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Algebra and quantum geometry
of multifrequency resonance

M. V. Karasev and E. M. Novikova

Abstract. The algebra of symmetries of a quantum resonance oscillator
in the case of three or more frequencies is described using a finite (minimal)
basis of generators and polynomial relations. For this algebra, we construct
quantum leaves with a complex structure (an analogue of classical symplec-
tic leaves) and a quantum Kähler 2-form, a reproducing measure, and also
the corresponding irreducible representations and coherent states.

Keywords: frequency resonance, algebra of symmetries, non-linear com-
mutation relations, quantum Kähler forms, coherent states.

§ 1. Introduction

In wave and quantum mechanics of multidimensional systems, a fundamental
role is played by states localized near a stable equilibrium [1]–[3]. The harmonic
part of such systems, namely, the oscillator, determines the principal component
of motion, while the anharmonic part is a perturbation. After quantum averaging,
this perturbation will commute with the harmonic part, that is, it specifies an
element in the commutant (the algebra of symmetries). When the frequencies of
the harmonic part are in resonance, the algebra of symmetries is non-commutative.
This non-commutativity gives rise to a non-trivial dynamics of the averaged system
and produces several interesting effects.

In classical mechanics, the symmetries of resonance oscillators have been studied
for a long time (see, for example, [4], [5] and the references in the fundamental
survey [6]). The Poisson structure on the space of symmetries has been studied in
several particular cases of resonance, for example, in [7]–[9].

It was shown in [10] that the algebra of symmetries of a general resonance oscil-
lator is an algebra with finitely many generators and polynomial relations. It is
called a resonance algebra.

The harmonic part of the original system is a Casimir element (the centre) of the
resonance algebra. The averaged anharmonic part determines another Hamiltonian
on the resonance algebra. In the stable case, when all the resonance frequencies
are positive, this Hamiltonian corresponds to a quasi-particle arising from the reso-
nance. We call this quasi-particle a gyron. It turned out that the description of the
resonance algebra itself and the analysis of the gyron states (precessions) gave rise
to the appearance of unusual quantum geometry [11]–[14]. The new algebraic and
geometric objects discovered here enabled one to solve the old problem of finding
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the asymptotic behaviour of the spectrum and wave states in nano- and microzones
near resonances.

The resonance problem under consideration has two important aspects. Firstly,
it covers a wide range of basic models in wave optics and quantum nanophysics.
Secondly, it turned out that this problem leads to an interesting class of algebras
defined by finitely many generators and (in general non-linear) polynomial rela-
tions. One can construct a complete theory of irreducible representations of such
algebras, including a quantum-geometric generalization of the well-known orbit
method (originally developed for Lie algebras [15]).

Systematic studies of quantum algebras with non-linear relations were initiated
by the schools of Maslov and Faddeev [16]–[25] in the 1970s, although the first
attempts to use such algebras were made much earlier by physicists.

For a long time, the list of physical systems, where algebras with non-linear
relations play a significant role in the description of the spectrum and dynamics,
was confined to infinite-dimensional field systems and spin chains (see the refer-
ences in [22]). Examples of finitely generated non-Lie algebras whose properties
manifest themselves in fundamental effects of quantum mechanics (the Zeeman
and Zeeman–Stark effects) were discovered and studied in detail in [26]–[28]. The
structure of these families is similar to that of the algebras considered in [16]: the
number of their generators coincides with the dimension of the spectrum.

The algebras discovered in [26]–[28] are quantum algebras, that is, deformations
of certain classical Poisson algebras (with a polynomial Poisson tensor). The res-
onance algebras corresponding to multifrequency quantum oscillators, which were
found in [11]–[13], also belong to the class of quantum algebras, but the number of
their generators generally exceeds the dimension of the spectrum.

The quantum oscillator with frequencies f1, . . . , fn is defined by the Hamiltonian

Ĥ = −�2

2
Δ +

1
2
(f2

1 q
2
1 + · · · + f2

nq
2
n) −

�

2
(f1 + · · · + fn).

This operator acts on variables qj in the space L2(Rn). We assume that the parame-
ter � is positive and, for simplicity, consider only the stable case fj > 0, j = 1, . . . , n.

We define the annihilation operators

ẑj =

√
fj
2
qj +

�√
2fj

∂

∂qj
(1.1)

and consider their adjoint operators ẑ∗j . The following relations hold:

[ẑj , ẑk] = 0, [ẑk, ẑ∗j ] = �δj,k. (1.2)

By introducing the action operators Ŝj = ẑ∗j ẑj , j = 1, . . . , n, one can write the
oscillator Hamiltonian as the scalar product of the frequency vector and the action
operator vector:

Ĥ = 〈f, Ŝ〉. (1.3)

The action operators commute with each other, and their common spectrum
forms a lattice of step � in n-dimensional space: Spectr(Ŝ) = {�k | k ∈ Zn+}.

The study of the algebra of symmetries of the operator 〈f, Ŝ〉 can be reduced
to that of simple resonance cases, in which the frequencies f ∈ Nn are integer and
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simple, that is, no pair of frequencies has a non-trivial common divisor (see, for
example, [10]). We consider precisely such resonance cases.

It follows from the relations (1.2) that the algebra of symmetries of the reso-
nance oscillator, that is, the algebra of operators in L2(Rn) commuting with 〈f, Ŝ〉,
is generated by the elements

(ẑ∗)r ẑl, where 〈f, l − r〉 = 0, l, r ∈ Z
n
+. (1.4)

We note that the generators (ẑ∗)r ẑl are not independent and satisfy several identi-
ties.

In classical mechanics, the functions z rzl satisfying the condition 〈f, l − r〉 = 0
are called resonance normal forms (see [5], [29]). They determine the algebra of
functions that are in involution with the classical resonance oscillator. As shown
in [10], one can choose a finite basis of ‘minimal ’ generators in this infinite family
of generators. A minimal basis also exists in the quantum case.

Once this first non-trivial fact is established, the following problem arises: des-
cribe the relations holding in the associative algebra generated by this basis. In
other words, it is required to determine the algebra of symmetries of the resonance
oscillator not via its specific representation by the (minimal) normal forms (1.4)
but as an abstract algebra with finitely many generators and algebraic relations.
We call it a resonance algebra.

In the framework of classical mechanics, this problem can be reformulated as
follows: find the minimal algebraic manifold with algebraic Poisson structure, and
a canonical map of the standard phase space R2n to this manifold such that this
map is in involution with the resonance oscillator 〈f, S〉.

Since the Hamiltonian trajectories are circles, we come to the problem of the
algebraic description of the Poisson reduction of the space R2n by a circle action
(for details of general reduction by circle actions see, for example, [30]). This
problem was solved in [10] in the case of general resonance. Other approaches to
some degenerate cases of resonance were developed in [7], [9].

We note that the space of frequencies is endowed with a natural notion of arith-
metic equivalence under the action of the group SL(n,Z) of integer matrices with
unit determinant. However, the resonance algebras and Poisson manifolds of arith-
metically equivalent sets of frequencies can be essentially different. For exam-
ple, although any set of coprime frequencies is arithmetically equivalent in the
two-dimensional case to the set of unit frequencies 1:1, the resonance algebra for
the first set is generally determined by non-linear commutation relations and can-
not be reduced to a finite-dimensional Lie algebra, while the resonance algebra
for the second set is the simple three-dimensional Lie algebra su(2). Thus, arith-
metic equivalence does not imply algebraic equivalence. On the other hand, sets
of frequencies that differ only by permutations are certainly equivalent, both arith-
metically and algebraically. Furthermore, a set of frequencies having a common
integer divisor is algebraically equivalent to the same set with this divisor deleted.
Moreover, any set of frequencies can always be reduced in the algebraic sense
to elementary sets, where the frequencies are pairwise coprime (see [10]). It is
such elementary sets of frequencies that will be considered in this paper.

One cannot say that the quantum version of the problem of the resonance algebra
simply duplicates the classical version. Of course, it is easy to describe the quantum
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resonance algebra in the two-frequency case (this was done in [12], [13] along with
a description of the classical algebra). But the case of quantum multifrequency
resonance for n � 3 is much more complicated than its classical version.

The cases of three or more frequencies differ essentially from the two-frequency
case because the resonance lattice of ‘creation’ vectors (of transitions between points
of the spectrum of the action operators) has an anomaly [10]. In the present paper,
we show that one can determine maximal normal sublattices in this anomalous
lattice. They play a significant role in the description of both the Poisson tensor
and the quantum relations of the resonance algebra. The same sublattices are used
to construct coherent transformations (in this case, the normality of the sublattices
removes the problem of ordering the ‘creation’ operators).

Since the multifrequency case exhibits non-commuting ‘creations’, we must intro-
duce [10] the notion of commutator between the vectors of an integer lattice. The
sublattices of normal resonance can alternatively be defined as maximal commu-
tative sublattices. The commutator between the vectors of a lattice determines
brackets between the ‘creation’–‘creation’ and ‘creation’–‘annihilation’ coordinates
in the resonance Poisson algebra.

In the quantum multifrequency case we must introduce several new operations on
the integer resonance lattice. Describing the resonance algebra in this case requires
more arithmetic. In particular, we encounter interesting ‘structure polynomials’ on
the integer lattice, which play the role of structure functions in quantum commu-
tation relations.

Besides the description of the resonance algebra, the problem under considera-
tion also contains the following subproblem: that of constructing the irreducible
representations of this algebra. Here it unexpectedly turns out that the classical
geometric objects (Poisson tensor, symplectic leaves) cannot be used to construct
quantum irreducible representations, so that there is no direct analogy with the
orbit method. For example, the dimension of a quantum irreducible representation
cannot be expressed in terms of the classical Liouville volume of symplectic leaves.

In the general quantization scheme, it is known that the dimension is determined
by the reproducing measure on a quantum leaf, and the irreducible representations
of the algebra are constructed over the same leaf [31], [32]. In the present paper,
we explicitly describe quantum leaves for the multifrequency oscillator. The con-
struction is based on the group structure of the resonance lattice. This enables us
to introduce a universal family of complex manifolds determined only by the reso-
nance frequencies and oscillator eigenvalues. On one hand, these manifolds can be
embedded in the resonance Poisson manifold as the closures of symplectic leaves.
Hence the classical closed Kirillov 2-form (with singularities) is defined on them.
Being Kähler with respect to the complex structure, this form has no reproducing
measure. On the other hand, the same manifolds admit a quantum Kähler 2-form
without singularities,1 for which a reproducing measure exists. This measure gives
a formula for the dimension of an irreducible representation of the resonance alge-
bra and also determines a Hilbert structure on the representation space. By these
means, the operators of an irreducible representation can be constructed explicitly
as differential operators with polynomial coefficients. The order of such an operator
is generally greater than 1. This corresponds to the fact that the relations in the

1This form is closed but degenerate. Hence it gives an example of a vortex structure [33].
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algebra are non-linear and, moreover, the complex polarization is non-invariant.
Only in the case of isotropic resonance, where all the frequencies are equal to 1, the
resonance algebra is a Lie algebra, the polarization is invariant, and the operators
of an irreducible representation are of order 1.

The quantum 2-form and the corresponding reproducing measure introduced
in this context are called the objects of quantum geometry. In the classical limit,
outside the singular points, these objects respectively become the classical Kirillov
form and the Liouville measure on symplectic leaves, but this limit cannot be
realized near singularities (on the closure of the leaves). In principle, one can
try to avoid the use of quantum geometry in this problem and deal only with
classical leaves and general geometric quantization for non-invariant polarizations
following the scheme given in [34], but then the whole construction would be much
more complicated and the operators of an irreducible representation would contain
singularities and be pseudo-differential rather than differential as they are in our
version (see the discussion in [14], [31], [32]).

We also give a simple formula for coherent transformations intertwining the
original representation of the symmetry algebra of the resonance oscillator with its
irreducible representations on the space of antiholomorphic sections of a Hermitian
line bundle over quantum leaves. The resulting coherent states of the resonance
oscillator also enable us to realize representations of the resonance algebra on the
space of functions over Lagrangian submanifolds of the quantum leaf. This is con-
venient for calculating the semiclassical asymptotics (see [13], [14]). In particular,
this realization uses the phase function (action) generated by a quantum 2-form.

§ 2. Minimal resonance vectors

A set of vectors with integer Cartesian coordinates in R
n is called a lattice if

it is a semigroup with respect to addition.
We fix a frequency vector f ∈ N

n. The resonance lattice R = R[f ] is defined to
be the set of all integer vectors in R

n that are orthogonal to the frequency vector.
Thus, we have σ ∈ R if all the coordinates σj are integer and

〈f, σ〉 = 0.

Such vectors σ are called resonance vectors.
The intersections of the resonance lattice R with the Cartesian sectors are called

normal sublattices. Each of the Cartesian coordinates preserves its sign on such
sublattices. These sublattices can be indexed as follows:

Rj ,Rjk,Rjkl, . . . , (2.1)

where the superscripts indicate the indices of those Cartesian coordinates that must
be non-negative (and the others non-positive). In intersections of these sublat-
tices, the corresponding coordinates are identically zero. Thus, in the intersection
Rj ∩ Rjk, the coordinate with index k is zero, that with index j is non-negative,
and the others are non-positive.

The total number of normal resonance sublattices (2.1) is given by the formula(
n

1

)
+
(
n

2

)
+
(
n

3

)
+ · · · +

(
n

n− 1

)
= 2n − 2.

Together they cover the entire resonance lattice R.
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When n = 2, there are only two normal lattices, R1 and R2. They consist of
two-dimensional integer vectors lying on the line orthogonal to the frequency vector
f ∈ N

2 on either side of the origin 0.
When n = 3, there are six normal resonance sublattices:

R1,R2,R3,R12,R23,R31 ⊂ Z
3.

They correspond to the six sectors into which Cartesian planes divide the resonance
plane orthogonal to the frequency vector f ∈ N3.

Definition 2.1. A non-zero resonance vector is said to be minimal if it cannot be
written as the sum of two non-zero vectors in a normal sublattice.

It is natural to consider the set M of all minimal vectors as a set of elementary
generators of the resonance lattice. The notion of a minimal vector was introduced
in somewhat different terms in [10], where the following completeness theorem was
also proved: any resonance vector can be represented as a linear combination of
minimal vectors with positive integer coefficients. This result can be improved.

A subset of the resonance lattice is said to be normal if it lies in one of the
normal resonance sublattices.

A resonance vector is said to be internal if it belongs to only one normal sub-
lattice. Otherwise it is called a face vector.

Theorem 2.1. Any resonance vector σ can be decomposed into a sum of minimal
vectors with non-negative integer coefficients :

σ =
∑

κ∈Mσ

nσκ κ, nσκ ∈ Z+, Mσ ⊂ M. (2.2)

Here Mσ stands for the set of minimal vectors in the intersection of all normal
sublattices containing σ. In particular, Mσ is a normal subset.

