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a b s t r a c t

We introduce some braided varieties – braided orbits – by considering quotients of the
so-called Reflection Equation Algebras associated with Hecke symmetries (i.e. special type
solutions of the quantum Yang–Baxter equation). Such a braided variety is called regular if
there exists a projective module on it, which is a counterpart of the cotangent bundle on
a generic orbit O ∈ gl(m)∗ in the framework of the Serre approach. We give a criterium
of regularity of a braided orbit in terms of roots of the Cayley–Hamilton identity valid for
the generating matrix of the Reflection Equation Algebra in question. By specializing our
general construction we get super-orbits in gl(m|n)∗ and a criterium of their regularity.
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1. Introduction

Let L ∈ gl(m,C)∗ be a generic matrix, that is its eigenvalues µi, 1 ≤ i ≤ m, are pairwise distinct. As is well known, its
orbitO ⊂ gl(m,C)∗ under the coadjoint action of the group GL(m,C)1 is a regular affine algebraic variety. Namely, any such
orbit O can be defined by the following system of polynomial equations:

TrLk −
m∑
i=1

µki = 0, k = 1, . . . ,m. (1.1)

The main objective of the present paper is to give an explicit description of generic orbits in gl(m|n)∗ and their braided
counterparts. These braided generic orbits constitute a subclass of braided varieties which are quotients of the so-called
Reflection Equation Algebra of the GL(m|n) type. Let us recall its definition.
Let V be a finite dimensional vector space. A braiding R ∈ End (V⊗2) is a solution of the quantum Yang–Baxter equation

R12R23R12 = R23R12R23, where R12 = R⊗ I, R23 = I ⊗ R.

A braiding R is called a Hecke symmetry if it satisfies the following second degree equation

(qI − R)(q−1I + R) = 0,

where q ∈ C× is generic. If q = 1 (this value is not forbidden) the corresponding braiding is called an involutive symmetry.
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Given a Hecke symmetry R, consider a unital associative algebra generated by elements lij subject to the system

R L1 R L1 − L1 R L1 R = 0, (1.2)

where L1 = L ⊗ I and L = ‖l
j
i‖, 1 ≤ i, j ≤ dim V , is a matrix with entries l

j
i. This algebra is denoted L(R) and called the

Reflection Equation Algebra (REA) corresponding to the given Hecke symmetry R, the matrix L is called the generating matrix
of the algebraL(R).
We say that an algebraL(R) is ofGL(m|n) type if the degree of the numerator (resp., denominator) of theHilbert-Poincaré

series P−(t) (see Section 2), which is always a rational function, equals m (resp., n). A popular example is provided by the
algebra L(R) corresponding to a Hecke symmetry R = R(q) which is a deformation of a super-flip σ = R(1). The operator
σ acts in the space V⊗2 where V = V0 ⊕ V1 is a super-space with the even component V0 and odd component V1 such that
dim V0 = m and dim V1 = n (the ordered couple (m|n) is usually called the super-dimension2 of the space V ). In this case
the algebraL(R) is a deformation of C[gl(m|n)∗] ∼= Sym (gl(m|n)) and turns into the latter algebra as q→ 1. In particular,
if the space V is even (i.e. n = 0), the algebraL(R) is a deformation of the algebraC[gl(m)∗]. As an example wemention the
REA corresponding to the Hecke symmetry coming from the Quantum Group Uq(sl(m)).
For a more detailed treatment of the GL(m|n) type REA we refer the reader to [1–3]. Here we reproduce one of the

basic properties of this algebra: its center Z(L(R)) is similar to that of the enveloping algebra U(gl(m|n)). In particular, the
elements

pk(L) := TrRLk, k = 1, 2, . . .

called the power sums in analogy with the classical case, belong to the center Z(L(R)). Hereafter, TrR stands for the so-called
braided (quantum or R-) tracewhich can be associatedwith any skew-invertible (see Section 2) braiding R. Let us emphasize
that this trace is one of the main features of the braided geometry.3
Since the elements TrRLk are central in the algebra L(R), it is natural to consider the quotient L(R)/〈I〉 where 〈I〉 is the

two-sided ideal generated by the set I ⊂ L(R) consisting of the elements coming in the left hand side of (1.1) but with TrR
instead of the usual trace. Also, the sums

∑
i=1 µ

k
i , k = 1, 2, . . . ,m, must bemodified in an appropriateway. Such a quotient

L(R)/〈I〉 can be treated as a braided analog of (the coordinate rings of) an algebraic variety, which is a generic coadjoint
orbit provided all µi are pairwise distinct. However, proceeding in this way, we have to answer the following questions.
1. What are the ‘‘braided’’ analogs of the eigenvalues µi?
2. How many equations are there in the braided case, i.e. which number must replace the indexm in (1.1)?
3. For which values of the braided eigenvalues the corresponding quotient can be treated as a regular braided variety (and
consequently, a braided generic orbit)?

Note that even if R is a super-flip and thereforeL(R) ∼= Sym (gl(m|n)), these questions are still meaningful.
The problem of diagonalization of a super-matrix was studied in [6]. Let us point out that we do not consider such a

diagonalization. We define the eigenvalues of a super-matrix as the roots of the Cayley–Hamilton (CH) identity satisfied
by this super-matrix. The various forms of the CH identity for super-matrices (including the one convenient for our aims)
has been given in [7]. In [1] a CH identity was presented for the generating matrix4 L of the REA L(R) associated with any
skew-invertible Hecke symmetry R of the GL(m|n) type. The corresponding CH identity has the form

m+n∑
k=1

ck(L)Lk = 0, (1.3)

where ck(L) are non-trivial central elements of the algebraL(R).
Let {µi}1≤i≤m+n be the roots of the equation

m+n∑
k=1

ck(L)µk = 0

considered as elements of the algebraic extension of the localization

Z(L(R))loc := S−1Z(L(R))

