1

1.4 1.9 2.4 1.8 1.5 1.6 1.7 2.4

2.2 3.2 3.4 2.5 2.2 1.4 1.8 2.5

4.1 3.4 1.9 1.7 1.4 0.65 1.1 0.66

Fig. 3. Real example of the operation of the algorithm for the identification of frontal zones. The dotted line outlines the set of
“suspicious” points A(P) =  The diagonal dashed line outlines the set B(P), and the horizontal dashed line
outlines the set of constructed frontal zones C(P). In the figure, the boundaries of these zones are smoothed; the sets A(P), B(P),
and C(P) consist of squares with sides parallel to the axes. The values of the field L are plotted. If only the points for which a good
straight line exists are added to C(P), in the set C(P)\B(P) there will be no squares with values of 1.4, 1.8, and 1.9 in the centers
(only the values 1.6 and 2.4 will remain).

0{ ( ) 0.6}.P C> =x x
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air masses. If W  C(P) or Q  C(P), it is impossible to
decide which of two possibilities takes place and,
therefore, in the calculation of CFs (see below), such
pairs of stations were rejected in the statistics.

If it is possible to find a way from W to Q, close to
the shortest distance between them and not crossing
frontal regions, we assume that W and Q lie in one air
mass (case A); otherwise they belong to different air
masses (case B).

Let us connect W and Q by the shortest geodetic
line and consider its h vicinity Uh. If both of the initial
points lie in one connectivity component (here, we
assume that each square has four neighboring squares)
of the set Uh\C(P), we shall assume that they belong to
one air mass; otherwise they belong to different air
masses.

The algorithm used can be substantially faster if
successive sections by meridians rather than the set
Uh\C(P) are considered.

∈ ∈

3.2. Normalization of Meteorological Fields 

To calculate the CFs of the main meteorological
fields, first it is necessary to normalize them, i.e., sub�
tract the mean Sf(x) and divide by the root from the
estimate of variance:

The following estimations of the mean value Sf(x)
are possible.

(1) Monthly mean (or decadal mean) value.
(2) Prediction by the moment that f(x) is achieved

with the minimal term of forecast (as a rule, 6 or 12 h).
(3) Sum of the minimal�term forecast and the

mean deviation of the fact from the prediction for a

given station.4 
The first case is more important for understanding

the atmospheric physics, whereas the second and third
cases are more important for the practical task of anal�

ysis and prediction.5 If in the second case the CFs for
points separated by the constructed frontal zones dif�
fer noticeably from the CFs for points not separated by
such zones, then, by using in either case its own CF
instead of the averaged CF, we can decrease the error
of interpolation into grid points and improve the OA
fields (and, consequently, the forecast based on them),
especially near frontal zones.

In this work, we used the simplest method of nor�
malization (see item (1)). The fields from our archive
containing 336 fields of the NCEP analysis on the grid
with the step 0.5° × 0.5° were used as fields for the
construction of predictors.

3.3. Estimation of Correlation Functions 

For estimating two�dimensional CFs (depending
on the distance and level), we unite various pairs of
stations into groups based on the distance between
them: the first group from 0 to Δr = 50 km, the second
group from Δr to 2Δr, etc. We do not consider the sta�
tions with the distance r between them exceeding R =
3000 km or the pairs of stations in which at least one
station is located south of 30° N. This is due to the fact
that atmospheric fronts are observed only in the extra�
tropical zone and, in the Southern Hemisphere, the
network of aerological stations is too sparse for our
purpose, i.e., for the determination of quantitative

4 Forecasts can have a small systematic error: for example, prog�
nostic fields averaged over a month can differ from actual mean
fields averaged over the same period [15].

5 At present, it is the fields of deviations of data from the forecast
for the term of analysis that are interpolated at the operational
OA HMCs RF. In this case, the CFs for these deviations are used
[4, 5].
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Fig. 4. Atmospheric front lines over the North Atlantic at
the level 500 hPa calculated using the optimal criterion
(see Section 4) from the OA NCEP data for 00:00, April
10, 2010. The temperature contours and the wind field are
shown. Part of the front is well pronounced in the tempera�
ture field (circles on the line show this) and part of the front
is well pronounced in the geopotential field (triangles).
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parameters of the algorithm for the diagnostics of
atmospheric fronts.

We have chosen this limit for R because, first, at
larger distances, absolute values of all CFs do not
exceed 0.1 [12] and, second, in OA tasks, no such dis�
tances are usually used. If other distances that are close
to R (within 2000–4000 km) are used in the experi�
ments described below, all of the basic results change
only slightly.