Proof. We assume that σ is not minimal. Then it can be decomposed into a sum
σ = κ′ +κ′′, where κ′ and κ′′ lie in a normal sublattice containing σ. If κ′ and κ′′

are minimal, then the proof is complete. If at least one of them is not minimal, then
we again decompose it into a sum of two vectors of the same normal lattice and
so on. The procedure stops after finitely many steps because the integer components
of the decomposed vector are represented at each step as sums of integers of the
same sign and zeros (by the definition of a normal sublattice).

We note that the decomposition (2.2) is generally non-unique.
For example, in the three-frequency case f1 = 1, f2 = 2, f3 = 3, the resonance

vector σ = (2,−4, 2) has two decompositions into a sum of minimal vectors:

σ = 2κ, σ = κ
′ + κ

′′,

where κ = (1,−2, 1), κ
′ = (2,−1, 0), and κ

′′ = (0,−3, 2).
Furthermore, the number of terms in (2.2) does not exceed the total number

M
def= #M of minimal resonance vectors. It was proved in [10] that M is finite.
We give an explicit description of the set of minimal resonance vectors in the

case n = 3.
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First, we note that it suffices to consider only the case of coprime frequencies.
Indeed, if two frequencies, say, f1 and f2, have a common divisor:

f1 = mf ′1, f2 = mf ′2,

then the situation is easily reduced to the set of frequencies f ′1, f
′
2, f3. This reduc-

tion is done as follows. We first reduce the situation to the case when f3 is coprime
to m. Then we use the following fact: (σ1, σ2, σ3) is a minimal resonance vector for
the set of frequencies (f1, f2, f3) if and only if (σ1, σ2,mσ3) is a minimal resonance
vector for the set of frequencies (f ′1, f

′
2, f3).

For example, the study of the resonance 3 : 6 : 2 can be reduced to that of the
resonance2 1 : 1 : 1.

For the sake of simplicity, we consider only the case of positive frequencies (one
can similarly treat the cases when some frequencies are negative). Therefore we
assume that the following conditions hold:

(A) the frequencies are pairwise coprime,
(B) all the frequencies are positive.
Consider the Diophantine equation

μf1 + νf2 + f3 = 0 (2.3)

for unknown integers μ and ν. We use the following simple assertion.

Lemma 2.1. Equation (2.3) has a unique solution satisfying the condition

0 � ν � f1 − 1. (2.4)

In particular, if f1 = 1, then this solution is μ= − f3, ν=0. If f1 � 2, then ν� 1.

If f1 � 2, then for each l = 1, 2, . . . , f1 − 1, we write

ν(l) = lν (modf1), μ(l) = − lf3 + ν(l)f2
f1

,

where ν is the solution of (2.3) satisfying (2.4). Both μ(l) and ν(l) are integers and
0 � ν(l) � f1 − 1. Of course, for l = 1 we have μ(1) = μ, ν(1) = ν.

Theorem 2.2. In the three-frequency case, under conditions (A) and (B), the
minimal vectors in the resonance lattice R = R23 ∪ R31 ∪ R12 ∪ R1 ∪ R2 ∪ R3

have the following structure.
a) If f1 = 1, then there are no internal minimal vectors in the sublattice R23.
b) If f1 � 2, then all internal minimal vectors in R23 are determined by the

sequence
(μ(l), ν(l), l), l = 1, . . . , f1 − 1, (2.5)

and the vector with index l is present in (2.5) only if

ν(l) < ν(j), j = 1, . . . , l − 1. (2.6)

The face minimal vectors in R23 have the form

(−f3, 0, f1) ∈ R23 ∩R3, (−f2, f1, 0) ∈ R23 ∩R2. (2.7)

2Resonances of this degenerate type, which can be reduced to the case of unit frequencies, were
considered in [9].
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The minimal vectors in the normal sublattices R31 and R12 can be obtained from the
above description of the vectors in R23 by cyclic permutation of the indices 1, 2, 3.
The minimal vectors in the normal sublattice Rj have the form (−σ), where σ is
a minimal vector in the sublattice Rkl and k, l are the indices complementing j to
the triple 1, 2, 3.

A proof is given in [35].
It follows from condition (2.6) that all the numbers ν(l) in the sequence (2.5) must

be less than ν. Since f1 and f3 are coprime, the sequence (2.5) cannot contain two
vectors with the same second coordinate. Therefore the number of terms in (2.5)
does not exceed ν � f1 − 1. This gives an upper bound for the number of internal
minimal vectors in the sublattice R23. Similar estimates hold for the sublattices
R31 and R12 (with f1 replaced by f2 or f3). Thus the total number of internal
minimal vectors does not exceed 2[(f1−1)+(f2−1)+(f3−1)] = 2(f1 +f2 +f3)−6
and there are exactly six face minimal vectors (see (2.7)).

Corollary 2.1. In the three-frequency case n = 3, the number of minimal reso-
nance vectors has the following upper bound :

M � 2(f1 + f2 + f3).

§ 3. The Poisson algebra of symmetries of a resonance oscillator

Following [10], we describe the resonance algebra of the classical oscillator

H =
1
2
(p2

1 + · · · + p2
n + f2

1 q
2
1 + · · · + f2

nq
2
n) (3.1)

in the elliptic case (see condition (B) in § 2).
We introduce the following operations on the lattice Z

n (the index j runs through
the values 1, . . . , n):

α→ |α|, |α| def= |α1| + · · · + |αn|,

α→ θ(α), θ(α)j
def=

{
1 for αj > 0,
0 for αj � 0,

α, β → α · β, (α · β)j
def= αjβj ,

α→ α±, α±
def= ±α · θ(±α),

α, β → α|β, (α|β)j
def= min{(α−)j , (β+)j},

α, β → [α|β], [α|β] def= α|β − β|α,
α, β → α

◦
+ β, α

◦
+ β

def= α|β + β|α,

α→ ◦
α,

◦
α

def=
1
2
(α

◦
+ (−α)) ≡ 1

2
(α+ + α−),

α, β → α ◦ β, α ◦ β = α ·
◦
β,

α, β → [α, β], [α, β] def= α+ · β− − α− · β+.

(3.2)
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Another useful operation will be introduced in (3.18) below. Various properties
of the operations in (3.2) were listed in [10]. The last operation in (3.2) was called
a commutator in [10]. The operation

◦
+ was called an anomaly.

We note that the operation ◦ (introduced in (3.2)) is associative, and the com-
mutator (3.2) can be represented as

[α, β] = α ◦ β − β ◦ α. (3.3)

But the operation ◦ is not distributive in the second argument with respect to
addition:

α ◦ (β + γ) = α ◦ β + α ◦ γ − α · (β ◦
+ γ),

where
◦
+ denotes an anomaly. Hence the ‘Jacobi identity’ for the commutator

(3.3) has a non-standard form (see [10]).
We shall say that two vectors in a lattice commute if their commutator is zero.

A simple calculation shows that

α
◦
+ β = 0 ⇐⇒ [α, β] = 0 ⇐⇒ [α|β] = 0. (3.4)

Lemma 3.1. Two vectors in Zn commute if and only if they belong to the same
normal sublattice. A normal sublattice can be defined as a maximal commutative
subset of a given lattice.

Proof. We first note that

[α, β] = 0 ⇐⇒ α+ · β− = α− · β+ = 0.

The last (double) equality means that corresponding components of α and β cannot
have opposite signs. Thus these vectors belong to the same normal sublattice.

Let R = R[f ] be the resonance lattice in Z
n generated by the set of frequencies

f ∈ N
n of the oscillator (3.1). We recall that M is the subset of minimal resonance

vectors in R and Mσ are the normal subsets of M used in decomposition (2.2) of
a resonance vector σ. Lemma 3.1 yields the following assertion.

Proposition 3.1. Each subset Mσ is commutative. All elements κ ∈ Mσ in the
decomposition (2.2) commute.

We consider the space
N# = C

M × R
n (3.5)

and define constraints of three different types on this space.
We recall that M is the number of elements in M. The complex coordinates

in the first factor CM in (3.5) are indexed by elements σ ∈ M. We denote these
coordinates by Aσ. The real coordinates in the second factor Rn in (3.5) are denoted
by Sj , j = 1, . . . , n. For every α ∈ Z

n
+ we put Sα = Sα1

1 · · ·Sαn
n .

Constraints of Hermitian type. For any minimal vector σ, the opposite vector
(−σ) corresponds to conjugation of the complex coordinate:

Aσ = A−σ. (3.6)
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Constraints of commutative type. If two families {ρ} and {σ} of commuting
minimal vectors determine the same linear combinations∑

ρ

kρ ρ =
∑
σ

mσ σ, kρ,mσ ∈ N, (3.7)

then ∏
ρ

(Aρ)kρ =
∏
σ

(Aσ)mσ . (3.8)

Remark 3.1. A relation of the form (3.7) is said to be reducible if the coefficients kρ
and mσ can be written as kρ = k′ρ+k′′ρ and mσ =m′

σ+m′′
σ with

∑
ρ k

′
ρρ=

∑
σm

′
σσ,

where k′ρ, k
′′
ρ ,m

′
σ,m

′′
σ ∈ Z+,

(∑
ρ k

′
ρ

)(∑
ρ k

′′
ρ

) 
= 0. Otherwise (3.7) is said to be
irreducible. It is easy to show that the number of irreducible relations (3.7), and
hence the number of independent constraints (3.8) of commutative type, is finite.

Constraints of non-commutative type. If minimal vectors ρ and σ do not commute
and ρ 
= −σ, then

AρAσ = Sρ
◦
+σ

∏
κ∈Mρ+σ

A
nρ+σ

κ

κ , (3.9)

where
◦
+ is the anomaly introduced in (3.2) and nρ+σκ are the coefficients in the

decomposition (2.2) of the vector ρ + σ into minimal vectors in Mρ+σ. We note
that if ρ and σ commute, then the relation (3.9) follows from constraints (3.8) of
commutative type.

Let N ⊂ N# be the submanifold in the space (3.5) simultaneously determined
by all the constraint equations (3.6), (3.8), (3.9).

Given any non-minimal resonance vector σ, we define a function

Aσ =

⎧⎨⎩1 for σ = 0,∏
κ∈Mσ

A
nσ

κ

κ for σ 
= 0 (3.10)

on the submanifold N . Here the subsets Mσ and the numbers nσκ are defined
by (2.2). By the constraints of commutative type, this function is independent of
the choice of a decomposition (2.2) of the vector σ into minimal vectors.

We now define brackets on N following [10]:

{Sj , Sk} = 0, {Sj , Aρ} = iρjAρ, {Aρ, Aσ} = −ifρ,σ(S)Aρ+σ, (3.11)

where j, k = 1, . . . , n, the vectors ρ and σ belong to M, and the polynomials fρ,σ
on Rn are given by

fρ,σ(s)
def=

[ρ, σ]
s

sρ
◦
+σ, s ∈ R

n. (3.12)

In (3.12), the commutator [ρ, σ] and the anomaly ρ
◦
+ σ are given by the

formulae (3.2) and fractions of the form γ
s are used as a shorthand notation for

the sums
γ

s
≡

n∑
j=1

γj
sj
. (3.13)

We see from (3.4) that the functions (3.12) have no singularities at s = 0.
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We recall that a function on a Poisson manifold is called a Casimir function if
it is in involution with all functions. We shall say that a function is quasi-Casimir
if it is in involution with all the functions on its zero level surface. The zero level
surface of a quasi-Casimir function is a Poisson submanifold of the original Poisson
manifold.

Theorem 3.1. The formulae (3.11) determine Poisson brackets on N . The func-
tion

C
def= 〈f, S〉 (3.14)

is a Casimir function on N . For each minimal vector ρ, the function

Cρ
def= AρA−ρ − S2

◦
ρ (3.15)

is a quasi-Casimir function on N . More precisely, we have

{Cρ, Sj} = {Cρ, Aρ} = {Cρ, A−ρ} = 0,

{Cρ, Aσ} = 2i
σ ◦ ρ
S

AσCρ, σ 
= ±ρ.

Here
◦
ρ and σ ◦ ρ are defined in (3.2). In particular, when n=2, the quasi-Casimir

function (3.15) is a Casimir function for the bracket (3.11).

Definition 3.1. We define a submanifold N0 ⊂ N as the common zero level surface
of the quasi-Casimir functions:

N0 = N ∣∣{Cρ=0 | ρ∈M},

and call it the resonance Poisson manifold.

Conjecture 3.1. The resonance Poisson manifold N0 coincides with N for n � 3.

We note that the following relations hold on the resonance manifold by the
constraints of commutative and non-commutative types:

AρAσ = Sρ
◦
+σAρ+σ (3.16)

for any minimal vectors ρ and σ.

Proposition 3.2. The relations (3.16) hold on the resonance manifold N0 for all
(not necessarily minimal) resonance vectors ρ and σ.

The proof is similar to that of Proposition 11.1, which will be given in § 11, where
the quantum case is considered.

Corollary 3.1. If the resonance vector κ can be represented as a combination
of resonance vectors κ

(j), that is,

κ = k1κ
(1) + · · · + klκ

(l), kj ∈ N,

then the following relation holds on the resonance manifold N0:

Sk1κ
(1) ◦

+··· ◦+klκ
(l)
Aκ =

l∏
j=1

(Aκ(j))kj . (3.17)



1166 M. V. Karasev and E. M. Novikova

Here we use the l-position anomaly, which is defined as follows :

α1

◦
+ · · · ◦

+ αl def =
l−1∑
m=1

(
(α1 + · · ·+αm)

◦
+ αm+1

)
=

l−1∑
m=1

(
(αl + · · ·+αm+1)

◦
+ αm

)
.

(3.18)

The right-hand side of (3.18) contains the 2-position anomaly
◦
+ introduced in (3.2).

We now construct a map R
2n→N# generated by the symmetries (1.4) of the

resonance oscillator:
Aσ(q, p) = z σ+zσ− , σ ∈ M, (3.19)
Sj(q, p) = zjzj , j = 1, . . . , n. (3.20)

Here zj are complex coordinates on R
2n given by the formulae

zj
def=

√
fj
2
qj +

i√
2fj

pj , (3.21)

where q, p are Cartesian coordinates in R2n = Rnq × Rnp .

Lemma 3.2. The image of the symmetry map (3.19), (3.20), (q, p) → (A,S),
coincides with the part N+

0 of the resonance manifold N0 on which

S1 � 0, . . . , Sn � 0. (3.22)

The dimension of the resonance manifold N0 is equal to 2n− 1.

Proof. We claim that the functions (3.19) and (3.20) satisfy the constraint equa-
tions. Indeed, the constraints of Hermitian type follow from the obvious property

(−ρ)± = ρ∓ ∀ ρ ∈ Z
n.

Those of non-commutative type follow from the relation

(ρ+ σ)± = ρ± + σ± − (ρ
◦
+ σ),

which holds for any ρ, σ ∈ Zn. In particular, if ρ and σ commute, then ρ
◦
+ σ = 0

and we see that
(ρ+ σ)± = ρ± + σ±.