2 In general, we call the couple (m|n) the bi-rank. Also, note that in the notation Sym (gl(m|n)) below the symmetric algebra is understood in the sense
of the super-theory.
3 Note that the trace TrRmaps thematrix L (or its powers) into the algebraL(R). This trace differs from the ‘‘numerical quantum trace’’ defined on objects
End (U) in a monoidal category. The latter trace is usually introduced via a ribbon Hopf algebra structure. A direct way of introducing this trace without
any Hopf algebra is exhibited in [4]. The reader is referred to [5] for a comparison of these two forms of the quantum trace.
Another important feature of the braided geometry is a modification of the notions of Lie algebras, vector fields, differential operators. All these notions
are coordinated with the initial Hecke symmetry R. Thus, if R is a super-flip, TrR turns into a (super-)trace and the corresponding ‘‘braided Lie bracket’’ [ , ]R
turns into a super-Lie one.
4 Note, that we do not speak about the CH identity and ‘‘eigenvalues’’ of an arbitrarymatrix with entries fromL(R). We are dealing with a very special
matrix L. In a sense, it arises from the central element TrRL2 as explained in [5].
Also, note that the algebra L(R) is a particular case of the so-called Quantum Matrix Algebras (QMA) which are associated with a couple of compatible
braidings (R, F) (see [1]). The generating matrix L of a QMA satisfies a CH identity as well, but its form differs from the classical one. Besides, in general, the
coefficients of such a CH identity are not central in the corresponding algebra. This obstacle does not allow us to consider similar ‘‘orbits’’ in other QMA.
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of Z(L(R)) by the set S = {ckm+n(L), k = 1, 2, . . .}. These roots are called quantum eigenvalues of the matrix L. We assume
them to be central in the algebra L(R). They play the role of usual eigenvalues in the analysis below. This is the answer to
question 1 from the above list. If n = 0, the leading coefficient cm+n(L) equals 1 and the mentioned localization does not
affect the algebra Z(L(R)). However, in general, cm+n(L) is not a number.
Also, in the general case (i.e. if n 6= 0) the set of all eigenvalues splits into two subsets: even eigenvalues and odd ones. This

splitting stems from the factorization of the CH identity discovered in [1]. In what follows we denote the odd eigenvalues νi
and keep the notation µi for even ones.
The key point of our method is a parametrization of the power sums TrRLk in terms of the quantum eigenvalues. Let

pk(µ, ν) be such a parametrization.5 Then we define a braided variety Cq[Oµ,ν] by the following system of the polynomial
equations

TrRLk − pk(µ̄, ν̄) = 0, k = 1, 2, . . . ,m+ n, µ̄, ν̄ ∈ C. (1.4)

Here we pass to a specialization µ 7→ µ̄ and ν 7→ ν̄ of the elements from Z(L(R))loc to complex numbers. In what follows
we omit the bar over the letters keeping the notations µ and ν for numeric values of roots. In each case the meaning of a
symbol is clear from the context.
Thus, the braided variety Cq[Oµ,ν] is a quotient algebra

Cq[Oµ,ν] = L(R)/〈TrRL− p1(µ, ν), . . . , TrRLm+n − pm+n(µ, ν)〉.

By this we give an answer to question 2 from the above list: the number of defining equations in the system (1.4) equals
m+ n. By abusing the language6 we call this braided variety a braided orbit.
As for question 3, it can be now reformulated in the following way. For which values of µ = (µ1, . . . µm) and

ν = (ν1, . . . νn) can the quotient Cq[Oµ,ν] be considered as a regular braided variety? Our answer to this question is based
on the following observation. According to the famous Serre result [8] the space of sections of a vector bundle on a regular
affine algebraic varietyM is a finitely generated projective module over the coordinate algebra C[M]. On quantizing this
algebra, it is possible to simultaneously quantize such a module. In the framework of the formal quantization scheme such
a quantization is ensured by the construction in the paper [9].
We do not use this deformation quantization scheme. By contrast, for certain braided orbits Cq[Oµ,ν] we explicitly

construct projective modules which play the role of the cotangent bundles over generic orbits in gl(m)∗ in the framework of
the Serre approach.We call thesemodules cotangent. Also, we call a quotientCq[Oµ,ν] for which this module exists a regular
braided variety or a braided generic orbit. Specializing our general construction to the case when R is a super-flip, we get
cotangent modules over super-orbits in gl(m|n)∗.
In order to construct these cotangentmodules we employ the differential calculus on the algebraL(R) developed in [10].

In this calculus we do not use any form of the Leibnitz rule which is usually employed in ‘‘quantum differential calculus’’.
Instead, we are dealing with a Koszul type complex (see Section 3). This approach enables us to compute the differentials
of the functions TrRLk, k = 1, . . . ,m + n, and to explicitly construct the mentioned cotangent module provided the
eigenvalues µ and ν do not belong to an exceptional set E which is defined by zeros of a determinant. So, all quotients
Cq[Oµ,ν] corresponding to the eigenvalues (µ, ν) ∈ C⊕(m+n) \ E are considered to be braided generic orbits.
Furthermore, our construction can be extended to appropriate quotients of the so-called modified REA, which are in a

sense braided analogs of the enveloping algebras U(gl(m|n)). We call these quotients braided non-commutative (NC) orbits.
In Section 5 we present a criterium (similar to that mentioned above) which ensures regularity of such an orbit. Considering
a particular case when R is a super-flip, we get a description of regular or generic NC super-orbits. Note that certain braided
deformations of generic super-orbits give rise to some Poisson pencils on these super-orbits which will be considered in the
subsequent paper [11].
By completing the Introduction we would like to make some comments. For the first time the Reflection Equation (with

a parameter) was introduced in [12] in connection with scattering of particles on a boundary. The corresponding algebra
(called lately the REA) was studied by S. Majid under the name of braided matrix algebra (see [13] and the references
therein). In particular, S. Majid discovered braided Hopf algebra structure in its appropriate quotients. This result as well
as our construction of the REA representation theory [3] and of the CH identity for the matrix L [1] belong to ‘‘braided linear
algebra’’. Whereas in the present paper we develop some aspects of ‘‘braided affine algebraic geometry’’, namely, we are
dealing with analogs of affine algebraic varieties.
The paper is organized as follows. In the next section we present a short review of the REA and its properties used in

the sequel. In Section 3 we present some aspects of the braided differential calculus. It helps us to formulate a criterium of
regularity of algebras we are dealing with. In Section 4 we present this criterium in terms of the quantum eigenvalues. In
Section 5 we extend these results to the braided NC orbits.