Inside each group, pairs of stations are divided into
two subgroups: the first subgroup includes stations
between which the front passes; the second subgroup
includes the remaining stations (of course, this divi�
sion into subgroups changes from one day to another
and from one level to another). Calculating the corre�
lations of values of meteorological fields for each
group separately, we obtain two two�dimensional CFs
for the case A, when pairs of points are separated by
the frontal zone, and for the case B, when pairs of
points are not separated by the frontal zone. The rela�

tion between the frequencies of cases A and B is shown
in Fig. 6.

As a result, we obtain two stepped (with the step Δr)
matrix�valued CFs: Sij(r) corresponding to case A and
Uij(r) corresponding to case B. Here and below, i, j =
1, 2, 3, 4; the first, second, third, and fourth compo�
nents correspond to temperature, geopotential, longi�
tudinal wind component, and transverse wind compo�
nent, respectively.

3.4. Smoothing of Correlation Functions 

To choose the optimal criterion of the frontal zone,
it is necessary to be capable of estimating the distinc�
tion between the air masses on different sides of the
front at a given criterion and, consequently, to be able
to estimate the distinctions between the CFs for cases
A and B.

The simplest ways of estimating these distinctions
are as follows:
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Fig. 5. Section along the meridian 32.5° W of the front calculated with the use of the optimal criterion (see Section 4) from the
OA NCEP data for 00:00, December 24, 2009. Degrees of the northern latitude and the pressure (hPa) are plotted along the hor�
izontal and vertical, respectively. The horizontal pattern can be seen in Fig. 4.
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(1) The norm of the difference between the CFs
Sij(r) and Uij(r) in the metrics L2 .

(2) As (1), but taking into account the number of
measurements at the pairs of stations located in a given
range of distances (see plot W in Fig. 6).

(3) As (1), but normalized to the sum of the L2�

norm: 

However, since the sample is not sufficiently large,
we can directly use none of these variants with the CFs
estimated in the preceding subsection, because they
strongly oscillate, and the estimates obtained are unre�
liable. For obtaining high�quality estimates, prelimi�

nary smoothing is necessary.
6
 

According to the Bochner theorem [14, 16], posi�
tively defined CFs of a scalar isotropic homogeneous
field expand into the Fourier–Bessel integral:

where  a0 � 0, and a(k) � 0; J0 is

the zero Bessel function and δ is the delta function.

6 The projection of CFs on a finite�dimensional cone in the space
of positively defined CFs: i.e., we perform the regularization of
the CF estimate.
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If CFs for several scalar fields (for example, the
fields of temperature and geopotential) are estimated
together, the coefficients a0 and a(k) in this theorem
are replaced by the symmetrical positively defined
matrices A0 and A(k). In the experiments described
below, the four�component random field consists of
these scalar fields and the longitudinal and transverse
wind components. The auto� and cross�correlations
for the wind components must be expanded in terms of

 and their cross�correlations with scalar fields

must be expanded in terms of  (here, ' (prime)
means the derivative with respect to r). For more
detail, see [7, 12, 14, 16].

Let us introduce the prenorm
7
 in the CF space with

weights proportional to the number of pairs of mea�
surements in the power 2/3, which fell into a given dis�
tance interval:

(7)

where M = R/Δr, and w(s) is the number of pairs of
measurements for the case under consideration,
which are spaced from each other by no more than
(s – 1)Δr but less than sΔr.

Let us find the positively defined CF, closest in the
sense of prenorm (7), to the function Sij(r) obtained
through a direct estimation. This is necessary because
there are many gaps in measurement data, and no pos�
itive definiteness is guaranteed for estimates of CFs of
the Sij(r) type. We will analogously treat Uij(r).

Changing matrices An, we approximate, using the
least squares method, the matrix�valued correlation
function S(r) by the functions having the form

(8)

where kn � 0 are positive scale multipliers and  is
the symmetric matrix�valued function:

where δn, εn, and ϑn =  are the normalizing coef�
ficients, which were chosen in the following way:

7 This and other prenorms close to it ensure a good approxima�
tion of a CF if the number of measurements is different for dif�
ferent values of r.
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Fig. 6. Statistics of the separation of meteorological sta�
tions by the front. The solid line (ρ) is the fraction of pairs
of stations separated by the front among all pairs of sta�
tions, depending on the distance r (km). The dashed line
(W) is the ratio of the pairs of stations located at distances
(r – 25, r + 25) to the total number of stations. Therefore,
the numbers of stations related to cases A and B are w =
MWρ and w = MW(1 – ρ), respectively (here, M is the
number of stations). Only the pairs of stations located to
the north from 30° N were considered).
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 and  where

A' is the matrix with only one nonzero element  = 1,

and A'' is the matrix with the nonzero element  = 1.
Therefore, the CF is approximately expended in terms
of N normalized Bessel functions. The experiments
were conducted at N = 2, …, 10.