This yields the constraints of commutative type for the functions (3.19).
Furthermore, any function Aσ (see (3.19)) can be expressed using the rela-

tions (3.17) in terms of the independent functions Aρ(1) , . . . , Aρ(n−1) , S1, . . . , Sn
outside the points where Sj = 0 (see Remark 4.1 below). Therefore dimN0 = 2n−1.

Proposition 3.3. The submanifold N+
0 ⊂N0 determined by the inequalities (3.22)

is a Poisson manifold. The symmetry map (3.19), (3.20) from R2n to N+
0 is

a Poisson map, that is, it takes the canonical bracket on R2n = Rnq × Rnp to
the bracket (3.11). Under this map, the Casimir function C (see (3.14)) corre-
sponds to the oscillator Hamiltonian H (see (3.1)).

The proof repeats that of Theorem 2.5 in [10].
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§ 4. The partial complex structure on the resonance manifold

We shall show how to endow the resonance manifold N0 with a partial complex
structure induced by the symmetry map (3.19), (3.20) and consistent with the
Poisson brackets (3.11).

Each minimal vector κ ∈ M and a vector z = (z1, . . . , zn), (3.21), of complex
coordinates determine a function zκ on R2n. It follows from (3.19), (3.20) that

zκ =
A−κ(q, p)
S(q, p)κ−

.

Thus, under the symmetry map (3.19), (3.20), the function zκ on R
2n corresponds

to the function
Wκ

def=
A−κ

Sκ−
(4.1)

on the resonance manifold N0. The function (4.1) is smooth everywhere except for
a certain subset of the boundary ∂N+

0 , where singularities are possible because the
coordinates Sj can be zero.

We can decompose an arbitrary resonance vector σ into minimal vectors accord-
ing to (2.2) and thus define

Wσ
def=

∏
κ∈Mσ

(Wκ)n
σ
κ , (4.2)

where the function Wκ for minimal κ is given in (4.1). In particular, W0 ≡ 1.

Lemma 4.1. The function Wσ , (4.2), on the resonance manifold N0 is indepen-
dent of the choice of representation (2.2) of the vector σ ∈ R. We have

Wρ+σ = WρWσ

for any ρ, σ ∈ R.

A proof follows from the relations (3.8) and (3.16).
We now show how to construct local complex coordinates on N0.

Definition 4.1. A set of linearly independent vectors ρ(1), . . . , ρ(n−1) ∈ M is called
a resonance basis if the coefficients of a decomposition of any resonance vector
σ ∈ R into vectors ρ(k) are integers:

σ =
n−1∑
k=1

N (k)
σ ρ(k), N (k)

σ ∈ Z. (4.3)

Lemma 4.2. There is a resonance basis.

(Explicit examples of resonance bases are given in Examples 4.1, 5.2 and
Remark 6.4 below.)

Remark 4.1. If σ is a minimal vector, then formula (4.3) and constraints of the
form (3.17) yield the identity

SN
(1)
σ ρ(1)

◦
+··· ◦+N(n−1)

σ ρ(n−1)
Aσ =

n−1∏
j=1

(Aρ(j))N
(j)
σ .



1168 M. V. Karasev and E. M. Novikova

With every resonance basis we associate a set of complex coordinates wk defined
by (4.1):

wk
def= Wρ(k) , k = 1, . . . , n− 1. (4.4)

Remark 4.1 shows that the functions (4.2) are meromorphically expressed in terms
of these coordinates:

Wσ = wNσ

(
Wσ =

n−1∏
k=1

(wk)N
(k)
σ

)
. (4.5)

When we pass from the resonance basis {ρ(j)} to another resonance basis {ρ̃ (j)},
the transformation w → w̃ of coordinates (4.4) is described by a power law:

w̃ = wN

(
w̃j =

n−1∏
k=1

(wk)Nj
k

)
. (4.6)

Here the matrix N with integer entries is determined by the decomposition of the
basis vectors ρ̃ (j) with respect to the basis vectors ρ(k):

ρ̃ (j) =
n−1∑
k=1

Nj
kρ

(k). (4.7)

We note that the inverse matrix N−1 also has integer entries.
We now cover the whole manifold N0 except for the point 0 (at which S = 0

and Aσ = 0 for any σ) by charts and assign a resonance basis to each chart in such
a way that the coordinate functions w1, . . . , wn−1, (4.4), corresponding to this basis
have no singularities in the given chart.

Example 4.1. Consider the following three resonance bases in the case of a three-
frequency resonance f1 : f2 : f3.

The first basis consists of two (commuting) vectors of the resonance lattice:

(−f2, f1, 0), (μ, ν, 1), (4.8)

where μ, ν is the solution of the Diophantine equation (2.3) satisfying condi-
tion (2.4). Only the first component in this pair of vectors is negative. There-
fore, the complex coordinates (defined by (4.4) and (4.1)) corresponding to this
resonance basis have no singularities for S1 
= 0.

The second basis is obtained from (4.8) by the cyclic permutation f1 : f2 : f3 →
f2 : f3 : f1 of the frequencies and the permutation (1, 2, 3) → (3, 1, 2) of the
components of the resonance vectors. The complex coordinates corresponding to
this basis have no singularities for S2 
= 0.

The third basis is obtained by the other cyclic permutation. Here the complex
coordinates have no singularities for S3 
= 0.

These three bases determine local charts (and complex coordinates in them)
which cover the whole resonance manifold except for the point 0.

In the case of general multifrequency resonance, we obtain the following result.

Theorem 4.1. (a) All possible resonance bases {ρ(j)} generate an atlas of charts
on the resonance manifold N0 \ {0} and determine a partial complex structure of
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type3 (n − 1, 1). The common real coordinate of all the charts is the Casimir
function C , (3.14), and the local complex coordinates are given by formula (4.4).
When we pass from one chart to another, the complex coordinates are holomorphi-
cally transformed by formula (4.6).

(b) The formulae (4.1) and (4.2) determine a representation σ → Wσ of the
resonance lattice R in the space of meromorphic functions on the resonance mani-
fold N0. Under complex conjugation, the functions Wσ are transformed as follows :

Wσ = SσW−σ, |Wσ|2 = Sσ. (4.9)

(c) The partial complex structure on N0 \ {0} is consistent with the Poisson
structure (3.11) in the sense of [31]. The meromorphic functions (4.1) and (4.2)
are in involution with each other:

{Wρ,Wσ} = 0. (4.10)

Moreover,
{Wρ,Wσ } = i

ρ · σ
S

WρWσ, (4.11)

in the notation of (3.13).

Proof. Only the last two formulae must be proved. Formula (4.10) follows from
(3.11), (3.16), and the following property of the commutator on the lattice Z

n:

[−ρ,−σ] = −[ρ, σ].

The relations (3.11) and (3.16) and the identity

[−ρ, σ] + ρ− · σ + ρ · σ− = ρ · σ
on Z

n similarly prove (4.11). The proof of the theorem is complete.

§ 5. Symplectic leaves and resonance Darboux coordinates

We introduce angular coordinates Φσ on N0 by the formula

Aσ = S
◦
σ exp{iΦσ} or Wσ = |Wσ| exp{−iΦσ}. (5.1)

Here we use the notation
◦
σ introduced in (3.2) and take the constraint equations

(3.6) and (3.16) into account:
|Aσ| = S

◦
σ.

Lemma 5.1. The angular coordinates are in involution with each other:

{Φσ,Φρ} = 0. (5.2)

Moreover,
{Aσ,Φρ} =

ρ ◦ σ
S

Aσ, {Sj ,Φρ} = ρj , (5.3)

where the operation ρ ◦ σ is defined in (3.2).

3The charts are modelled on the space Cn−1 × R1 with (n − 1) complex coordinates and one
real coordinate (see [31]).
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Proof. It follows from (3.11), (3.12), and (3.3) that

{eiΦσ , eiΦρ} = 0, {Aσ, eiΦρ} = i
ρ ◦ σ
S

Aσe
iΦρ , {Sj , eiΦρ} = iρje

iΦρ .

These relations yield (5.2) and (5.3). The proof of the lemma is complete.

Let {S = s(C)} be a curve in Rn parametrized by the Casimir coordinate (3.14).
We represent the coordinates S on the resonance manifold as

S = s(C) +
n−1∑
k=1

x(k)ρ(k), (5.4)

where {ρ(k)} is a certain resonance basis and x(k) ∈ R. Thus, x(1), . . . , x(n−1) are
new coordinate functions on the resonance manifold with respect to the family of
‘initial points’ s(C) and the basis {ρ(k)}.

These functions are clearly in involution and the relations (5.3) imply that their
brackets with the angular coordinates are equal to constants:

{x(j), x(k)} = 0, {x(k),Φσ} = N (k)
σ (5.5)

(the numbers N (k)
σ are given in (4.3)). In particular, introducing the special angular

coordinates
ϕk

def= Φρ(k) , k = 1, . . . , n− 1, (5.6)

corresponding to this resonance basis, we obtain the following canonical brackets
from (5.2) and (5.3):

{x(j), x(k)} = 0, {ϕj , ϕk} = 0, {x(j), ϕk} = δj,k.

Thus the functions x(j), ϕj , j = 1, . . . , n− 1, and the Casimir function C deter-
mine Darboux coordinates everywhere on the resonance manifold N0 except for the
singularity submanifold ∂N+

0 .
We now consider symplectic leaves in N0 (that is, the surfaces on which the

bracket (3.11) is non-degenerate). All the leaves lie on the submanifolds {C=const}.
The Poisson bracket on the leaves is induced by the bracket (3.11).

Lemma 5.2. The symplectic leaves in the resonance manifold N0 have maximal
dimension 2n − 2 (we recall that dimN0 = 2n − 1). The closure of all leaves in
the domain N+

0 is compact, but when at least one of the frequencies fj is greater
than 1, it may happen that the leaf does not coincide with its closure. All degenerate
leaves lie on the boundary ∂N+

0 .

Example 5.1. In the three-frequency case (n = 3), the resonance manifold has
dimension dimN0 = 5. If all the frequencies fj , j = 1, 2, 3, are equal to 1, then
there is only one zero-dimensional leaf, the point 0. The other symplectic leaves are
four-dimensional and coincide with their closure. If some frequency fj is greater
than 1, then all the points of the form

{Aρ = 0, Sk = Sl = 0} ∈ N0 (5.7)

(where j, k, l is a permutation of 1, 2, 3) are zero-dimensional leaves. In this case,
the leaves Ω of maximal dimension 4 are obtained from their closures Ω by removing
points of the form (5.7) corresponding to frequencies other than 1.
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In the general multifrequency case, all the functions defined on N0 (including the
complex coordinates wj and the canonical coordinates x(j), ϕj) can be restricted
to symplectic leaves of maximal dimension.

Theorem 5.1. The symplectic leaves Ω ⊂ N+
0 ∩ {C = const} of maximal dimen-

sion in the resonance manifold N0 are Kähler manifolds with respect to the com-
plex structure induced from N0. The symplectic (Kähler) form on the leaves can be
written as

ω = dx ∧ dϕ, (5.8)

where x and ϕ are the coordinates (5.4) and (5.6) determined by some resonance
basis {ρ(k)} ⊂ R and the initial point s(C). The form (5.8) has singularities on
the set Ω \ Ω (which lies in the boundary ∂N+

0 ).

Example 5.2. In the three-frequency case, consider the resonance basis

ρ(1) = (f2,−f1, 0), ρ(2) = (μ, ν, 1), (5.9)

where μ, ν is the solution of Diophantine equation (2.3) satisfying (2.4). In con-
trast to (4.8), this basis is non-commutative: [ρ(1), ρ(2)] 
= 0. We introduce the
corresponding complex coordinates by formulae (4.4) and (4.1):

w1 =
A−ρ(1)

Sf12

, w2 =
A−ρ(2)

S
|μ|
1

. (5.10)

They have no singularities in the domain

S1 
= 0, S2 
= 0. (5.11)

The vertex v = (0, C/f2, 0) of the classical simplex {S ∈ R3
+ | 〈f, S〉 = C} is

associated with zero values w1 = w2 = 0 of the complex variables and lies on the
boundary of this domain.

The Kähler form on the leaves Ω is given in the coordinates (5.10) by the formula
ω = i

∑
k,l=1,2(∂

2F/∂ wk∂wl) dwk ∧ dwl in terms of the Kählerian potential4

F = S1 + S2 + S3 − C

ω2
lnS2 + const . (5.12)

Here the functions Sj are expressed in terms of |w1| and |w2| by formulae (4.9):

|w1|2 =
Sf21

Sf12

, |w2|2 =
S3S

ν
2

S
|μ|
1

, (5.13)

with (3.14) taken into account. In particular, as |w1| → 0, we obtain

S1 ∼
(
C

f2

)f1/f2
|w1|2/f2 ,

S2 ∼ C

f2
− f1
f2

(
C

f2

)f1/f2
|w1|2/f2 − f3

f2

(
C

f2

)f3/f2
|w1|2|μ|/(f1f2)|w2|2,

S3 ∼
(
C

f2

)f3/f2
|w1|2|μ|/f2 |w2|2.

4The general formula for the potential in the n-frequency case has the form F = |S| − ln Sv +
const, where v is a vertex of the classical simplex (see (6.1)). Such formulae can be derived from
the general definition of the Kähler form ω =

P
k,l(({wk, wl}))−1dwl ∧ d wk using (4.11).
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Although the complex structure is also defined at the vertex v of the classical
simplex (v lies in the closure of the chart (5.11)), the Kählerian potential (5.12)
near this vertex has the form

F ∼ const +
(
C

f2

)f1/f2
|w1|2/f2 , |w1| → 0, |w2| → 0.

When f2 
= 1, the symplectic form corresponding to this potential,

ω ∼
(
C

f2

)f1/f2 i dw1 ∧ dw1

|w1|2(f2−1)/f2
, |w1| → 0, |w2| → 0, (5.14)

has a (weak) singularity at the point corresponding to w = 0 in the closure Ω of the
symplectic leaf. (Similar calculations in the two-frequency case are given in [14].)

The Liouville measure on the leaf Ω has the form

1
2
|ω ∧ ω| =

S1S2S3

(f1)2S1 + (f2)2S2 + (f3)2S3

|dw ∧ dw|
|w1|2|w2|2 ,

and the Liouville volume of the whole leaf Ω is given by the formula∫
Ω

|ω ∧ ω|
2

=
2π2C2

f1f2f3
.

In the n-frequency case, we have∫
Ω

| ω ∧ · · · ∧ ω︸ ︷︷ ︸
n−1

| =
(2π)n−1Cn−1

f1 · · · fn .

The formula for calculating the Liouville volume follows, for example, from
the representation (5.8) and reduces to calculating the volume of the simplex in the
x-space given by the inequalities Sj � 0 (see (5.4)).