5 In the super-case this parametrization reads

pk(µ, ν) =
m∑
i=1

µki −

n∑
j=1

νkj .

6 Note that in the classical case such a variety is not an orbit but rather a collection of them if eigenvalues of the matrix L are not pairwise distinct.
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2. Reflection equation algebra: CH identity and other properties

Let V be a finite dimensional vector space and R ∈ End (V⊗2) be a Hecke symmetry. We associate with R two quadratic
algebras—quotients of the free tensor algebra T (V ) generated by the space V :

SymR(V ) = T (V )/〈Im(qI − R)〉,
∧
R

(V ) = T (V )/〈Im(q−1I + R)〉.

These are R-analogs of the usual symmetric and skew-symmetric algebras respectively. Denote Sym kR(V ) and
∧k
R(V ) the

k-th degree homogeneous component of the algebras in question and introduce the corresponding Hilbert-Poincaré series

P+(t) =
∑
k≥0

tk dim Sym kR(V ), P−(t) =
∑
k≥0

tk dim
k∧
R

(V ).

As was shown in [14], these series are always rational functions, and, therefore, each of them can be presented as a
ratio of two coprime polynomials. Denote m (resp., n) the degree of the numerator (resp., denominator) of the rational
function P−(t). Let us call the ordered pair (m|n) bi-rank of the space V or the corresponding Hecke symmetry R. It is an
analog of the super-dimension of the space V and coincides with it when R is a super-flip or its deformation. In this case
m + n = N = dim V . However, in general it is not so. By using results of [15] it is possible to construct Hecke symmetries
of the bi-rank (m|n) such thatm+ n < N .
Inwhat followsweassume the symmetryR to be skew-invertible. Thismeans that there exists an operatorΨ ∈ End (V⊗2)

such that

Tr2R12Ψ23 = σ13, (2.1)

where the (usual) trace is applied to the operator product R12Ψ23 ∈ End (V⊗3) in the second space and σ is the usual flip.
Consider two operators B : V → V and C : V → V defined as follows

B = Tr1Ψ , C = Tr2Ψ . (2.2)

These operators play a crucial role in defining R-traces mentioned in the Introduction. Thus, the operator C comes in the
following way in the formulae for the power sums

pk(L) = TrRLk := Tr(LkC), k ≥ 1

(besides, we put p0(L) := 1). As we noticed above these elements belong to the center of the algebra7 L(R).
Another family generating the center Z(L(R)) is formed by the so-called Schur functions (moreover, this family spans

Z(L(R)) as a vector space). Any such a function sλ(L) is associated with a partition λ of a non-negative integer k

λ = (λ1, λ2, . . .), 0 ≤ λi+1 ≤ λi,
∑

λi = k.

We refer the reader to [1,2] for detailed definition and properties of the Schur functions for any QMA (see footnote 4).
Observe that in general the Schur functions are not central, but span a commutative subalgebra (called characteristic) of the
QMA in question.
It is worth noticing that in any QMA the Schur functions are polynomials in the algebra generators and satisfy the

following multiplication rule

sλ(L) sµ(L) =
∑
ν

Cνλ,µsν(L)

where Cνλ,µ are the Littlewood–Richardson coefficients.
The Schur functions corresponding to single-column and single-row partitions λ = (1k) and λ = (k) respectively,

k = 0, 1, 2, . . ., are of special interest. We denote them ak(L) and sk(L) respectively. The interrelations among the functions
from the sets {ak}, {sk} and {pk} are described by the following formulae (below k ≥ 1)

(−1)kkq ak(M)+
k−1∑
r=0

(−q)rar(M) pk−r(M) = 0, (2.3)

kq sk(M)−
k−1∑
r=0

q−r sr(M) pk−r(M) = 0, (2.4)

k∑
r=0

(−1)rar(M) sk−r(M) = 0, (2.5)

7 In the sequel we do not need the operator B, it plays an analogous role in constructions related to another version of the REA:

RL2RL2 − L2RL2R = 0.
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where as usual

kq :=
qk − q−k

q− q−1
.

The relations (2.3) and (2.4) are called quantum Newton relations. They differ from the classical versions by factors
depending on q. By contrary, the relation (2.5) (calledWronski one) does not depend on q and coincides completely with its
classical counterpart.
In what follows a distinguished role is played by the following partitions for which we introduce a special notation

[m|n] :=
(
nm
)

[m|n]r :=
(
nm, r

)
[m|n]k :=

(
(n+ 1)k, nm−k

)
[m|n]kr :=

(
(n+ 1)k, nm−k, r

)
.

To visualize the structure of these partitions we give a graphical image (the Young diagram) of the partition [m|n]kr :

[m|n]kr =
m boxes

{ n boxes︷ ︸︸ ︷
. . .

...

. . .︸ ︷︷ ︸
r boxes

}
k boxes

In this notation the CH identity for the generating matrix L of the algebraL(R) reads [1]

m+n∑
i=0

(
min(i,m)∑

k=max(0,i−n)

(−1)kq2k−is
[m|n]ki−k

)
Lm+n−i = 0. (2.6)

Multiplying this identity by s
[m|n](L) and taking into account the following quadratic relations among the Schur functions

s
[m|n](L)s

[m|n]kr
(L) = s

[m|n]r
(L)s

[m|n]k
(L) (2.7)

we can rewrite the CH identity (2.6) in a factorized form(
m∑
k=0

(−q)k s
[m|n]k

(L) Lm−k
)(

n∑
r=0

q−r s
[m|n]r

(L) Ln−r
)
= 0. (2.8)

This form of the CH identity enables us to introduce the notions of even and odd eigenvalues of the matrix L. Namely, the
roots of the first (resp., second) factor in (2.8) are called even (resp., odd) eigenvalues and are denotedµi, 1 ≤ i ≤ m, (resp., νi,
1 ≤ i ≤ n). Since all coefficients coming in the factors of the product (2.8) belong to the center Z(L(R)) of the algebraL(R),
the eigenvalues µi and νi are treated to be elements of an algebraic extension of the localization Z(L(R))loc = S−1 Z(L(R))
of the center Z(L(R)) by the set S = {(s

[m|n](L))
k, k = 1, 2, . . .}.