Then, we replace the matrices  by the pos�

itively defined symmetric matrices  (the cor�
responding algorithm based on the perturbation the�
ory of self�adjoint operators is described in [4, 5, 7,
12]) nearest to them.

Performing this replacement, we should take into
account linear limitations: the matrices Bn must be
such that unities stood along the diagonal in the matrix

, and the matrix B0 must have the following
form:

Now, we explain the choice of the normalizations

δn and εn in the function  The norm

 has the order  and at relatively small val�

ues of kn (about 20) (here, r was measured in thousands
of kilometers), in order to ensure the order c = 1/1000,
sometimes we have to change matrix A (if it is not pos�
itively defined) too strongly (by a magnitude of no less

than  = 0.4), and the main hypothesis of the per�
turbation theory is not fulfilled. No such problem
arises at the chosen normalizations of matrices.

The scale multipliers k1, …, kN in arguments of the
Bessel function also must be optimized. To do this,
after replacing the CF by approximation (8), we calcu�
late the error of approximation in the sense of the pre�
metrics produced by prenorm (7):

For each level and separately for cases A and B, we
first enumerated 400 pairs of characteristic values of k1
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(in the range 0.01–15) and k2 (in the range 10–70).
For these values we calculated the errors e(k1, k2), and
the pair with the minimal e(k1, k2) was taken as a first
approximation. Then e(k1, k2) was minimized by the
gradient descent method.

Now, we choose the first approximation k3 = 1.5k2

and minimize by the gradient descent method e(k1, k2,
k3) and so on. Having performed N = 2 steps, we find
the best approximation of our function by the function
of kind (8).

The approximate dependence of the error of the
approximation e(k1, …, kN) is shown in Table 2. Sub�
sequently, we used the value N = 5, because no further
increase of N substantially decreases the error.

If the fields are normalized to deviations from the
monthly mean values (see Subsection 3.2) before the
CF calculation, the diagonal values of the matrix A0

will be interpreted as the mean variance of instruments
(sondes), which were used for measuring meteorolog�
ical field values. If the fields are normalized to devia�
tions from prognostic values, the diagonal values of the
matrix A0 will be interpreted as the accuracy of the
prognostic scheme.

3.5. Estimation of the Difference of Correlation 
Functions 

Having performed the described operations with
CFs in cases A and B, we obtain two matrix�valued
correlation functions Sij and Uij. The difference
between them is estimated by the formula

The total difference between the two CFs is esti�
mated as the sum

(9)
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Table 2. Characteristic values of errors e(k1, …, kN) of the approximation CF Sij(r) of the positively defined CF of kind (8)
depending on N

N 2 3 4 5 6 7 8 9 

 0.00074 0.000636 0.00054 0.000503 0.000415 0.000378 0.000322 0.000273 1( )Ne k … k, ,
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where wij ≥ 0 are the weight coefficients. Here we used
the following weights:

(10)

The twos on the diagonal of the weight matrix W
compensate the “inequality”: the matrix dij is symmet�
ric and, consequently, nondiagonal elements contrib�
ute twice to sum (9).

4. OPTIMAL COMBINATIONS 
OF FRONT PREDICTORS

In Section 1, we constructed various predictors of
the atmospheric front. For any predictor field P, we
can estimate the CFs Sij(r) and Uij(r). The difference
between these functions shows how strongly air masses
on both sides of the constructed frontal zones, and
thereby the quality of construction of these zones, dif�
fer. Changing the field P, we try to achieve the largest
difference d between the CFs Sij(r) and Uij(r). There is

W

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

.=

also a mechanism which allows us to affect the result
of constructing frontal zones C(P), i.e., the choice of
the field P used in the algorithm described in Subsec�
tion 2.2.

The field P is the result of the action of a certain
operator F on the main meteorological fields: temper�
ature, geopotential, and wind. In Section 1, on the
basis of each field, we constructed the following pre�
dictors for each baric level: the temperature gradient
magnitude  the largest eigenvalue of the
Hesse matrix for the geopotential L, and the largest
eigenvalue R of the matrix K for the wind. Now, we
construct a complex predictor of the atmospheric
front in the form of a certain function F = F(G, R, L)
monotonically increasing over all variables from the
three given predictors.

The simplest monotonically increasing functions
of three variables are linear with nonnegative coeffi�
cients. We will search for F in the form

(11)

where 0 ≤ α, β and α + β ≤ 1.