§ 6. Resonance simplices

It follows from formulae (1.1) that the common spectrum of the quantum action
operators Ŝj = ẑ∗j ẑj in the space L2(Rn) coincides with the lattice �Zn+ = {S= �m |
m∈Zn+}. This spectral lattice may be regarded as a subset of the classical space Rn+,
which is the range of the coordinate S on the resonance manifold N+

0 .
The following subsets of Rn+ are called classical simplices:

�[c] def= {S | 〈f, S〉 = c}, c � 0. (6.1)

We define quantum resonance simplices as the non-empty intersections of classical
simplices with the spectral lattice �Z

n
+.

To each number M ∈ Z+ we assign its Diophantine skeleton:

Δ[M ] def= {k ∈ Z
n
+ | 〈f, k〉 = M}. (6.2)

Here f = (f1, . . . , fn) is a resonance set of frequencies satisfying conditions (A)
and (B).

Let d[M ] be the number of points in the Diophantine skeleton Δ[M ]. This
number is called the multiplicity of the skeleton.
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Lemma 6.1. All the quantum simplices are of the form �Δ[M ] for d[M ] � 1, and

�Δ[M ] ⊂ �[�M ].

The spectrum of the oscillator Ĥ = 〈f, Ŝ〉, (1.3), consists of those points �M for
which d[M ] � 1. The skeleton multiplicity d[M ] coincides with the multiplicity of
the eigenvalue �M .

Thus, a quantum simplex is a subset of the spectrum of actions which corresponds
to a given point of the spectrum of the resonance oscillator under the map S →
〈f, S〉.
Lemma 6.2. If at least one of the frequencies fj is equal to 1, then d[M ] � 1 for
all M � 0. Hence quantum resonance simplices correspond to all numbers M ∈ Z+,
and all skeletons Δ[M ] are non-empty.

In the general case it is rather difficult to describe those M for which the
Diophantine skeleton is non-empty: Δ[M ] 
= ∅.

We first consider the two-frequency case (n = 2). We use the following conse-
quence of Lemma 2.1.

Lemma 6.3. Any number M ∈ Z+ can be uniquely represented as

M = M12f1f2 +m21f1 +m12f2, (6.3)

where M12, m12, and m21 are integers and

M12 � −1, 0 � m12 � f1 − 1, 0 � m21 � f2 − 1. (6.4)

Knowing the number M12 in the representation (6.3), we can calculate the mul-
tiplicity d[M ] by the method used in [13].

Lemma 6.4. The multiplicity of the eigenvalue �M of the quantum oscillator
Ĥ = f1Ŝ1 + f2Ŝ2 is given by the formula

d[M ] = M12 + 1.

The Diophantine skeleton Δ[M ] is empty if and only if M12 = −1 in the repre-
sentation (6.3) of the number M . The point �M belongs to the spectrum of Ĥ if
and only if M12 � 0 in the representation (6.3). All the eigenvalues of the form
�(m21f1 + m12f2), where m21 and m12 satisfy (6.4), and only these eigenvalues,
have multiplicity 1.

Example 6.1. Let f1 = 3 and f2 = 2. Then

d[1] = 0, d[0] = d[2] = d[3] = d[4] = d[5] = d[7] = 1, d[6] = 2.

In the general n-frequency case, for each pair of indices j, k ∈ (1, . . . , n), we
consider the following representation of the number M in a form similar to (6.3):

M = Mjkfjfk +mkjfj +mjkfk, where 0 � mkj � fk − 1. (6.5)

Theorem 6.1. We have
d[M ] � Mjk + 1.
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Thus, if Mjk � 0 for at least one pair of indices j, k, then d[M ] � 1, that is,
the Diophantine skeleton Δ[M ] is non-empty and �M belongs to the spectrum
of the oscillator Ĥ , (1.3). If, in addition, Mjk � 1, then d[M ] � 2, that is,
�M is a multiple eigenvalue.

Proof. It follows from (6.5) that we can represent M as M = 〈f, k〉, k ∈ Zn+,
choosing

kj = lfk +mkj , kk = (Mjk − l)fj +mjk, km = 0, m 
= j, k,

where l is any fixed integer in the interval 0 � l � Mjk. There are Mjk +1 ways to
choose l. Hence the multiplicity d[M ] is at least Mjk+1. The proof of the theorem
is complete.

Example 6.2. If M � (fj−1)(fk−1) for some pair of indices j, k, then d[M ] � 1.
This follows from Theorem 6.1 and the fact that Mjk � 0 (since if Mjk = − 1,
we have M = −fjfk +mkjfj +mjkfk < (fj − 1)(fk − 1)).

Example 6.3. If none of the fj exceed 4 in the three-frequency case (n = 3), then
d[M ] � 1 for any M ∈ Z+. Indeed, since the fj are coprime, it follows that at least
one of them is equal to 1, and we can apply Lemma 6.2.

We now take f1 = 5, f2 = 3 and f3 = 2. Then d[1] = 0. In this case, the
number � does not belong to the spectrum of the oscillator 5Ŝ1 + 3Ŝ2 + 2Ŝ3 while
all the other numbers �M (M � 0, M 
= 1) do belong to this spectrum.

Among all non-empty Diophantine skeletons, we distinguish those consisting of
exactly one point, that is, d[M ] = 1. This case is trivial.

In what follows we assume that d[M ] � 2.
A point r ∈ Δ[M ] is called a vertex of the Diophantine skeleton if there is

a resonance basis such that, for all l ∈ Δ[M ], the vector l− r is co-directional with
all vectors in the basis (that is, all the coefficients in the decomposition of l − r
in terms of basis vectors are non-negative).

Remark 6.1. We note the following fact: to each resonance basis there corresponds
at most one vertex. Indeed, if there were two vertices r′ and r′′ for a given basis {ρ},
then both r′ − r′′ and r′′ − r′ would be co-directional with the basis {ρ}. This is
possible only if r′ − r′′ = 0.

Remark 6.2. We note the following fact: the same vertex may correspond to distinct
bases. For example, take f = (1, 1, f3) and consider two resonance bases:

ρ(1) = (1,−1, 0), ρ(2) = (−f3, 0, 1) and ρ̃ (1) = (1,−1, 0), ρ̃ (2) = (0,−f3, 1).

The first is the non-commutative basis in Example 5.2, and the second is the com-
mutative basis in Example 4.1. For everyM ∈ Z+ the point r = (0,M, 0) is a vertex
of the skeleton

Δ[M ] = {l ∈ Z
3
+ | l1 + l2 + f3l3 = M}

with respect to these two bases. Indeed, every point l ∈ Δ[M ] admits two decom-
positions:

l = r +N (1)ρ(1) +N (2)ρ(2) = r + Ñ (1)ρ̃ (1) + Ñ (2)ρ̃ (2)

with non-negative coefficients

N (1) = l1 + f3l3, N (2) = l3, Ñ (1) = l1, Ñ (2) = l3.



Algebra and quantum geometry of multifrequency resonance 1175

Remark 6.3. Consider the three-frequency case. We note the following fact: if the
Diophantine skeleton Δ[M ] is non-empty, then it contains a vertex (to be denoted
by r(2)) corresponding to the basis (5.9), and the coordinates of this vertex are
given by the following formulae:5

r
(2)
3 = l∗3

def= min
l∈Δ[M ]

l3, r
(2)
1 = min

l∈Δ[M ]
l3=l

∗
3

l1, r
(2)
2 = max

l∈Δ[M ]
l3=l

∗
3

l2. (6.6)

To prove this fact, it suffices to consider the decomposition of the vectors l − r(2)

(for l ∈ Δ[M ]) with respect to the basis (5.9):

l1 − r
(2)
1 = N (1)f2 +N (2)μ, l2 − r

(2)
2 = −N (1)f1 +N (2)ν,

l3 − r
(2)
3 = N (2),

and show that the coefficients N (1) and N (2) are non-negative for all l ∈ Δ[M ].
The bound N (2) � 0 follows from the third relation and formula for r(2)3 , and the
bound N (1) � 0 follows from the first relation if we take into account that μ < 0
and r(2)1 < f2 in this relation. Indeed, assuming that N (1) < 0, we have

l1 = (r(2)1 +N (1)f2) +N (2)μ < 0,

which contradicts the condition l1 � 0.
Now let (j, k, s) be a cyclic permutation of (1, 2, 3). We consider the resonance

basis obtained by an appropriate cyclic permutation of the basis (5.9). Then the
following point r(k) is a vertex of the skeleton Δ[M ] with respect to this basis:

r(k)s = l∗s
def= min

l∈Δ[M ]
ls, r

(k)
j = min

l∈Δ[M ]
ls=l∗s

lj , r
(k)
k = max

l∈Δ[M ]
ls=l∗s

lk. (6.6a)

Moreover, if Mjk is non-negative in (6.5), then the formulae (6.6a) become

r(k)s = 0, r
(k)
j = mkj , r

(k)
k = Mjkfj +mjk. (6.6b)

Remark 6.4. Formula (6.6b) can easily be generalized to the n-frequency case. We
assume that M12 is non-negative in the representation (6.3). Then the point

r(2) =
(
m21,M12f1 +m12, 0, . . . , 0︸ ︷︷ ︸

n−2

)
(6.7)

is a vertex of the Diophantine skeleton Δ[M ]. The corresponding resonance basis
may be chosen to have the form

ρ(1) = (f2,−f1, 0, 0, . . . , 0, 0),

ρ(2) = (μ3, ν3, 1, 0, . . . , 0, 0),
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ(n−1) = (μn, νn, 0, 0, . . . , 0, 1).

5The equation f1l1 + f2l2 = M − f3l∗3 implies that the minimum of l1 and the maximum of l2
over the set {l ∈ Δ[M ] | l3 = l∗3} are attained at the same vector l.
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This is an n-dimensional analogue of the basis (5.9). In these formulae, μl and νl
give a solution of the Diophantine equation

μlf1 + νlf2 + fl = 0

satisfying the condition 0 � νl � f1 − 1 (here l = 3, . . . , n).
By taking different pairs of indices j and k for which Mjk � 0 in the represen-

tation (6.5), we can similarly obtain other vertices r(k) of the skeleton Δ[M ].

We note that to each vertex r ∈ Δ[M ] there corresponds a point �r in the
quantum simplex. It is called a vertex of the quantum simplex.

Lemma 6.5. When � → 0 and M ∼ �−1, the vertices of the quantum simplex
�Δ[M ] are close to those of the classical simplex �[�M ].

Proof. For large M , all the Mjk in the representation (6.5) are also large (and
necessarily positive). The vertex of the quantum simplex corresponding to each
pair of indices j, k via a formula of the form (6.7), where j = 1 and k = 2, differs
from the vertex (0, �M

f2
, 0, . . . , 0) of the classical simplex by the vector(

�m21,−�m21f1
f2

, 0, . . . , 0
)
,

which tends to zero as � → 0. Hence Lemma 6.5 holds for vertices of the form (6.7).
The other vertices of the quantum simplex �Δ[M ] with M ∼ �−1 → ∞ lie closer
to the vertices of the classical simplex �[�M ] than those of the form (6.7). Thus
the lemma also holds for them.

§ 7. Quantum leaves and spaces of holomorphic sections

A frame of a Diophantine skeleton Δ[M ] is a pair R = (r, {ρ}) consisting of
a vertex r and a resonance basis {ρ} corresponding to it.

To each frame we assign the model space Cn−1 of a local chart. Consider two
charts indexed by frames R = (r, {ρ}) and R̃ = (r̃, {ρ̃ }). Their complex coor-
dinates w and w̃ are determined from the resonance bases {ρ} and {ρ̃ } by for-
mula (4.4). The charts are glued together by formula (4.6), where N is the transition
matrix (4.7) (with integer entries) from the basis {ρ} to the basis {ρ̃ }. As a result,
we obtain a complex manifold. It is called a quantum leaf and is denoted by Ω�[M ].

We recall that Ω = Ω[c] stands for the symplectic leaves of maximal dimension
lying in N+

0 ⊂ N0 on the level surfaces of the Casimir function {C = c}, (3.14).
The construction of the complex structure on N0 (see formulae (4.1) and (4.9))
leads to the following assertion.

Proposition 7.1. The classical symplectic leaf Ω = Ω[�M ] is densely embedded
in the quantum leaf Ω� = Ω�[M ], that is,

Ω ⊂ Ω ≈ Ω�.

This embedding preserves the complex structure.

Corollary 7.1. The quantum leaves Ω� are compact.
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We note that the classical Kähler form ω cannot be extended from classical leaves
to quantum leaves if there are frequencies other than 1 (for example, this follows
from (5.14)). We show how to introduce a quantum Kähler form on quantum leaves
using the group structure of the resonance lattice and following the general ideology
developed in [31], [32]. But first we introduce the space of holomorphic sections
over a quantum leaf.

We begin by constructing a sheaf of germs of holomorphic functions over a quan-
tum leaf and define the Hilbert space of sections of that sheaf.

We define a family of functions U tR in the chart with index R on the quantum
leaf Ω� = Ω�[M ] by the formula

U tR
def=

√
�|r| r!
�|t| t!

Wt−r, t ∈ Δ[M ]. (7.1)

Here r stands for a vertex of the frame R, and the meromorphic functions Wσ

are defined by formula (4.5) in terms of the complex coordinates in the chart with
index R. These functions are monomials in these coordinates because r is a vertex
of the skeleton Δ[M ].

If the point t in (7.1) coincides with a vertex of the skeleton Δ[M ], then we also
use another notation:

V TR
def= U tR, (7.2)

where T is any frame with vertex t. Thus, the function V TR is the same for distinct
frames T with the same vertex t. Clearly, V RR ≡ 1.

The group property of the map ρ → Wρ (Lemma 4.1) implies the following
relation on the intersection of the charts with indices R and Q for any t ∈ Δ[M ]:

U tQ = V RQ U
t
R. (7.3)

In particular, for any frames R, L, and Q we have the following identity on the
intersection of the corresponding three charts:

V LQ = V RQ V
L
R . (7.4)

The property (7.4) means that the set {V RQ } of holomorphic functions on the
intersections of charts of the quantum leaf Ω� can be treated as matching functions
for the sheaf Π(Ω�) of germs of holomorphic functions on Ω�.

Moreover, formula (7.3) shows that the set of functions U t = {U tR} determines
a section of the sheaf Π(Ω�) for any fixed t ∈ Δ[M ]. Thus we obtain the following
result.

Lemma 7.1. The points t of the Diophantine skeleton Δ[M ] are associated with
sections U t of the sheaf Π(Ω�) of germs of holomorphic functions on the quantum
leaf Ω�. These sections are linearly independent.

We now introduce a Hilbert structure in the space of sections of the sheaf Π(Ω�)
in such a way that the sections {U t | t ∈ Δ[M ]} be orthonormal:

(Uk, U t) = δk,t. (7.5)

Thus we have constructed a certain canonical Hilbert space L(Ω�) of holomorphic
sections over the quantum leaf Ω�. This space is induced by the group structure of
the resonance lattice according to (7.1) and Lemma 4.1.
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We shall say that the numerical coefficients in (7.1) are of Fock form, which
imitates the form of the coefficients in an ordinary normalized Fock basis in the
space of holomorphic functions on Euclidean space [36].