It turns out that all Schur functions can be expressed via the eigenvalues µi and νi. Thus, for the Schur function s[m|n](L)
we have (see [2])

s
[m|n](L) 7→ s[m|n](µ, ν) =

m∏
i=1

n∏
j=1

(
q−1µi − qνj

)
. (2.9)

In a similar manner we can parameterize the power sums pk(L) = TrRLk (see [16]) :

pk(L) 7→ pk(µ, ν) =
m∑
i=1

diµki +
n∑
j=1

d′jν
k
j ∀ k ≥ 0, (2.10)

where the coefficients di and d′j (called quantum dimensions) have the form

di = q−1
m∏
p=1
p6=i

µi − q−2µp
µi − µp

n∏
j=1

µi − q2νj
µi − νj

, d′j = −q
m∏
i=1

νj − q−2µi
νj − µi

n∏
p=1
p6=j

νj − q2νp
νj − νp

. (2.11)

Example. Let us consider an example: m = 3, n = 2. In particular, this example covers the case related to the quantum
group Uq(3|2). (As was mentioned in the Introduction, in this case dim V = 3+ 2 = 5).
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The CH identity (2.6) becomes

s[3|2] L5 +
(
q−1s[3|2]1 − qs[3|2]1

)
L4 +

(
q−2s[3|2]2 − s[3|2]11 + q

2s[3|2]2
)
L3

+

(
−q−1s

[3|2]12
+ qs

[3|2]21
− q3s[3|2]3

)
L2 +

(
s
[3|2]22
− q2s

[3|2]31

)
L− qs

[3|2]32
I = 0.

The bilinear relations (2.7) read

s[3|2]s[3|2]11 = s[3|2]1s[3|2]1 s[3|2]s[3|2]12 = s[3|2]1s[3|2]2
s[3|2]s[3|2]21 = s[3|2]2s[3|2]1 s[3|2]s[3|2]22 = s[3|2]2s[3|2]2
s[3|2]s[3|2]31 = s[3|2]3s[3|2]1 s[3|2]s[3|2]32 = s[3|2]3s[3|2]2 .

(2.12)

Then multiplying the above CH identity by s[3|2] and employing these bilinear relations we arrive to the factorized form
of the CH identity:(

s[3|2]L3 − qs[3|2]1 L
2
+ q2s[3|2]2 L− q

3s[3|2]3 I
) (
s[3|2]L2 + q−1s[3|2]1 L+ q

−2s[3|2]2 I
)
= 0.

Thus, we have three even eigenvalues µ1, µ2, µ3 and two odd ones ν1, ν2. In virtue of the Vieta formula we have

q
s[3|2]1
s[3|2]

= µ1 + µ2 + µ3, q2
s[3|2]2
s[3|2]

= µ1µ2 + µ1µ3 + µ2µ3, q3
s[3|2]3
s[3|2]

= µ1µ2µ3,

−q−1
s[3|2]1
s[3|2]

= ν1 + ν2, q−2
s[3|2]2
s[3|2]

= ν1ν2.

So, we can rewrite the CH identity as follows

s2
[3|2](L− µ1)(L− µ2)(L− µ3)(L− ν1)(L− ν2) = 0.

Besides, we have the following parametrization of the Schur function s[3|2]:

s[3|2] =
3∏
i=1

2∏
j=1

(q−1µi − qνj).

The above parametrization enables us to find a parametrization of all other Schur functions (see [2] for more detail). For
example, we have

s[3|2]3 = q
−3 µ1µ2µ3

3∏
i=1

2∏
j=1

(q−1µi − qνj), s[3|2]2 = q
2 ν1ν2

3∏
i=1

2∏
j=1

(q−1µi − qνj).

Returning to the general case, we note that in order to realize the localization of the center Z(L(R)) by the the set S
we should assume that the element s[m|n] does not vanish. In virtue of (2.9), this requirement entails that µi 6= q2νj for
all couples (i, j). In the next section we shall give a full description of the exceptional set E mentioned in the Introduction
which includes all familiesµ, ν such thatµi = q2νj at least for one pairµi and νj. Thus, on the complementary set Cm+n \ E
the element s[m|n] is invertible and consequently the localization Z(L(R))loc = S−1 Z(L(R)) is well defined.

3. Elements of braided differential calculus

In this section we introduce certain elements of differential calculus on the algebras Cq[Oµ,ν] based on the approach
suggested in [3] (see also the references therein). In this approach we use the Koszul type complexes whose terms are
defined via a series of braided symmetrization and skew-symmetrization projectors. These projectors act in spacesL⊗k where
L = spanC(l

j
i) is a vector space generating the algebra L(R). Without going into detail we describe some aspects of this

method.
Let I− ⊂ L⊗2 be the subspace ofL⊗2 spanned by the left hand side of (1.2). In a sense it is a braided analog of the usual

skew-symmetric subspace. For this reason the algebraL(R) = T (L)/〈I−〉will be also denoted Sym q(L).
Furthermore, in the spaceL⊗2 there exists another subspace

I+ = spanC(R L1 R L1 + L1 R L1 R
−1),

which can be considered as an analog of the usual symmetric subspace. Then the algebra
∧
q(L) = T (L)/〈I+〉 is an analog

of the usual skew-symmetric algebra. The basic property of the subspaces I± ⊂ L⊗2 is that they are complementary, i.e.

I+
⋂
I− = {0}, I+ + I− = L⊗2. (3.1)
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Let us suppose that any k-th order homogeneous element f ∈ Sym kq(L) = Lk(R) (respectively f ∈
∧k
q(L)) can be

presented in the complete ‘‘symmetric’’ (respectively ‘‘skew-symmetric’’) form, i.e. as an element of the subspace

I(k)+ = I+ ⊗Lk−2
⋂

L⊗ I+ ⊗Lk−3
⋂
· · ·

⋂
Lk−2 ⊗ I+(

respectively, I(k)− = I− ⊗Lk−2
⋂

L⊗ I− ⊗Lk−3
⋂
· · ·

⋂
Lk−2 ⊗ I−

)
.