,G T= ∇

(1 )F F G R L
αβ

= = α + β + − α − β ,

  
Table 3. Optimal values of α and β, at which the maximal difference d(α, β) between the CFs Sij(r) and Uij(r) is attained depend�
ing on the level; the corresponding coefficients of renormalization μ

αβ
; and errors of the CF smoothing

Level, hPa α β 1 – α – β μαβ d(α, β)   

February

300 0.682 0.0582 0.259 0.992 0.0733 0.00141 0.00176 

400 0.726 0.0558 0.218 1.07 0.0963 0.00177 0.00407 

500 0.753 0.0545 0.192 0.968 0.0796 0.0019 0.00596 

700 0.785 0.0545 0.161 0.855 0.0634 0.00172 0.00178 

850 0.799 0.056 0.145 0.823 0.0569 0.00139 0.00214 

925 0.805 0.057 0.138 0.799 0.0595 0.00155 0.0025 

1000 0.809 0.0583 0.132 0.76 0.0805 0.00573 0.0076 

June

300 0.727 0.0506 0.223 0.965 0.103 0.00189 0.00185 

400 0.772 0.0437 0.184 1.09 0.107 0.0021 0.00156 

500 0.8 0.0391 0.161 1.04 0.0973 0.00229 0.00168 

700 0.833 0.0339 0.133 0.852 0.0633 0.00198 0.002 

850 0.848 0.0325 0.12 0.769 0.0522 0.003 0.00185 

925 0.854 0.0322 0.114 0.757 0.0557 0.0024 0.00206 

1000 0.859 0.0323 0.109 0.765 0.0955 0.0117 0.0107 

5 ( )Se α,β 5 ( )Ue α,β
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4.1. Results of the Search for Optimal Predictors 

Choosing the coefficients α and β from the set
 so that α + β ≤ 1 (in all, 66 pairs), we esti�

mate the difference dlm(α, β) between the CFs depend�
ing of the level l and the month m.

Since we must ensure a continuous dependence of
the result on the time of the year and the level, we
search for the optimal α and β in the form

where m = π[M + (D – 15)/30 + (T + Z)/24/30]/6;
here, M is the number of the month, D is the number

{0 0.1 1}…; ; ;

1 2 3 4
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sin 2 cos 2 sin
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c c m c m c l

c m c m c l m
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c c m c m c l
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β = + + +

+ + +

+ + + ,

of the day, T is the time of the day, Z is the term of fore�
cast (0 in the OA case), and 

From the values of dlm(α, β), we construct for each

level and month its own spline , whereupon
we maximize the function

by the gradient descent method. The pairs of optimal
 and  found for m = 2 and m = 7, together with the

coefficients μαβ are presented in Table 3.
8

8 The coefficients of renormalization µαβ ensure the same mean
areas of frontal zones at different α and β, which yields a correct
comparison of different predictors.
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Fig. 7. Correlation functions at the level 400 hPa over April and the results of their smoothing. The dashed line is for case A, when
points are separated by the frontal zone; the solid line is for case B, when points are not separated; u is the longitudinal wind com�
ponent; and  is the transverse wind component.v
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4.2. Results of an Estimation of Correlation Functions 

The smoothed CFs for different fields at the level
400 hPa in April are presented in Fig. 7. In order to
divide stations into cases A and B, we used the optimal
criterion for each baric level determined in Subsection 4.1.
This criterion was calculated on the basis of the OA
archive on a grid with a step of 0.5° from November
2009 through December 2010 (in all, 336 terms).

Table 3 shows the results of a search for optimal
front predictors. The values of d(α, β) show that, in
February, the frontal activity maximum falls on the
levels 400–500 hPa and, in July, it rises to the levels
300–400 hPa. This phenomenon justifies the choice of
the level 400 hPa as the basic level for the vertical cor�
relation of frontal zones (see Subsection 2.3).

5. EXAMPLES OF THE CONSTRUCTION 
OF FRONTAL ZONES

Let us consider in detail the meteorological fields
for two days: December 7, 2009, and April 17, 2010.
These two dates are remarkable in regards to the errors
in the short�term forecasts of precipitation over Mos�
cow maximal over the 2009–2010 winter period. In
these cases, it was difficult for synoptic meteorologists
to explain the forecast errors even at antedate. In the
first case, the amount of precipitation forecast for
Moscow was an order of magnitude smaller than the
actual amount. In the second case, on the contrary, a
substantial amount of precipitation during the atmo�
spheric front passage was forecast; however, there was
no precipitation at all. For our calculations, the OA
NCEP data on the 0.5° grid were used.