Let K be the reproducing kernel of the Hilbert space L(Ω�). This is the section
of the sheaf (Π∗×Π)(Ω�) given by the following formula in the chart with index R:

KR def=
∑
t

|ψtR|2, (7.6)

where the sum is taken with respect to an arbitrary orthonormal basis of sections
{ψt} of the sheaf Π(Ω�). It is well known [37] that the section (7.6) is independent
of the choice of basis. Taking the set of sections {U t} for a basis, we thus obtain
the following formula for the reproducing kernel in the chart with index R:

KR =
∑

t∈Δ[M ]

|U tR|2. (7.7)

It remains to substitute the explicit expressions (7.1) and (4.9) into this formula.

Theorem 7.1. Suppose that M ∈ Z+ and d[M ] � 1, so that the Diophantine
skeleton Δ[M ] is non-empty. Define a polynomial P [M ] on R

n−1 by the formula

P [M ](s) def=
∑

〈t,f〉=M
t∈Z

n
+

st

�|t| t!
. (7.8)

The Hilbert space L(Ω�) of holomorphic sections over the quantum leaf Ω� =Ω�[M ]
has dimension d[M ]. The reproducing kernel of this space in the chart with index R
is calculated in terms of the polynomial (7.8) as follows :

KR =
r! �|r|

S
r P [M ](S). (7.9)

Here r is the vertex of the frame R, and the coordinates S are transferred to Ω�

from the closure of the symplectic leaf Ω[�M ] by formulae (4.9) and (3.14):

Sρ = |Wρ|2, 〈f, S〉 = �M,

where {ρ} is the basis corresponding to the frame R.
The section (7.9) is expressed in the local complex coordinates w of the chart

with index R as a polynomial :

KR =
∑
σ∈Rr

r!
�|σ+|−|σ−| (r + σ)!

wNσwNσ . (7.10)

Here the subset Rr ⊂ R is given by the condition

σ ∈ Rr ⇐⇒ r + σ ∈ Δ[M ], (7.11)

and the vectors Nσ ∈ Z
n−1
+ are determined by the decomposition (4.3) of the vector σ

with respect to the resonance basis of the frame R with vertex r.
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§ 8. The quantum reproducing measure
and quantum Kählerian structure

Following [31], [32], we can now try to write the inner product (7.5) in the Hilbert
space L(Ω�) as an integral over a measure:

(ϕ, ψ) =
1

(2π�)n−1

∫
Ω�

ρψ|ϕ dm�. (8.1)

Here ϕ and ψ are arbitrary sections in L(Ω�) and their mutual density function ρψ|ϕ
on Ω� is given by the formula

ρψ|ϕ
def=

ψϕ

K , (8.2)

while the reproducing measure dm� is determined in the local coordinates w in
the chart with index R by the relation

dm� = KRJR dw dw. (8.3)

This representation of the measure uses the reproducing kernel K, (7.9), and a sec-
tion J of the sheaf (Π−1∗ × Π−1)(Ω�).

Theorem 8.1. The inner product in the space L(Ω�) of holomorphic sections over
the quantum leaf Ω� is calculated from formulae (8.1)–(8.3) when the section J
in (8.3) has the following form in the chart with index R:

JR =
Sr−Σρ

r! �|r| Q
[M ](S). (8.4)

Here r is the vertex of the frame R, {ρ} is the corresponding resonance basis,∑
ρ =
∑n−1
j=1 ρ

(j), M = 〈f, r〉, and the function Q[M ] is given by the formula

Q[M ](s) def=
s1 · · · sn

�

∫ ∞

0

yM+|f |−1 exp
{
−1

�

n−1∑
j=1

sjy
fj

}
dy. (8.5)

Proof. Proving this theorem is equivalent to verifying the ‘reproducing property’
for the polynomial KR, (7.6)–(7.10):

1
(2π�)n−1

∫
KR(w′w)KR(ww′′)JR dw dw = KR(w′w′′),

where the arguments of the polynomial KR are defined via componentwise multi-
plication of the points of C

n−1. We note that if the coordinates w are related to
the coordinates z by the symmetry map

wj = zρ
(j)
, j = 1, . . . , n− 1,

then by the residue theorem, the polynomial KR can be written as an integral:

KR(w′w′′) =
�|r| r!

2π(z′z′′)r

∫ 2π

0

exp
{
i〈f, r〉t+

1
�

n∑
j=1

z′jz
′′
j e

−ifjt

}
dt.
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We now consider the well-known Fock formula

1
(2π�)n

∫
Cn

exp
{ 〈z′, z〉 + 〈z′′, z〉 − 〈z, z〉

�

}
dz d z = exp

{ 〈z′, z′′〉
�

}
,

replace z′j by z′je
−ifjt

′
and z′′j by z′′j e

−ifjt
′′

and integrate with respect to t′ and t′′

from 0 to 2π. Then the above integral representation for KR yields the identity

1
(2π�)n−1

∫
Cn

KR(w′w)KR(ww′′)
|zr|2

2π�|r|+1 r!
e−|z|2/� dz d z = KR(w′w′′).

We make the change of variables w1 = zρ
(1)

, . . . , wn−1 = zρ
(n−1)

, wn = zf in the
integrand of this identity; its Jacobian is equal to6(

〈f, f〉 |w1 · · ·wn|
|z1 · · · zn|

)2

.

We then obtain the desired ‘reproducing property’ for KR, where the density JR
is given by the formula

JR(ww) =
1

2π�|r|+1 r! 〈f, f〉2|w1 · · ·wn−1|2
∫

C

|zr|2|z1 · · · zn|2
|wn|2 e−

|z|2
� dwn dwn.

Here the coordinates zj in the integrand are expressed in terms of w1, . . . , wn−1, wn
by the formulae

zj = w
p
(1)
j

1 · · · wp
(n)
j
n ,

where p(1), . . . , p(n) are the vectors comprising the inverse matrix of the matrix
composed of the vectors ρ(1), . . . , ρ(n−1), ρ(n) ≡ f , that is,

n∑
l=1

p
(l)
j ρ

(l)
k = δj,k, j, k = 1, . . . , n.

Moreover, p(n)
j = fj/〈f, f〉, and all the numbers p(l)

j , 1 � l � n − 1, are integers.
In the last integral, we pass to the coordinates x, ϕ by the formula

wn =
√
x〈f,f〉eiϕ

and take into account that the polar angle runs through the interval [0, 2π〈f, f〉].
This yields another formula

JR =
1

�|r|+1 r!

n−1∏
k=1

|wk|2(〈r,p(k)〉+|p(k)|−1)

×
∫ ∞

0

x〈f,r〉+|f |−1 exp
{
−1

�

n∑
j=1

xfj

n−1∏
k=1

|wk|2p
(k)
j

}
dx.

It remains to note that it is more convenient to use the coordinates S1, . . . , Sn
(see (4.9)) instead of the |wj |. The change x = Sf/〈f,f〉y in the integrand of the
last integral finally yields (8.4) and (8.5).

6Here we have used the following identity between the determinant of the matrix composed of
the resonance basis vectors and the frequency vector: |det(ρ(1) · · · ρ(n−1)f)| = 〈f, f〉.
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In particular, Theorem 8.1 implies that the following equations hold by (7.6) for
any orthonormal basis {ψt} of the space L(Ω�):

dimL(Ω�) =
∑
t

‖ψt‖2 =
∑
t

1
(2π�)n−1

∫
Ω�

|ψt|2
K dm� =

1
(2π�)n−1

∫
Ω�

dm�.

Therefore Lemma 6.1 and Theorem 7.1 yield the following result.

Corollary 8.1. The multiplicity of an eigenvalue �M of the resonance oscilla-
tor (1.3) is calculated from the formula

d[M ] =
1

(2π�)n−1

∫
Ω�

dm�. (8.6)

Here the quantum reproducing measure has the form

dm� = (P [M ]Q[M ])(S)
dw dw

SΣρ
, (8.7)

where P [M ] and Q[M ] are given by (7.8) and (8.5), w stands for the complex
coordinates in the local chart with index R on the quantum leaf Ω�[M ], and ρ is
the resonance basis in the frame R.

We now construct a closed 2-form ω� on the quantum leaf Ω�. This 2-form is
generated by the reproducing kernel of the space L(Ω�) and given by the following
formula in the chart with index R and complex coordinates w:

ω� = i�
n−1∑
l,j=1

∂2

∂wl ∂wj
(lnKR) dwl ∧ dwj . (8.8)

This form is independent of the choice of the chart. Following [31], [32], we call it
the quantum Kähler form on Ω�.

We now find the asymptotic behaviour of the quantum Kähler form and the
reproducing measure as � → 0.

Lemma 8.1. Outside a neighbourhood of the points where at least one coordi-
nate Sj is zero, the reproducing kernel KR, (7.9), and the density JR, (8.4), have
the following asymptotic behaviour as � → 0 and M ∼ 1/�:

KR = cr
exp{|S|/�}

Sr
(
κ(S) +O(�)

)
,

JR = �
−|r|−1/2

√
2π
r!

Sr exp
{
−|S|

�

}(
S1 · · ·Sn

Sρ(1)+···+ρ(n−1) κ(S) +O(�)
)
.

Here ρ and r are the resonance basis and the vertex of the frame R, and the func-
tion κ and the constant cr are given by the formulae

κ(S) = (f2
1S1 + · · · + f2

nSn)
−1/2,

cr = �
|r|+1/2 r! e−|r|√2π(f2

1 r1 + · · · + f2
nrn)

1/2
∑

〈t−r,f〉=0
t∈Z

n
+

rt

t!
.
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Proof. This follows from the system of differential equations which are satisfied
by the functions KR and JR. These equations are given in Remark 13.1. The
asymptotic formula for solutions of these equations as � → 0 has the WKB-form

KR = exp
{
F

�

}
(ϕ+O(�)), JR = exp

{
−F

�

}
(ψ +O(�)),

where F is the Kählerian potential of the classical symplectic form ω (see for-
mula (5.12)). We obtain simple equations for the amplitudes ϕ and ψ, and their
solutions lead to the formulae given in the lemma.

We recall (Proposition 7.1) that the quantum leaf Ω� = Ω�[M ] is identified with
the closure Ω of the classical symplectic leaf Ω = Ω[�M ] of the resonance manifold.
The following result is obtained from Lemma 8.1 and formulae (8.7) and (8.8).

Theorem 8.2. At those points of the quantum leaf Ω� that correspond to points
of the classical leaf Ω, the quantum Kähler form (8.8) can be approximated by the
classical symplectic form (5.8), and the reproducing measure (8.3) is approximated
by the classical Liouville measure dm = 1

(n−1)! |ω ∧ · · · ∧ ω︸ ︷︷ ︸
n−1

| as � → 0, M ∼ 1/�:

ω� = ω +O(�), dm� = dm+O(�). (8.9)

The asymptotic formulae (8.9) do not hold at those points of the quantum leaf Ω�

that correspond to the boundary points Ω \ Ω of the classical leaf. The classical
symplectic form ω and the measure dm are singular at these points.

Remark 8.1. It follows from (8.9) that the quantum Kähler form ω� with sufficiently
small � and M ∼ 1/� is non-degenerate at the points of the classical symplectic
leaf, but can degenerate on its boundary while still remaining smooth. The form ω�

is non-degenerate at the boundary point corresponding to a vertex r ∈ Δ[M ] if and
only if all the points obtained from r by means of the basis vectors belong to the
quantum simplex:

(r + ρ(j)) ∈ Δ[M ], j = 1, . . . , n− 1. (8.10)

This follows from the explicit formula for ω� in the complex coordinates w on the
quantum leaf, where the vertex r corresponds to w = 0:

ω�|w=0 = i�
∑

(r+ρ(j))∈Δ[M ]

crρ(j) dwj ∧ dwj , crρ(j) =
r!

�
|ρ(j)

+ |−|ρ(j)
− | (r + ρ(j))!

.

An example where the quantum form is degenerate is given by the resonance 1 : 2 : 3
for M = 2 at the vertex r = (2, 0, 0) with basis (4.8).

We note that a result similar to Theorem 8.2 holds for several other quantum
systems whose algebra of symmetries is not a Lie algebra [13], [14], [31], [32]: the
quantum geometric objects ω� and dm� are globally defined and smooth on Ω�,
in contrast to the classical geometric objects.

Remark 8.2. The asymptotic expansions (8.9) can be extended to terms of arbitrary
order in �:

ω� � ω +
∞∑
k=1

�
kλk, dm� = dm

(
1 +

∞∑
k=1

�
kdk

)
. (8.11)
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Here the coefficients λk are closed 2-forms and the coefficients dk are smooth func-
tions on Ω. Each dk is explicitly expressible [32] in terms of the forms ω, λ1, . . . , λk.

Substituting (8.11) into (8.6), we obtain the following formula for the multiplicity
d[M ], which contains only the first n− 1 of the functions dk, and the parameter �

can be set equal to 1 (see [32]):

d[M ] =
1

(2π)n−1

∫
Ω[M ]

(
1 +

n−1∑
k=1

dk

)
1

(n− 1)!
|ω ∧ · · · ∧ ω|.

§ 9. Cohomology of quantum leaves

Since the quantum leaf Ω� = Ω�[M ] is compact, all the cohomology groups
H2k(Ω�) with k = 1, . . . , n − 1 are non-trivial. Moreover, the cohomology class of
the quantum Kähler form 1

2π�
ω�, defined in (8.8) must be integer-valued [38].

For the sake of simplicity, we consider the case n = 3.

Theorem 9.1. The non-contractible 2-cycles in the quantum leaf Ω�[M ] corre-
spond to the edges of the classical resonance simplex �[�M ]. Namely, if (j, k, s)
is a cyclic permutation of (1, 2, 3), then the edge connecting the jth and kth ver-
tices is associated with the (positively oriented) cycle Σjk = {fjSj + fkSk = �M}.
The following formulae hold :

1
2π�

∫
Σjk

ω� =
[
r
(k)
k

fj

]
. (9.1)

Here r(k) is the vertex (6.6a) of the Diophantine skeleton Δ[M ], and the square
brackets stand for the integer part of a number. If Mjk � 0 in the representa-
tion (6.5), then formula (9.1) becomes

1
2π�

∫
Σjk

ω� = Mjk. (9.1a)

As � → 0, M ∼ 1/�, the integer (9.1) can be approximated by

1
2π�

∫
Σjk

ω =
M

fjfk
, (9.2)

where ω is the classical symplectic form on the leaf.

Proof. To be definite, we set j = 1 and k = 2. We introduce the real coordinates
Xj , Φj (see (5.1)) instead of the complex coordinates wj , (5.10), corresponding to
the resonance basis ρ(1), ρ(2), (5.9):

wj =
√
Xj exp{−iΦj}, 0 < Xj <∞, 0 � Φj < 2π.