We call this form canonical. This presentation of homogeneous elements can be naturally realized via (skew)symmetrization
projectors

P (k)± : L
⊗k
→ I(k)±

with the natural property P (k)± P
(i)
±j = P

(k)
± where i+ j ≤ k+ 1 and P

(i)
±j stands for the projector P

(i)
± acting in the productL⊗k

on the terms with numbers j, j+ 1, . . . , j+ i− 1.
In [3] such projectors have been constructed for k = 2, 3 (also, see formulae (3.4) and (3.5) below). In general, the

problem of their explicit construction is still open.
Consider a family of complexes labelled by positive integers r

d :
k∧
q

(L)⊗ Sym pq(L)→
k+1∧
q

(L)⊗ Sym p−1q (L), k+ p = r

d((y1 · . . . · yk)⊗ (x1 · . . . · xp)) = p (y1 · . . . · yk · x1)⊗ (x2 · . . . · xp).

Here we assume that the elements y1 · . . . · yk ∈
∧k
q(L) and x1 · . . . · xp ∈ Sym

p
q(L) = Lp(R) are written in the canonical

form. This prevents us from the necessity of using any form of the Leibnitz rule. Note that we have put the factor p in the
above formula for the differential d by analogy with the classical case but in principle it can be replaced by any non-trivial
factor.
The complexes above can be put together in one complex

d :
k∧
q

(L)⊗L(R)→
k+1∧
q

(L)⊗L(R). (3.2)

We leave to the reader checking that d2 = 0. Recall, however, that before the second application of the differential d we
have to represent the element y1 · . . . · yk · x1 in the canonical form by means of the projector P

(k+1)
− .

Let us point out thatwedonot use any transposition between elements fromL(R) and those from
∧
q(L). So,we consider

the terms of the complex (3.2) to be one-sided (namely, right) L(R)-modules. Note that an attempt to introduce such a
transposition is not compatible with the restriction of the space of differential form to braided orbits (see [17] where this
problem is discussed on the example of a quantum sphere (hyperboloid)).
Now, we define the space of first order differentials on the algebras Cq[Oµ,ν]. First, we apply the differential d to the

elements TrRLk. According to our scheme, before applying the differential d to a homogeneous element TrRLk we have to
present it in the canonical form by means of the symmetrizer P (k)+ .

Conjecture 1. For the elements TrRLk ∈ Lk(R) the following relation is valid

P (k)+ TrRL
k
= P (k−1)
+2 TrRLk. (3.3)

Proposition 2. Conjecture 1 is true for the involutive symmetry R.

Without going into detail we only note that the proof is based on the fact that the element TrRLk is invariant with respect
to the operator R12R23 . . . Rk−1 k.
We consider a more interesting and more complicated case when R is not involutive. For the reader’s convenience we

reproduce here the explicit formulae for the projectors P (2)+ and P
(3)
+ from [3].

We introduce a linear operator Q : L⊗2 → L⊗2 defining its action on the basis vectors as follows:

Q(L1
.

⊗ L2̄) = R12L1
.

⊗ L2̄R
−1
12 .

Here L2̄ = R12L1R
−1
12 , and the notation

.

⊗ stands for the usual matrix product of L1 and L2̄ but their matrix elements are
tensorized in the resulting matrix instead of being multiplied. Thematrix elements of L1

.

⊗ L2̄ form a basis of the spaceL⊗2.
Explicitly, this basis is as follows

(L1
.

⊗ L2̄)
j1j2
i1 i2
= la1i1 ⊗ l

c1
b1
Rb1a2a1 i2

R−1
j1j2
c1a2 .
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(Hereafter, the summation over repeated indices is assumed.) Similarly, as a basis set of the space L⊗3 we shall use the
matrix elements of L1

.

⊗ L2̄
.

⊗ L3̄, with L3̄ = R23L2̄R
−1
23 . This basis is more suitable in working with the REA. For more detail

see [3]. To simplify the writing, we shall omit the symbol
.

⊗ in formulae below.
With the above operator Qwe introduce the projectors P (2)± by the relations

P (2)+ =
1
22q
((q2 + q−2) Id+ Q+ Q−1), P (2)− =

1
22q
(2 Id− Q− Q−1). (3.4)

These operators are complementary in the following sense

P (2)+ + P
(2)
− = Id, P (2)± P

(2)
± = P

(2)
± , P (2)± P

(2)
∓ = 0

(see formula (3.1) above). The first relation is evident, the others can be verifiedwith the use of the characteristic polynomial
for Q.
The projector P (3)+ : L⊗3 → L⊗3 reads

P (3)+ =
26q
4 · 32q

(
P (2)
+1P

(2)
+2P

(2)
+1P

(2)
+2P

(2)
+1 − a P

(2)
+1P

(2)
+2P

(2)
+1 + b P

(2)
+1

)
=

26q
4 · 32q

(
P (2)
+2P

(2)
+1P

(2)
+2P

(2)
+1P

(2)
+2 − a P

(2)
+2P

(2)
+1P

(2)
+2 + b P

(2)
+2

)
(3.5)

where

a = (q4 + q2 + 4+ q−2 + q−4)/24q, b = 42q/2
8
q.

Proposition 3. For an arbitrary Hecke type symmetry R the formula (3.3) is valid for k = 2 and k = 3.

Proof. For k = 2 the claim means that the element TrRL2 ∈ Sym 2q(L), i.e. it is already symmetrized. To verify this we
calculate the action of P (2)+ on the element TrRL2. For this purpose we use the following identity which can be easily proved
with the use of (2.1) and (2.2)

TrRL2 ≡ TrR(12)(L1L2̄R12).

Using the definition of Q±1 and the cyclic property of the R-trace

TrR(12...k)(R±1ii+1M12...k) = TrR(12...k)(M12...kR
±1
ii+1), ∀M, 1 ≤ i ≤ k− 1,

we get:

P (2)+ (TrRL
2) = 2−2q TrR(12)

(
(q2 + q−2 + 2)L1L2̄R12

)
= TrRL2.

Therefore, TrRL2 ∈ Im(P
(2)
+ ) = Sym 2q(L).