The maps of frontal zones in the Moscow area on
December 7, 2009, are shown in Fig. 8. Temperature
contours are drawn at intervals of 1°C (thin lines), and
geopotential contours are drawn at intervals of 20 m
(thick lines). The wind field is plotted on the latitude–
longitude grid with a step of 1°. Frontal zones are col�
ored. It is seen (not only from these maps but from
maps at all levels) that the atmospheric front actually
passed and was located over Moscow with an eastward
slope. The front was over Moscow at 00:00 at a height
of about 700 hPa.

The maps of frontal zones in the Moscow area on
April 17, 2010, are shown in Fig. 9. It is seen (not only
from these maps but from maps at all levels) that no
atmospheric front was detected over Moscow.

6. CONCLUSIONS

(1) Predictors of frontal zones ensuring a more
exact description of frontal zones than the tradition�
ally used vertical component of the wind velocity vor�
tex and the horizontal Laplace operator from the geo�
potential (pressure at sea level) are proposed. The fol�
lowing parameters are used for a description of frontal

N. Novgorod
Moscow

60°N

35°E 40°E 45°E

50°N

N. Novgorod
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35°E 40°E 45°E
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35°E 40°E 45°E

50°N

55°N
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55°N

Fig. 8. Maps showing the frontal zones in the area of Mos�
cow constructed with the use of the optimal criterion at the
levels (from top to bottom) 500, 700, and 950 hPa. The
contours of temperature (thin lines) and geopotential
(thick lines) are drawn at intervals of 1° and 20 m, respec�
tively; the wind field is presented on the 1° grid. Large riv�
ers are also shown.
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zones: the largest eigenvalues of the matrices consist�
ing of first horizontal derivatives of the horizontal
wind and second horizontal derivatives (Hesse matri�
ces) of the geopotential (pressure at sea level), respec�
tively.

(2) For calculations from data on a regular discrete
two�dimensional grid, the exact methods based on a
special discrete Fourier transform (in the case of a
sphere) and compact schemes of the high�order (no
lower than the fourth�order) approximation (in the
case of a plane) are used instead of the traditional sec�
ond�order methods.

(3) Heuristic methods for drawing atmospheric
front lines along the ridges of predictor fields have
been developed.

(4) Estimates of correlation functions (CFs) are
obtained for clusters in a set of pairs of points: two
points separated by the atmospheric front (belonging
to different air masses) and not separated (belonging
to the same air mass), respectively. Correlation func�
tions were calculated for measurement data from aer�
ological data normalized to their monthly mean val�
ues. The archive of observations accumulated by the
authors and the OA NCEP data on the grid 0.5° × 0.5°
over 336 days were used. The experiments were per�
formed for the territory located to the north from 30° N.
The distinctions between the CFs for two clusters can
be taken into account in the assimilation of (OA)
observational data for decreasing the error of the inter�
polation of observational data into grid points of a
prognostic model.

(5) Methods of combining several (three) predictor
fields are proposed, and the optimal weights for the
initial predictors are selected experimentally for each
baric level. The weights were optimized in accordance
with the following criterion of quality: the maximal
distinction between the CFs Sij(r) and , i.e.,
between the CFs for the two clusters.

(6) The optimal coefficients for the predictors are
calculated for each month and level. These coeffi�
cients are used for constructing the frontal zones cor�
related along the vertical at each level. In this case the
frontal surfaces can contain holes, and these surfaces
do not always extend from the earth’s surface to the
tropopause. Therefore, the graphic presentation of the
results is nontrivial.

(7) The software developed for diagnosing the
geometry of atmospheric fronts was also applied for
diagnosing the prognostic fields of temperature, wind,
and geopotential according to the NCEP model with
the spatial resolution 0.5° × 0.5° and with forecast
terms of 12, 24, and 36 h. At such forecast terms, the
influence of errors in the prediction of fronts is com�
paratively weak. The topology of fronts is, on the
whole, retained (about 4–6%, 6–9%, and 7–10% in
the forecasts for 12, 24, and 36 h, respectively, of the

( )ijU r

total front lengths are not confirmed in the analysis,
and the same amounts appear in the analysis); the
mean front shift in passing from the predicted fields to
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Fig. 9. Maps showing the frontal zones in the area of Mos�
cow constructed for April 17, 2010, with the use of the
optimal criterion at the levels (from top to bottom) 500,
700, and 950 hPa. 
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the OA fields for each term of forecast is about 60–70 km
(regardless of the forecast term).

(8) It would be expected that the improvement of
the OA spatial resolution and prognostic models and a
higher accuracy of predictions of meteorological fields
will also improve the quality of diagnosing the geome�
try of atmospheric fronts.
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