We have w2 = 0 on the edge {S3 = 0} of the classical simplex �[�M ] connecting
the first and second vertices (see (5.13)). Hence

ω�

∣∣
Σ12

= �
∂

∂X1

(
X1

∂

∂X1
lnKR(X)

)∣∣∣∣
X2→0

dX1 ∧ dΦ1.
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If a point moves along the edge {S3 = 0} from the first vertex (where S1 = �M/f1
and S2 = 0) to the second vertex (where S2 = �M/f2 and S1 = 0), then X1 varies
from ∞ to 0 (see (5.13)). Therefore,

1
2π�

∫
Σ12

ω� =
(
X1

∂

∂X1
lnKR(X)

)∣∣∣∣X1→∞
X2→0

.

We recall that the polynomial KR is given by formulae (7.10) and (7.11):

KR(X) =
∑
σ∈Rr

crσX
N(1)

σ
1 X

N(2)
σ

2 , crσ
def=

r!
�|σ+|−|σ−| (r + σ)!

,

where the numbers N (j)
σ ∈ Z+ are determined by the decomposition (4.3):

σ = N (1)
σ ρ(1) +N (2)

σ ρ(2).

When X2 = 0, the sum defining the polynomial KR contains only the terms with
N

(2)
σ = 0. It follows that(

X1
∂

∂X1
lnKR(X)

)∣∣∣∣X1→∞
X2→0

= max
N

(1)
σ ρ(1)∈Rr

N (1)
σ .

The inclusion N (1)
σ ρ(1) ∈ Rr means that the vector r+N

(1)
σ ρ(1) is contained in the

quantum simplex Δ[M ], where M = 〈f, r〉. This is equivalent to the inequalities

rl +N (1)
σ ρ

(1)
l � 0, l = 1, 2, 3.

Since we are using the basis (5.9) that corresponds to the vertex r ≡ r(2), (6.6), we
obtain the system of inequalities

r
(2)
1 +N (1)

σ f2 � 0, r
(2)
2 −N (1)

σ f1 � 0, r
(2)
3 � 0.

The second inequality yields that the maximal value of N (1)
σ for which this system

of inequalities holds is equal to [ r
(2)
2
f1

]. Thus we have

max
N

(1)
σ ρ(1)∈Rr

N (1)
σ =

[
r
(2)
2

f1

]
.

This proves formula (9.1).
If M12 � 0 in the representation (6.5), then the formulae (6.6b) determining the

vertex yield that
r
(2)
2 = M12f1 +m12.

Here 0 � m12 � f1 − 1. Therefore, in this case, [ r
(2)
2
f1

] = M12, and we obtain
formula (9.1a).

Furthermore, Theorem 8.2 yields that the integral (9.1) is approximated by
1

2π�

∫
Σjk

ω as � → 0, where ω is the classical symplectic form on the leaf. It is now
convenient to write it in the form (5.8) in the Darboux coordinates x1, x2, (5.4),
ϕ1, ϕ2, (5.6). We choose a family s(�M) = �r(2) of initial points in (5.4). Then

S1 = �r
(2)
1 + f2x1 + μx2, S2 = �r

(2)
2 − f1x1 + νx2, S3 = �r

(2)
3 + x2,
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so that the coordinate x2 remains constant (x2 = −�r
(2)
3 ) along the edge {S3 = 0}

connecting the first and second vertices. Hence

ω
∣∣
Σ12

= dx1 ∧ dϕ1.

Here ϕ1 varies from 0 to 2π and the coordinate x1 varies from �(r(2)2 − r
(2)
3 ν)/f1

to �(μr(2)3 − r
(2)
1 )/f2 as we move along the edge from the first vertex to the second.

Therefore we have formula (9.2):

1
2π�

∫
Σ12

ω =
1

f1f2

(
f1r

(2)
1 + f2r

(2)
2 − (f1μ+ f2ν)r

(2)
3

)
=

M

f1f2
.

(Here we have used the Diophantine equation (2.3) and the formula 〈f, r(2)〉 = M .)

The integers Mjk, (9.1a), are called the principal quantum numbers of the
leaf Ω�[M ]. We note that these numbers are not independent: they are all uniquely
determined by the number M (see also Corollary 9.2).

The coefficients mjk in the representation (6.5) are called the adjoint numbers of
the leaf Ω�[M ]. The following assertion is obtained from formulae (9.2) and (6.5).

Corollary 9.1. The cohomology class of the classical symplectic form on the leaf
is given by the formula

1
2π�

∫
Σjk

ω = Mjk +
mjk

fj
+
mkj

fk
, (9.3)

where Mjk are the principal numbers and mjk are the adjoint numbers of the leaf,
and

0 � mjk

fj
+
mkj

fk
� 2 −

(
1
fj

+
1
fk

)
< 2.

Remark 9.1. It follows from (9.3) that if at least one of the frequencies fj is not
equal to 1, then the cohomology class of the classical symplectic form ω/(2π�)
is not integer-valued on leaves with non-zero adjoint numbers. This explains the
inconvenience of using the form ω in quantum geometric constructions.

We now calculate the class of the quantum 4-form ω� ∧ ω�. Since the leaves
Ω[�M ] ⊂ Ω�[M ] are four-dimensional when n = 3, this 4-form determines their
quantum volume.

Theorem 9.2. In the three-frequency case (n = 3), the quantum volume is calcu-
lated as follows :

1
(2π�)2

∫
Ω

ω� ∧ ω�

2
=

1
2

S
(j,k,s)

=(1,2,3)

(r̃j − r
(s)
j )
[
r
(s)
s

fk

]
, (9.4)

where the vertices r(1), r(2), and r(3) are defined as in Remark 6.3, r̃ is one of these
vertices, and the sum S is taken over all cyclic permutations of (1, 2, 3). For exam-
ple, when r̃ = r(2), the right-hand side of (9.4) has the form

1
2

(
(r(2)1 − r

(3)
1 )
[
r
(3)
3

f2

]
+ (r(2)2 − r

(1)
2 )
[
r
(1)
1

f3

])
.
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Here and in (9.4), the square brackets stand for the integer part of a number.
If M12 � 0, M23 � 0, and M31 � 0 in the representation (6.5), then (9.4) becomes

1
(2π�)2

∫
Ω

ω� ∧ ω�

2
=

1
2
(
Mks(Msjfs +msj) +Mjkmjs

)
. (9.4a)

Here (j, k, s) is an arbitrary cyclic permutation of (1, 2, 3).

Theorem 9.2 will be proved in the Appendix.
We note that the quantum vortex volume (9.4) can be approximated as � → 0,

M ∼ 1/�, by the classical volume

1
(2π�)2

∫
Ω

ω ∧ ω
2

=
M2

2f1f2f3
. (9.5)

In this case, the numbers (9.4a) and (9.5) approximate the dimension d[M ], (8.6),
but do not coincide with it.

Moreover, Theorem 9.2 yields interesting identities for the principal and adjoint
quantum numbers.

Corollary 9.2. Suppose that n = 3 and all the numbers M12, M23, M31 in the
representation (6.5) are non-negative. Then the following identities hold :

M31M12f1 +M31m12 +M23m21 = M12M23f2 +M12m23 +M31m32

= M23M31f3 +M23m31 +M12m13.

The proof follows from formula (9.4a): each of the three numbers coincides with
twice the quantum volume.

§ 10. The quantum resonance algebra

For any a ∈ R and m ∈ Z, we define

(a)m
def=

⎧⎪⎨⎪⎩
(a+ �) · · · (a+m�) for m � 1,
1 for m = 0,
a(a− �) · · · (a− �(|m| − 1)) for m � −1.

(10.1)

Given any vectors s ∈ Rn and ρ ∈ Zn, we set

(s)ρ
def= (s1)ρ1 · · · (sn)ρn , (10.1a)

where all the factors are determined by (10.1).
The operations (10.1), (10.1a) generalize the well-known ‘Pochhammer symbols’

to the case of negative subscripts. With our modified definition of these sym-
bols, they have the following important property.

Lemma 10.1. The operation ρ→ (s)ρ has an analogue of the group property :

(s)ρ+σ =
(s+ �σ)ρ(s)σ
(s+ �σ)2[σ|ρ]

,

where the vector [σ|ρ] is defined by (3.2). In particular, if [ρ, σ] = 0 (see (3.2)),
then (s)ρ+σ = (s+ �σ)ρ(s)σ .
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Given any pair of vectors ρ, σ ∈ Zn, we define the structure polynomial gρ,σ
on Rn by the formula

gρ,σ(s)
def= (s− �ρ)[σ|ρ], s ∈ R

n. (10.2)

The structure polynomials gρ,σ have many interesting properties. Here we men-
tion only those identities that will be used later.

Lemma 10.2. The following identities hold.
1) If [ρ, σ] = 0 (see (3.2)), then gρ,σ(s) ≡ 1.
2) gρ,σ(s)gρ+σ,κ(s) = gρ,σ+κ(s)gσ,κ(s− �ρ).
3) gρ,σ(s+ �ρ+ �σ) = g−σ,−ρ(s).

They have the following corollaries.
4) gρ,−ρ(s) = g−ρ,ρ(s− �ρ).
5) If [ρ, σ] = 0, then g−ρ,σ(s)g−ρ,ρ(s− �σ) = gσ,−ρ(s)g−ρ,ρ(s).
6) If [ρ′, ρ′′] = [σ′, σ′′], then gρ′,σ′(s − �ρ′′)gρ′+σ′,σ′′(s − �ρ′′)gρ′′,ρ′+σ′+σ′′(s) =

gρ′+ρ′′,σ′+σ′′(s).

We now introduce the quantum resonance algebra. The generators of this algebra
are denoted by Aσ and Sj (analogous to the classical coordinates Aσ and Sj), where
j = 1, . . . , n and σ runs through the set M of minimal resonance vectors.

We replace the constraints (3.6), (3.8), (3.9) and the Poisson brackets (3.11) by
quantum constraints and commutation relations between the generators Aσ and S.

The quantum constraints of Hermitian type are defined as

S∗
j = Sj , A∗

σ = A−σ (10.3)

for any j = 1, . . . , n and any σ ∈ M.
The quantum constraints of commutative type are defined as∏

ρ

(Aρ)kρ =
∏
σ

(Aσ)mσ (10.4)

for any families of commuting vectors ρ, σ ∈ M and numbers kρ,mσ ∈ N with∑
ρ

kρρ =
∑
σ

mσσ.

The quantum constraints of non-commutative type are defined as follows. If two
minimal vectors ρ and σ do not commute and ρ 
= −σ, then

AρAσ = gρ,σ(S)
∏

κ∈Mρ+σ

(Aκ)n
ρ+σ
κ , (10.5)

where gρ,σ is the structure polynomial (10.2) and the nρ+σκ are the coefficients in
the decomposition (2.2) of the vector ρ+ σ into minimal vectors in Mρ+σ.

The commutation relations are defined as

[Sj ,Sk] = 0, [Sj ,Aρ] = �ρjAρ, [A−ρ,Aρ] = �F−ρ,ρ(S) (10.6)

for any j, k = 1, . . . , n and ρ ∈ M, where the polynomials Fρ,σ are given by the
formula

Fρ,σ
def=

1
�
(gρ,σ − gσ,ρ). (10.7)
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Remark 10.1. The set of constraints (10.5) of non-commutative type consists of the
commutation relations

[Aρ,Aσ] = �Fρ,σ(S)
∏

κ∈Mρ+σ

(Aκ)n
ρ+σ
κ

and anti-commutation relations

[Aρ,Aσ]+ =
(
gρ,σ(S) + gσ,ρ(S)

) ∏
κ∈Mρ+σ

(Aκ)n
ρ+σ
κ . (10.5a)

The relations (10.5a) are called actual constraints of non-commutative type.
The set (10.4) of constraints of commutative type also contains commutation

relations. These are the constraints (10.4) corresponding to the equalities ρ+ σ =
σ+ρ for vectors ρ, σ ∈ M in a normal sublattice. Removing the commutation rela-
tions from the set of constraints (10.4), we obtain actual constraints of commutative
type.

The actual constraints thus defined are not independent. The number of inde-
pendent actual constraints is equal to M−n+1, where M is the number of minimal
vectors.

Definition 10.1. The resonance algebra A is an algebra with involution having
generators Aσ, σ ∈ M, Sj , j = 1, . . . , n, and relations (10.3)–(10.6).

As in (3.10), we associate each non-minimal resonance vector σ with the following
element Aσ of the resonance algebra:

Aσ =

{
I if σ = 0,∏

κ∈Mσ
Anσ

κ

κ if σ 
= 0.
(10.8)

Here the subsets Mσ and numbers nσκ are defined by (2.2). The constraints (10.4)
of commutative type show that this notation is well defined, that is, independent of
the decomposition of σ into minimal vectors.

We use this notation to write (10.5) in the form

AρAσ = gρ,σ(S)Aρ+σ

(here ρ, σ ∈ M and ρ 
= −σ).
For any minimal vectors ρ and σ, the last relation and (10.6) imply the following

commutation relation:
[Aρ,Aσ] = �Fρ,σ(S)Aρ+σ, (10.9)

where Fρ,σ are polynomials (10.7).
We now write down some useful permutation relations that follow from the

constraints (10.4), (10.5) and the permutation relations (10.6).

Corollary 10.1. The generators of the resonance algebra A satisfy the following
permutation relations.

(a) If ρ, σ ∈ M and ρ 
= −σ, then gσ,ρ(S)AρAσ = gρ,σ(S)AσAρ.
(b) If ρ∈M, P is a polynomial and k∈N, then (Aρ)kP (S) =P (S−�kρ)(Aρ)k.
(c) If ρ∈M and k∈N, then [A−ρ, (Aρ)k]=g−ρ,ρ(S)(Aρ)k−1−(Aρ)k−1gρ,−ρ(S).
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To prove the relation (c), we use the fact that the structure polynomials satisfy
the identity 4) in Lemma 10.2.

For any s ∈ R
n and any ρ, σ, σj ∈ Z

n, j = 1, . . . , l, l � 2, we have the following
formulae as � → 0:

(s)[ρ|σ] = sρ
◦
+σ +O(�), gρ,σ(s) = sρ

◦
+σ

(
1 + �

ρ&σ
s

+O(�2)
)
,

where

ρ&σ def=
1
2
(σ− − ρ+) · (σ|ρ) +

1
2
(ρ− − σ+) · (ρ|σ) +

1
2
(ρ

◦
+ σ) − 1

2
[ρ, σ].

It follows that

Fρ,σ(s) = −sρ
◦
+σ [ρ, σ]

s
+O(�).

Corollary 10.2. As � → 0, the quantum resonance algebra A corresponds to the
Poisson algebra of functions on the resonance manifold N .