Turn now to the element TrRL3. Below we use the shorthand notation Ri := Rii+1. Using the identity

TrRL3 ≡ TrR(123)
(
L1L2̄L3̄R2R1

)
we first find

P (2)
+2(TrRL

3) = 2−2q TrR(123)
(
L1L2̄L3̄(2(R1R2 + R2R1)− ξR1 + ξR1R2R1)

)
, (3.6)

where ξ := q− q−1. To obtain the above result we used the cyclic property of R-trace and the following relation

RiLk̄ = Lk̄Ri, ∀i, k : i 6= k− 1, k.

Now we shall calculate the action P (3)+ (TrRL3) and compare it with (3.6). As can be seen from the structure of P
(3)
+ given in

the second line of (3.5), we actually have to calculate the action of P (2)
+2P

(2)
+1 and of its square (P

(2)
+2P

(2)
+1)

2 on the right hand
side of (3.6). These actions lead to transformation of R-matrix multipliers at L1L2̄L3̄ under the sign of R-trace. We shall not
reproduce the calculations in full detail constraining ourselves by writing down some key intermediate results. First of all
we note that the matrix structures

IA := R1R2R1 + R1 + R2, IB := R1R2 + R2R1 − ξ(R1 + R2)

are invariant with respect to the action of P (2)
+1 and P

(2)
+2 which precisely means that

P (2)
+1,2

(
TrR(123)(L1L2̄L3̄ · IA,B)

)
= TrR(123)(L1L2̄L3̄ · IA,B).
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In terms of these invariants the transformation of matrix structures under the action of the operator P (2)
+1 reads:

P (2)
+1 : R1 → R1

R2 → 2−2q (2IA − ξ IB − (ξ 2 + 2)R1)

R1R2R1 → 2−2q ((ξ 2 + 2)IA + ξ IB − 2R1)

R1R2 + R2R1 → 2−2q (2ξ IA + 4IB + 2ξR1).

The action of P (2)
+2 are obtained from the above formulae by changing R1 ↔ R2.

Representing the matrix structure in (3.6) in the form

2(R1R2 + R2R1)− ξR1 + ξR1R2R1 ≡ ξ IA + 2IB + ξR2
we find

P (2)
+2P

(2)
+1 : ξ IA + 2IB + ξR2 →

24q + 4

24q
ξ IA +

(24q − ξ
2)

24q
2IB +

(22q − 2)
2

24q
ξR2.

The action of (P (2)
+2P

(2)
+1)

2 leads to a more cumbersome expression:

(P (2)
+2P

(2)
+1)

2
: ξ IA + 2IB + ξR2 →

(
1+

8(2+ 22q(2
2
q − 2))

28q

)
ξ IA +

(
1−

2ξ 2(2+ 22q(2
2
q − 2))

28q

)
2IB +

(22q − 2)
4

28q
ξR2.

To get the action of the operator P (3)+ we should compose the linear combination in accordance with (3.5):

P (3)+ (TrRL
3) =

26q
4 · 32q

((P (2)
+2P

(2)
+1)

2
− a P (2)

+2P
(2)
+1 + b) P

(2)
+2(TrRL

3).

On taking into account (3.6), the above results for the action of powers of P (2)
+2P

(2)
+1 together with the values of coefficients a

and b, we come to the formula (3.3). �

Note that in order to prove the conjecture for k ≥ 4 we need the explicit form of the projectors P (k)+ .
As follows from the conjecture above the result of applying d to the element TrRLk equals k P

(k−1)
+2 d1(TrRLk) where d1

stands for the differential (3.2) applied to the first factor. Whereas the other factors are assumed to be symmetrized via the
projector P (k−1)

+2 . However, this projector commutes with d1. Therefore, we can apply the operator d1 first and then apply
the symmetrizer P (k−1)

+2 to the result.
Upon writing TrRLk in the explicit form
TrRLk = lp2p1 l

p3
p2 . . . l

pk
pk−1C

p1
pk

we have
d1(TrRLk) = d(lp2p1)⊗ l

p3
p2 . . . l

pk
pk−1C

p1
pk .

(Here all indices run from 1 till N = dim V .) Though in this writing we do not apply the projector P (k−1)
+2 , it does not affect

the element d1(TrRLk) but only its presentation.
Now, we are able to introduce the spaceΩ1(Oµ,ν) of differential 1-forms on the algebra Cq[Oµ,ν] as the quotient

Ω1(Oµ,ν) =

1∧
q

(L)⊗ Cq[Oµ,ν]/〈d(TrRL1), . . . , d(TrRLm+n)〉

where the denominator is treated to be a submodule of the right Cq[Oµ,ν]-module
∧1
q(L)⊗ Cq[Oµ,ν].

Thoughwe do not need spaces of higher order differential forms, wewant tomention their construction. Thus, we define
the space Ωk(Oµ,ν) to be the quotient of the right Cq[Oµ,ν]-module

∧k
q(L) ⊗ Cq[Oµ,ν] over submodule generated by

elements ω · d(TrRLi), i = 1, . . . ,m+ nwhere ω runs over the space
∧k−1
q (L). Note that the first k factors of the elements

ω · d(TrRLi)must be presented in the canonical form, i.e. skew-symmetrized.

4. Cotangent modules over braided orbits

In the classical case all spaces Ωk (Oµ,ν) constructed in the previous section are vector bundles provided that the
corresponding orbit is generic. In what follows we restrict ourselves to the vector bundle of 1-forms and describe (the space
of sections of) this bundle in the spirit of the Serre approach as a projective module over the corresponding coordinate ring.
We shall call it the cotangent module. More precisely, we construct such a module over the algebra Cq[Oµ,ν] for generic µ
and ν. The values of these parameters forwhich the cotangentmodule does not exist will be included in an exceptional set E .



1420 D. Gurevich, P. Saponov / Journal of Geometry and Physics 60 (2010) 1411–1423

Let us set

aij(1) = C
i
j , aij(k) = l

p1
j l
p2
p1 . . . l

pk−1
pk−2C

i
pk−1 , k ≥ 2, 1 ≤ i, j ≤ N.

Then we have

d(TrRLk) = (d l
j
i)⊗ a

i
j(k).