Proof. It suffices to compare the quantum and classical commutation relations
(10.6), (10.9), (3.11) with the quantum and classical constraint equations
(10.3)–(10.5), (3.6), (3.8), (3.9) and use the asymptotic formulae above. For
example, the asymptotic formula

Fρ,σ(s) = −fρ,σ(s) +O(�)

shows that the commutation relation (10.9) becomes the third relation in (3.11)
as � → 0.

The following theorem gives two elementary properties of the resonance algebra.

Theorem 10.1. The centre of the resonance algebra A contains the element

C = f1S1 + · · · + fnSn. (10.10)

The resonance algebra has a representation

Aσ → Âσ, Sj → Ŝj (10.11)

in the space L2(Rn) via the symmetry operators

Ŝj = ẑ∗j ẑj , Âσ = (ẑ∗)σ+ ẑσ− (10.12)

of the resonance oscillator. In this representation, the element (10.10) coincides
with the oscillator Hamiltonian (1.3).

Proof. The fact that the operators (10.12) satisfy all the constraint equations and
commutation relations (10.3)–(10.6) follows from the simple permutation formulae

ẑŜj = (Ŝj + �)ẑj , ẑmj (ẑ∗j )
m = (Ŝj)m, (ẑ∗j )

mẑmj = (Ŝj)−m, m ∈ Z+.

The proof of the theorem is complete.
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§ 11. Vacuum vectors and irreducible representations

We now consider an abstract representation of the resonance algebra A in
a Hilbert space H. The representation operators are denoted by the same let-
ters Sj , Aσ, j = 1, . . . , n, σ ∈ M, as the generators of A. For a non-minimal
resonance vector σ, let Aσ be the operator defined by formula (10.8).

We choose a number M ∈Z+ such that d[M ] 
=0 (that is, the Diophantine skele-
ton Δ[M ], (6.2), is non-empty). Let R = (r, {ρ}) be a frame of the Diophantine
skeleton Δ[M ] and write R−

R for the set of vectors σ in the resonance lattice R for
which r + σ 
∈ Δ[M ].

We assume that for at least one frame R there is a normalized vector pR in H
such that

AρpR = 0, ρ ∈ R−
R,

SjpR = �rjpR, j = 1, . . . , n,
(11.1)

where r is the vertex of the frame R. The vector pR is called a vacuum vector.
Applying all possible representation operators Aσ to the vacuum vector, we

construct a vector subspace HM ⊆ H:

HM = span{AσpR | σ ∈ R}. (11.2)

We note that HM is independent of the choice of the frame R in (11.1). This
follows from Lemma 12.1, which will be proved later.

Proposition 11.1. The following relation holds on HM for any resonance vectors
ρ and σ:

AρAσ = gρ,σ(S)Aρ+σ. (11.3)

Remark 11.1. If ρ and σ are minimal resonance vectors with ρ 
=−σ, then (11.3) holds
on the whole space H because of the constraints (10.5) of non-commutative type.

To prove Proposition 11.1, we need the following three lemmas.

Lemma 11.1. Let ρ and σ be resonance vectors.
(a) If ρ 
∈ R−

R , then either ρ = 0 or −ρ ∈ R−
R .

(b) If ρ ∈ R−
R and [ρ, σ] = 0, then (ρ+ σ) ∈ R−

R .

Lemma 11.2. Let ρ, σ and θ be resonance vectors.
(a) If (ρ+ θ) ∈ R−

R and θ 
∈ R−
R , then g−ρ,ρ(�r + �θ) = 0.

(b) If σ 
∈ R−
R and θ 
∈ R−

R , then gθ−σ,ρ(�r + �θ) > 0 for any ρ ∈ R.

Lemma 11.3. If ρ ∈ M, κ ∈ R and [ρ,κ] = 0, then

A−ρAρAκpR = g−ρ,ρ(S)AκpR. (11.4)

Proof. By Corollary 10.1, (b) and the properties (11.1) of the vacuum vector, it
suffices to prove the following equivalent formula:

A−ρAρAκpR = g−ρ,ρ(�r + �κ)AκpR. (11.4a)

If (ρ + κ) ∈ R−
R, then the left-hand side of (11.4a) is equal to zero because

AρAκpR = Aρ+κpR = 0 by the conditions (11.1). The right-hand side of (11.4a)
is also equal to zero in this case. Indeed, if κ ∈ R−

R, this follows from the equal-
ity AκpR = 0. If κ 
∈ R−

R, it follows from the fact that the coefficient is zero:
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g−ρ,ρ(�r+ �κ) = 0 (using Lemma 11.2 (a)). This completes the proof of (11.4a) in
the case when (ρ+ κ) ∈ R−

R.
Suppose that (ρ+ κ) 
∈ R−

R. We consider in turn the following possible cases of
decomposition of the resonance vector κ into a sum of commuting minimal vectors:

〈1〉 κ = kρ;
〈2〉 κ = kρ+ σ, where [ρ, σ] = 0, ρ 
= σ;
〈3〉 κ = kρ+ σ + σ′, where [ρ, σ] = [ρ, σ′] = [σ, σ′] = 0, ρ 
= σ, ρ 
= σ′;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Here σ, σ′, . . . ∈ M and k ∈ Z+.
In case 〈1〉 we have (k + 1)ρ 
∈ R−

R. Therefore ρ 
∈ R−
R by Lemma 11.1, and

then −ρ ∈ R−
R. Hence, first, A−ρpR=0 and, second, gρ,−ρ(�r) = 0. Thus Corol-

lary 10.1 (b), (c) yields that (11.4a) holds for κ = kρ:

A−ρAρAkρpR = A−ρ(Aρ)k+1pR = [A−ρ, (Aρ)k+1]pR

=
(
g−ρ,ρ(S)(Aρ)k − (Aρ)kgρ,−ρ(S)

)
pR = g−ρ,ρ(S)AkρpR.

In case 〈2〉 we can apply Corollary 10.1(a) since ρ 
= σ:

gσ,−ρ(S)A−ρAσ = g−ρ,σ(S)AσA−ρ.

Using the equation proved in case 〈1〉, and then Corollary 10.1 (b) and part 5) of
Lemma 10.2, we obtain

gσ,−ρ(S)A−ρAρAkρ+σpR = gσ,−ρ(S)A−ρAσAρAkρpR

= g−ρ,σ(S)AσA−ρAρAkρpR = g−ρ,σ(S)Aσg−ρ,ρ(S)AkρpR

= g−ρ,σ(S)g−ρ,ρ(S − �σ)AσAkρpR = gσ,−ρ(S)g−ρ,ρ(S)Akρ+σpR (11.5)

(here it is important that [ρ, σ] = 0). By property (11.1) of the vacuum vector we
can replace the operator-valued factor gσ,−ρ(S) (contained in the initial and final
parts of the formula) by the number gσ,−ρ(�r+�kρ+�σ). This number is different
from zero by Lemmas 11.1 (b) and 11.2 (b). Dividing (11.5) by this number, we
obtain the identity (11.4a) in case 〈2〉.

In case 〈3〉 we argue as in 〈2〉 and use the result of 〈2〉 to arrive at (11.4a).
Proceeding by induction, we see that (11.4a) holds for any κ commuting with ρ.

Proof of Proposition 11.1. We first note that it suffices to prove (11.3) for the
vacuum vector pR:

AρAσpR = gρ,σ(S)Aρ+σpR. (11.3a)

Indeed, assuming that (11.3) is true for pR, we see that (11.3) also holds for all
vectors of the form AκpR, where κ ∈ R:

AρAσAκpR = Aρgσ,κ(S)Aσ+κpR = gσ,κ(S− �ρ)AρAσ+κpR

= gσ,κ(S− �ρ)gρ,σ+κ(S)Aρ+σ+κpR

= gρ,σ(S)gρ+σ,κ(S)Aρ+σ+κpR = gρ,σ(S)Aρ+σAκpR.

Here we have used Corollary 10.1(b) and Lemma 10.2, 2).
Let ρ, σ ∈ Zn. The non-commutativity index m(ρ, σ) is the number of j for

which [ρ, σ]j 
= 0. We have m(ρ, σ) ∈ {0, 1, . . . , n}.
It is easy to verify the following lemma.
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Lemma 11.4. Suppose that ρ= ρ′ + ρ′′, σ=σ′ + σ′′, and let [ρ′, ρ′′] = [σ′, σ′′] = 0.
Then the following assertions hold.

(a) m(ρ′ + σ′, σ′′) � m(ρ, σ).
(b) m(ρ′′, ρ′ + σ) � m(ρ, σ).
(c) If there is j such that [ρ, σ]j 
= 0, ρ′j+σ′

j = 0, then m(ρ′+σ′, σ′′) � m(ρ, σ).
(d) If there is j such that [ρ, σ]j 
= 0, ρ′′j = 0, then m(ρ′′, ρ′ + σ) � m(ρ, σ).

We prove (11.3a) by induction on the value of m(ρ, σ).
If m(ρ, σ) = 0, that is, [ρ, σ] = 0, then (11.3) follows from the constraints (10.4)

of commutative type and part 1) of Lemma 10.2.
The induction hypothesis is formulated as follows.

(H1) Formula (11.3a) holds for all ρ, σ ∈ R with m(ρ, σ) � m.

Under this assumption, we shall prove (11.3a) for all ρ, σ ∈ R with m(ρ, σ) =
m+ 1.

Since m(ρ, σ) � 1, it follows that at least one component of the commutator
[ρ, σ] is different from zero, that is,

∃ j : [ρ, σ]j 
= 0.

Therefore the vectors ρ and σ can be represented as

ρ = ρ′ + ρ′′, ρ′ ∈ M, ρ′′ ∈ R, [ρ′, ρ′′] = 0, ρ′j 
= 0,

σ = σ′ + σ′′, σ′ ∈ M, σ′′ ∈ R, [σ′, σ′′] = 0, σ′
j 
= 0.

(11.6)

Hence we have
AρAσpR = Aρ′′Aρ′Aσ′Aσ′′pR.

The product Aρ′Aσ′ in the right-hand side can be replaced by gρ′,σ′(S)Aρ′+σ′ .
Indeed, if ρ′ 
= −σ′, this follows from the constraints (10.6) of non-commutative
type. If ρ′ = −σ′, it follows from Lemma 11.3 (see also the notation (10.8)). Using
Corollary 10.1(b), we thus obtain the relation

AρAσpR = gρ′,σ′(S− �ρ′′)Aρ′′Aρ′+σ′Aσ′′pR. (11.7)

We now proceed by induction on Mj(ρ, σ) def= |[ρ, σ]j |.
When Mj(ρ, σ) = 1, we obviously have ρ′j = −σ′

j , ρ
′′
j = 0. Parts (c) and (d)

of Lemma 11.4 imply that

m(ρ′ + σ′, σ′′) < m+ 1, m(ρ′′, ρ′ + σ) < m+ 1.

Hence, by the induction hypothesis (H1), we have

Aρ′+σ′Aσ′′pR = gρ′+σ′,σ′′(S)Aρ′+σ′+σ′′pR,

Aρ′′Aρ′+σpR = gρ′′, ρ′+σ(S)Aρ′′+ρ′+σpR.
(11.8)

Substituting these relations in (11.7) and using Corollary 10.1(b) and the identity 6)
in Lemma 10.2, we obtain the desired relation (11.3a) in the case when m(ρ, σ) =
m+ 1, Mj(ρ, σ) = 1:

AρAσpR = gρ′,σ′(S− �ρ′′)Aρ′′gρ′+σ′,σ′′(S)Aρ′+σpR

= gρ′,σ′(S− �ρ′′)gρ′+σ′,σ′′(S− �ρ′′)gρ′′,ρ′+σ(S)Aρ+σpR

= gρ′+ρ′′, σ′+σ′′(S)Aρ+σpR = gρ,σ(S)Aρ+σpR.
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The induction hypothesis is formulated as follows.

(H2) Formula (11.3a) holds for all ρ, σ ∈ R with
m(ρ, σ) = m+ 1 and Mj(ρ, σ) � Mj .

We also consider ρ, σ ∈ R such that m(ρ, σ) = m + 1 and Mj(ρ, σ) = Mj + 1.
Then, first, parts (a) and (b) of Lemma 11.4 imply the inequalities

m(ρ′ + σ′, σ′′) � m+ 1, m(ρ′′, ρ′ + σ) � m+ 1

and, second, the relations (11.6) imply the inequalities

Mj(ρ′ + σ′, σ′′) � Mj , Mj(ρ′′, ρ′ + σ) � Mj .

This means that one of the induction hypotheses (H1) or (H2) holds. In any case,
the formulae (11.8) hold. Substituting them in (11.7), we obtain formula (11.3a)
in the case when m(ρ, σ) = m+ 1, Mj(ρ, σ) = Mj + 1.

Thus we have proved by induction that formula (11.3a) holds for all values
of m(ρ, σ) ∈ {0, 1, . . . , n}, n ∈ N.

Corollary 11.1. The subspace HM , (11.2), is invariant and minimal under the rep-
resentation of the resonance algebra (that is, HM is the space of an irreducible
representation of A). The representation operators act on vectors in HM as follows:

SjAσpR = �(rj + σj)AσpR,

AρAσpR = gρ,σ(�r + �ρ+ �σ)Aρ+σpR.

Combining this with (11.1) and Lemma 10.2, 4), we get the following assertion.

Corollary 11.2. Suppose that σ, θ ∈ R.
(a) If (r + σ) 
∈ Δ[M ], then AσpR = 0.

(b) If (r + σ) ∈ Δ[M ], then ‖AσpR‖ = (�r)−1/2
−σ .

(c) If σ 
= θ, then (AσpR,AθpR) = 0.

§ 12. Coherent states

We consider irreducible representations of the resonance algebra in the space
HM ⊂ H, (11.2), generated by the vacuum vector. We associate each point of the
skeleton t ∈ Δ[M ] with a vector in HM by the formula

pt
def= (�r)−1/2

t−r At−rpR, (12.1)

where pR is the vacuum vector and r is the vertex of the frame R.

Proposition 12.1. (1) The vectors pt, (12.1), form an orthonormal basis in HM ,
(11.2).

(2) The representation operators of the algebra A in the basis {pt | t ∈ Δ[M ]}
have the form

Sjpt = �tjp
t, j = 1, . . . , n, (12.2)

Aρp
t = (�t)1/2ρ pρ+t, ρ ∈ R. (12.3)
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Proof. Only formula (12.3) must be explained. Suppose that (ρ + t) ∈ Δ[M ]. By
Corollary 11.1 and definition (12.1) we have

Aρp
t =

√
(�r)ρ+t−r
(�r)t−r

gρ,t−r(�ρ+ �t)pρ+t.

By Lemma 10.1 and definition (10.2) we have the identity

(gρ,σ(s))2 =
(s− �ρ)ρ(s− �ρ− �σ)σ

(s− �ρ− �σ)ρ+σ
, s ∈ R

n, ρ, σ ∈ Z
n.