Consider a matrix

A =
(
a(1), a(2), . . . , a(m+ n)

)
where a(k), 1 ≤ k ≤ m+ n is the column(

a11(k), a
2
1(k), . . . , a

N
1 (k), a

1
2(k), a

2
2(k), . . . , a

N
2 (k), . . . , a

1
N , a

2
N(k), . . . , a

N
N

)t
.

Hereafter t stands for the transposition. The column a(k) is treated to be the ‘‘gradient’’ of the power sum TrRLk. Thus, the
size of the matrix A is N2 × (m+ n).
Consider another matrix B of the size (m+ n)× N2 defined as follows

B =
(
b(1), b(2), . . . , b(m+ n)

)t
where the row b(k) reads

b(k) =
(
b11(k), b

1
2(k), . . . , b

1
N(k), b

2
1(k), b

2
2(k), . . . , b

2
N(k), . . . , b

N
1 , b

N
2 (k), . . . , b

N
N

)
and

bji(1) = δ
j
i, bji(k) = l

p1
i l
p2
p1 . . . l

j
pk−2 , k ≥ 2, 1 ≤ i, j ≤ N.

Now, we calculate the matrix product B · A:

B · A =


TrRI TrRL . . . TrRLm+n−1

TrRL TrRL2 . . . TrRLm+n

TrRL2 TrRL3 . . . TrRLm+n+1

. . . . . . . . . . . .

TrRLm+n−1 TrRLm+n . . . TrRL2(m+n−1)

 .
Formula (1.4) allows us to express the entries of this matrix via the eigenvalues µ and ν

B · A =


p0(µ, ν) p1(µ, ν) . . . pm+n−1(µ, ν)
p1(µ, ν) p2(µ, ν) . . . pm+n(µ, ν)
p2(µ, ν) p3(µ, ν) . . . pm+n+1(µ, ν)
. . . . . . . . . . . .

pm+n−1(µ, ν) pm+n(µ, ν) . . . p2(m+n−1)(µ, ν)

 . (4.1)

Now, we are going to calculate the determinant of the matrix (4.1) and to find the conditions under which this matrix is
invertible. Using relations (2.10) we can factorize this matrix into the product of two square (m+ n)× (m+ n)matrices

d1 . . . dm d′1 . . . d′n
d1µ1 . . . dmµm d′1ν1 . . . d′nνn
d1µ21 . . . dmµ2m d′1ν

2
1 . . . d′nν

2
n

. . . . . . . . . . . . . . .

d1µm+n−21 . . . dmµm+n−2m d′1ν
m+n−2
1 . . . d′nν

m+n−2
n

d1µm+n−11 . . . dmµm+n−1m d′1ν
m+n−1
1 . . . d′nν

m+n−1
n




1 µ1 µ21 . . . µm+n−11
. . . . . . . . . . . . . . .

1 µm µ2m . . . µm+n−1m
1 ν1 ν21 . . . νm+n−11
. . . . . . . . . . . . . . .

1 νn ν2n . . . νm+n−1n

 .

Now, on taking out the factors di and d′i from the determinant of the first matrix we get that the determinant of the matrix
(4.1) equals

det(B · A) =
m∏
i=1

di
n∏
j=1

d′j

(∏
i<j

(µi − µj)
∏
i,j

(µi − νj)
∏
i<j

(νi − νj)

)2
.

Here we used the formula for the determinant of a Wronski matrix.
Again, by means of formulae (2.11), we conclude that the matrix (4.1) is invertible iff

µi 6= q2µj, νi 6= q2νj, µi 6= q2νj 1 ≤ i ≤ m, 1 ≤ j ≤ n. (4.2)

Let us unite all values of (µ, ν)which do not satisfy this condition into the set E .
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Now, for all values of the parameters which do not belong to E we can construct the cotangent module on the algebra
Cq[Oµ,ν]. Let us denote C = (B · A)−1 and consider the N2 × N2 matrix e = A · C · B. It can be easily seen that the matrix e
is an idempotent: e2 = e. Thus, the right Cq[Oµ,ν]-module

M = eCq[Oµ,ν]
⊕N2

is projective. It is generated by the ‘‘gradients’’ of the power sums TrRLk, 1 ≤ k ≤ m+ n. The complementary module

M = eCq[Oµ,ν]
⊕N2 , where e = I − e

gives an explicit realization of the spaceΩ1(Oµ,ν) as a projective module.
Concluding this section, wewant tomake the following observation. Any generic orbit in gl(m)∗ can be given via different

(but equivalent) systems of equations. Thus, instead of the system (1.1) we can consider that obtained by fixing the values
of the coefficients of the CH identity (namely, the elementary symmetric polynomials in eigenvalues). In a general case we
have a similar situation: fixing values of the eigenvalues of the generating matrix L is equivalent to using the system (1.4).
In order to show this equivalence we first express all coefficients of the CH polynomial (the leading coefficient included)

via the power sums TrRLk, 1 ≤ k ≤ m+n. To this endwe express the elementary symmetric functions ar(L), 0 ≤ r ≤ m+n
via these sums by employing formulae (2.3). Then by using the Jacobi–Trudy formulae (see [18]) we can express the
coefficients [m|n]k and [m|n]r of the factorized CH identity (2.8) via the functions ar(L), 0 ≤ r ≤ m+n. Thus, all coefficients
of the CH identity (2.6) can be realized as some polynomial expressions in the power sums in question. It remains to note
that any elementary symmetric (in the usual sense) polynomial in the roots of the CH identity can be presented as the
corresponding coefficient of the CH polynomial divided by s[m|n] and consequently, as a rational function in the power sums
TrRLk, 1 ≤ k ≤ m+ n.

5. Extension to braided NC orbits

Besides the REA L(R) there are known other quantum matrix algebras with similar properties of generating matrix L.
For these algebras certain quotients looking like braided orbits can also be defined. The well known example is the algebra
U(gl(m|n)). Its generatingmatrix satisfies a CH identity with central coefficients. Also, a formula analogous to (2.10) is valid.
Thus, the technique developed in the previous section can be applied for definition of analogs of generic orbits inU(gl(m|n)).
The simplest way to realize this program is to pass to the so-called modified Reflection Equation Algebra (mREA). The

defining relations of mREAL(R, h̄) are similar to that ofL(R) (1.2) but with linear terms in the right hand side:

R L̂1 R L̂1 − L̂1 R L̂1 R = h̄(R L̂1 − L̂1 R), (5.1)

where L̂ = ‖̂lji‖, 1 ≤ i, j ≤ dim V and L̂1 = L̂⊗ 1. All objects related to the mREAL(R, h̄)will be denoted by hatted letters.
We introduced a parameter h̄ in the definition of the mREA in order to present this algebra as a deformation of L(R) in

the case when the Hecke symmetry R = R(q) is a deformation of the super-flip R(1) ∈ End (V⊗2)where V is a super-space
of super-dimension (m|n). In this case themREA turns into the algebraU(gl(m|n)h̄) as q→ 1 (the subscript h̄means that we
have introduced the factor h̄ in the Lie bracket of the super-Lie algebra gl(m|n)). For this reason we treat the algebraL(R, h̄)
to be a braided analog of the enveloping algebra U(gl(m|n)h̄).
Observe that for q 6= 1 the algebras L(R) and L(R, h̄) are isomorphic to each other (though it is not so for the algebras

Sym (gl(m|n)) and U(gl(m|n)h̄)). In order to construct their isomorphism we put

L = L̂−
h̄
ξ
, where ξ = q− q−1. (5.2)

Then, the system (1.2) turns into that (5.1). However, this isomorphism fails as q→ 1.
Now, we state that the matrix L̂ obeys the CH identity

m+n∑
k=1

ĉk(̂L)̂Lk = 0, (5.3)

with central coefficients: ĉk ∈ Z(L(R, h̄)). In order to find the corresponding CH polynomial we should make the shift (5.2)
in the CH (1.3) and reduce the resulting expression

m+n∑
k=1

ck

(̂
L−

h̄
ξ

) (̂
L−

h̄
ξ

)k
= 0

to the form (5.3).
By straightforward but tedious computations it is possible to show that the coefficients ĉk(̂L) of the polynomial in (5.3)

have a finite limit as q → 1. (Note that in the case n = 0 this property was proven in [19].) Thus, by passing to the limit
q→ 1 we get the CH identity for the matrix L̂ generating the algebra U(gl(m|n)h̄) such that the coefficients of this identity
are central polynomials in the generators of the algebra in question.
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Denote µ̂i, 1 ≤ i ≤ m, and ν̂j, 1 ≤ j ≤ n, the roots of the equation

m+n∑
k=1

ĉk(̂L)tk = 0 (5.4)

corresponding respectively to µk and νk. Namely, we have µ̂k = µk +
h̄
ξ
, ν̂k = νk +

h̄
ξ
. The roots µ̂k and ν̂k are called

respectively even and odd eigenvalues of the matrix L̂.
Expressing the power sums p̂k(̂L) = TrR̂Lk via these eigenvalues we get the formula analogous to (2.10) but with different

expressions for quantum dimensions:

d̂i = q−1
m∏
p=1
p6=i

µ̂i − q−2µ̂p − q−1h̄
µ̂i − µ̂p

n∏
j=1

µ̂i − q2̂νj + qh̄
µ̂i − ν̂j

, (5.5)

d̂′j = −q
m∏
i=1

ν̂j − q−2µ̂i − q−1h̄
ν̂j − µ̂i

n∏
p=1
p6=j

ν̂j − q2̂νp + qh̄
ν̂j − ν̂p

. (5.6)

In order to prove these formulae it suffices to observe that

TrRf (L) =
m∑
i=1

f (µi)di +
n∑
j=1

f (νi)d′i

where di and d′j are defined by (2.11) and f (t) is an arbitrary polynomial.
Taking the limit q→ 1 in the CH (5.4), we get a formula for the power sums in the algebraU(gl(m|n)). Namely, we obtain

that in this algebra the quantum dimensions are

d̂i =
m∏
p=1
p6=i

µ̂i − µ̂p − h̄
µ̂i − µ̂p

n∏
j=1

µ̂i − ν̂j + h̄
µ̂i − ν̂j

,

d̂′j = −
m∏
i=1

ν̂j − µ̂i − h̄
ν̂j − µ̂i

n∏
p=1
p6=j

ν̂j − ν̂p + h̄
ν̂j − ν̂p

.

Going back to the general case we consider the following quotients of the algebrasL(R, h̄)

Cq[Ôµ,ν] = L(R, h̄)/〈TrRL− p̂1(µ, ν), . . . , TrRLm+n − p̂m+n(µ, ν)〉,

where the functions p̂k(µ, ν) are defined by (2.10) but with quantum dimensions given by (5.5) and (5.6). These quotients
are called braided NC orbits.
Let us define the projective module M̂µ,ν similar to Mµ,ν . We set M̂µ,ν = êCq[Ôµ,ν]

⊕N2 where ê is defined by a formula
similar to that for e. The onlymodification consists in defining the exceptional set Ê of the values µ̂, ν̂ for which construction
of the module M̂µ,ν fails. The set Ê contains all parameters µ̂, ν̂ for which at least one of the following conditions fails is not
fulfilled

µ̂i − q−2µ̂j − q−1h̄ 6= 0, ν̂j − q2̂νj + qh̄ 6= 0, µ̂i − q2̂νj + qh̄ 6= 0.

By analogywith the previous case, theCq[Ôµ,ν]-module M̂µ,ν is called cotangent one. Upon taking the limit q→ 1we get
the cotangent module over a NC super-orbit. The corresponding exceptional set is a specialization of Ê where we put q = 1.
In conclusion we would like to emphasize that the family of regular orbits in a classical (or super-) case is bigger than

in the case of a braided deformation. For instance, compare this family for the classical case gl(2) and that for its braided
(NC) counterpart. If in the former case the only restriction on the eigenvalues is µ1 6= µ2 in the latter case there are two
restrictions µ̂1 6= q2µ̂2 + q−1h̄ and µ̂2 6= q2µ̂1 + q−1h̄. In general, they coincide with each other iff q = 1 and h̄ = 0.
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