This and Lemma 11.2 imply that

gρ,t−r(�ρ+ �t) =

√
(�t)ρ(�r)t−r
(�r)ρ+t−r

,

and we obtain formula (12.3).
Suppose that (ρ + t) 
∈ Δ[M ]. Then the left-hand side of (12.3) is zero by

Corollary 11.2, and the right-hand side of (12.3) is zero because of the coefficient:
(�t)ρ = 0. Thus formula (12.3) also holds in this case.

Lemma 12.1. Suppose that the vacuum vector pR, (11.1), exists for some frame R
of the resonance skeleton Δ[M ]. Then there is a vacuum vector pL for any other
frame L of Δ[M ], namely,

pL = pl,

where l is the vertex of the resonance frame L and the vector pl is given by (12.1).

Proof. We recall that σ ∈ R−
L ⇐⇒ (l+ σ) 
∈ Δ[M ]. It follows by Proposition 12.1

that the vector pL = pl satisfies conditions (11.1) for the vacuum vector:

AσpL = 0, 0 ∈ R−
L ,

SjpL = �lpL, j = 1, . . . , n.

Moreover, Proposition 12.1, 1) yields that the vector pL is normalized: ‖pL‖ = 1.
Hence pL is the vacuum vector corresponding to the frame L.

Lemma 12.2. The vector pt, (12.1), is independent of the choice of the frame R.

Proof. By formula (12.3), we have

At−lpl = (�l)1/2t−lp
t.

Hence the vector pt can be expressed by the formula

pt = (�l)−1/2
t−l At−lpL

in terms of the vacuum vector pL = pl corresponding to an arbitrary frame L.
Comparing the resulting expression with (12.1), we conclude that pt is independent
of the choice of the frame.

Example 12.1. If H = L2(Rn) and the representation of A is given by (10.12),
then the basis vectors pt are functions on Rn:

pt(q) =
1√

2|t| t!

n∏
j=1

4

√
fj
π�

Htj

(√
fj
�
qj

)
exp
{
− 1

2�

n∑
j=1

fjq
2
j

}
, q ∈ R

n.
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The Hk here are the standard Hermite polynomials

Hk(ξ)
def= (−1)keξ

2 dk

dξk
(e−ξ

2
).

Indeed, in this case, the vacuum vector is given by the formula

pR = c(r)(ẑ∗)rχ0,

where

c(r) def= 4

√
f1 · · · fn
(π�)n

1√
�|r| r!

, χ0(q) = exp
{
− 1

2�

n∑
j=1

fjq
2
j

}
.

It follows from definition (12.1) that

pt = c(r)(�r)−1/2
t−r (ẑ∗)(t−r)+ ẑ(t−r)− (ẑ∗)rχ0

= c(t) (ẑ∗)tχ0 = c(t)
�|t|/2

2|t|/2

n∏
j=1

Htj

(√
fj
�
qj

)
χ0.

This yields the above formula for pt(q).

We recall from § 7 that the set of all vertices t ∈ Δ[M ] is associated with
an orthonormal basis {U t} in the space L(Ω�) of holomorphic sections of the
sheaf Π(Ω�).

Let Π(Ω�,H) = Π(Ω�) ⊗ H be the sheaf of H-valued holomorphic functions
on Ω� with scalar matching functions (7.2) as above, and let L(Ω�,H) be the space
of its sections Ψ = {ΨR} equipped with the natural Hilbert norm

‖Ψ‖ =
(

1
(2π�)n−1

∫
Ω�

‖ΨR‖2
H

KR dm�

)1/2

.

We clearly have an embedding L(Ω�,HM )⊂L(Ω�,H) for the subspace HM⊂H.

Definition 12.1. The vectors

P
def=

∑
t∈Δ[M ]

U tpt (12.4)

are called the coherent states of the algebra A corresponding to the quantum
leaf Ω� = Ω�[M ].

Formula (12.4) determines an element of the space L(Ω�,HM ). By (7.1), the
vectors P = PR(w) are holomorphic functions of the complex coordinates w in
the local chart with index R = (r, {ρ}):

PR(w) =
∑

t∈Δ[M ]

U tR(w)pt =
∑

t∈Δ[M ]

√
�|r| r!
�|t| t!

n−1∏
k=1

wN
(k)
t−rpt. (12.5)

Here the non-negative exponents N (k)
t−r are determined by the decomposition (4.3)

of the resonance vector t− r with respect to the basis {ρ} at the vertex r.
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Example 12.2. Suppose that n = 3 and f1 = 1. Then, for each M ∈ Z+, the
Diophantine skeleton Δ[M ] consists of the points

(M − f2j − f3k, j, k), where j ∈ Z+, k ∈ Z+, f2j + f3k � M.

We take the vertex r = (M, 0, 0) and the basis (4.8): ρ(1) = (−f2, 1, 0), ρ(2) =
(−f3, 0, 1) for the resonance frame R = (r, {ρ}). We then obtain the following
formula for coherent states (12.5) in the local chart with index R:

PR(w) =
∑

j∈Z+, k∈Z+
f2j+f3k�M

1
j! k!

(
w1Aρ(1)

�

)j(w2Aρ(2)

�

)k
pr. (12.6)

Here pr is the vacuum vector satisfying equations (11.1):

S1p
r = �Mpr, S2p

r = S3p
r = 0

and the normalization condition ‖pr‖ = 1, while w1 and w2 are the complex coor-
dinates related to the resonance basis ρ(1), ρ(2) by the formulae (4.4). We note that
the vectors ρ(1) and ρ(2) commute in the sense of (3.2): [ρ(1), ρ(2)] = 0. Hence the
operators Aρ(1) and Aρ(2) also commute:

[Aρ(1) ,Aρ(2) ] = 0.

We also note that (Aρ(1))j(Aρ(2))kpr = 0 for all j, k ∈ Z+, f2j + f3k > M . Hence
the summation over j and k in formula (12.6) can be extended to +∞. As a result,
we obtain the following expression for coherent states:

PR(w) = exp
{

1
�

(
w1Aρ(1) + w2Aρ(2)

)}
pr.

We also mention general properties of coherent states [39], [40].

Lemma 12.3. (a) The scalar product K = (P,P)H of coherent states coincides
with the reproducing kernel (7.7), (7.9) of the space L(Ω�).

(b) The sum of the projection operators π� to the one-dimensional subspaces
in HM generated by the coherent states is equal to the projection operator Π�[M ]
whose image is HM (that is, a whole irreducible component of the representation
of A in H):

1
(2π�)n−1

∫
Ω�[M ]

π� dm� = Π�[M ].

§ 13. Realization of irreducible representations over quantum leaves

We now exhibit a universal realization of irreducible representations of the quan-
tum resonance algebra A in the spaces of antiholomorphic sections over the quantum
leaves Ω�[M ].

We fix a local chart with index R = (r, {ρ}) in Ω�[M ]. Here r is a vertex of
the Diophantine skeleton Δ and {ρ} is a resonance basis. We denote the complex
coordinates in this chart by w.
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We define vector functions

s(m) def= �r + �

n−1∑
k=1

mkρ
(k), m ∈ Z

n.

Theorem 13.1. The differential operators

◦
Sj

def= sj

(
w

∂

∂ w

)
, j = 1, . . . , n,

◦
Aσ

def= (
◦
S)σ−Wσ, σ ∈ M,

(13.1)

in local charts on Ω� = Ω�[M ] are consistent on intersections of charts and deter-
mine an irreducible representation of the quantum resonance algebra A in the
Hilbert space L∗(Ω�) of (antiholomorphic) sections of the sheaf Π∗(Ω�). For this
representation, the vacuum vector corresponding to the frame R is the section
of Π∗(Ω�) determined by the identity function in the chart with index R.

The second formula in (13.1) uses the notation (10.1a) and (4.5).

Proof of Theorem 13.1. The verification of consistency on the intersections of charts
is a routine matter. The fact that the constraint equations and commutation rela-
tions (10.4)–(10.6) hold follows from the permutation formulae

wk
∂

∂ wk
◦Wσ = Wσ ◦

(
wk

∂

∂ wk
+N (k)

σ

)
,

◦
Sj ◦Wσ = Wσ ◦ (

◦
Sj + �σj),

where the numbers N (k)
σ are defined by (4.3). Consider the conditions (10.3) saying

that the operators (13.1) are Hermitian. It suffices to verify them on the vec-
tors U t of the orthonormal basis (7.1), (7.5). These vectors are eigenvectors of the
operators

◦
Sj : ◦

SjU t = �tjU t. (13.2)

The operators
◦
Aσ act as follows:

◦
AσU t =

√
(�t)σ U t+σ. (13.3)

Hence, using the property (s − �σ)σ = (s)−σ of the symbols (10.1a), we obtain

(
◦
AσUk, U t) =

√
(�k)σ (Uk+σ, U t) =

√
(�k)σ δk+σ,t

=
√

(�t)−σ δk,t−σ = (Uk,
◦
A−σU t),

that is,
◦
A∗
σ =

◦
A−σ.

For t = r, since (�r)σ = 0 for any σ ∈ R−
R, it follows from (13.2) and (13.3) that

◦
SjUr = �rjUr,

◦
AσUr = 0, j = 1, . . . , n, σ ∈ R−

R,

that is, the section Ur is a vacuum vector for the operators (13.1). This section
is identically equal to 1 in the chart with index R: UrR = 1 (see (7.1)).
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Remark 13.1. Since the scalar product in the space L∗(Ω�) is represented by the
integral (8.1), one can rewrite the condition that representation (13.1) is Hermitian
as several equations for the density J and the reproducing kernel K (see [25] for
this well-known procedure). This system of equations on J and K has the form

(
◦
Si)TJ = (

◦
Si)TJ , (

◦
Aσ)TJ = (

◦
A−σ)TJ ,

◦
SiK =

◦
SiK,

◦
AσK =

◦
A−σK.

Here we write ( . . . )T for the operation of transposing a differential operator with
respect to the standard measure dw (or dw) in the local complex coordinates. The
bar means the operator of complex conjugation.

The left-hand column of equations of this system (where i = 1, . . . , n) ensures
that the density J and the kernel K depend only on the moduli of the complex
coordinates w, that is, on the real variables Xj = |wj |2. It suffices to write the
right-hand column of equations (where σ ∈ M) only for the vectors in the basis ρ(j).
It has the form [

Xj(�r̃ − �D)
ρ
(j)
−

− (�r̃ − �D)
ρ
(j)
+

]JR = 0,[
Xj(�r + �D)−ρ(j)

−
− (�r + �D)−ρ(j)

+

]KR = 0, j = 1, . . . , n− 1.

Here the frame R indicates a chart on the quantum leaf, r is the vertex of R
and {ρ(j)} is the resonance basis of R, r̃ = r − ρ(1) − · · · − ρ(n−1), and D =∑n−1
j=1 ρ

(j)Xj
∂
∂Xj

. This system of equations for JR and KR was used in Lemma 8.1
to find the asymptotic behaviour as � → 0.

To conclude, we show how to intertwine any abstract representation of A in H
which has a vacuum vector (such as the representation (10.11), (10.12)) with the
universal irreducible representations (13.1).

We consider coherent states P, (12.4), in H. For each section ψ of the sheaf
Π∗(Ω�) we define a vector P[ψ] ∈ H by the formula

P[ψ] def=
1

(2π�)n−1

∫
Ω�

ψP

K dm�.

The map
ψ → P[ψ] (13.4)

is called a coherent transformation.

Theorem 13.2. The coherent transformation (13.4) intertwines the representa-
tion of the resonance algebra A in the Hilbert space H with the irreducible rep-
resentation in the space L∗(Ω�) of antiholomorphic sections over the quantum
leaf Ω� = Ω�[M ]:

AσP[ψ] = P[
◦
Aσψ], SjP[ψ] = P[

◦
Sjψ].

Here the differential operators
◦
Aσ and

◦
Sj are given by the formulae (13.1).

Proof. It follows from (12.4), (8.1), (8.2), (7.5) that P takes the vectors U t, (7.1),
of an orthonormal basis in L∗(Ω�) to vectors pt ∈ H, (13.1):

P[U t] =
1

(2π�)n−1

∫
Ω�

U t

K
∑

t′∈Δ[M ]

U t′pt
′
dm� =

∑
t′∈Δ[M ]

(U t′ , U t)pt
′
= pt.
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Therefore it suffices to prove that

Aσp
t = P[

◦
AσU t], Sjpt = P[

◦
SjU t]. (13.5)

We use (12.3) to obtain

Aσp
t =
√

(�t)σpt+σ.

Comparing this formula with (13.3) and taking into account that P [U t] = pt,
we obtain the first equality in (13.5).

Using the formulae (13.2) and (12.2), we similarly obtain the second.

Appendix. Proof of Theorem 9.2

Precisely as in the proof of Theorem 9.1, we use the ‘polar’ coordinates X, Φ
and represent the quantum Kähler form (8.8) as

ω� = �

(
∂g1
∂X1

dX1 ∧ dΦ1 +
∂g2
∂X1

dX1 ∧ dΦ2 +
∂g1
∂X2

dX2 ∧ dΦ1 +
∂g2
∂X2

dX2 ∧ dΦ2

)
,

where
gj

def= Xj
∂

∂Xj
lnKR.

Calculating the integral of the quantum volume form over the leaf Ω reduces
to calculating the integral of the primitive of this 4-form over the boundary ∂Ω =
Ω ∩ ∂N+

0 :∫
Ω

ω� ∧ ω�

2
= �

2

∫
∂Ω

θ ∧ dΦ1 ∧ dΦ2, θ
def= G1 dX1 +G2 dX2.

Here

G1(X1, X2)
def= g2

∂g1
∂X1

− g1
∂g2
∂X1

, G2(X1, X2)
def= g2

∂g1
∂X2

− g1
∂g2
∂X2

.

On ∂Ω, the angular variables Φj vary from 0 to 2π, and the values of the radial
variables Xj lie on the boundary (the union of the three edges) of the classical
simplex (triangle) �[�M ]. Since this boundary can occur in the boundary of the
coordinate chart, we allow the radial variables to take the values zero and infinity.
By (5.13) we have X2 = 0 (and hence θ|Σ12 = 0) on the edge joining the first and
second vertices. On the edge joining the second and third vertices, we have

X2 = ∞, X1 = τX
f2/μ
2

and hence
θ
∣∣
Σ23

=
(
X
f2/μ
2 G1(τX

f2/μ
2 , X2)

)∣∣
X2=∞ dτ,

where τ goes from 0 to ∞ as we move from the second vertex to the third. On the
edge joining the third and first vertices, we have

X1 = ∞, X2 = tX
−ν/f1
1

and hence
θ
∣∣
Σ31

=
(
X

−ν/f1
1 G2(X1, tX

−ν/f1
1 )

)∣∣
X1=∞ dt,
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where t goes from ∞ to 0 as we move from the third vertex to the first. Thus,

1
(2π�)2

∫
Ω

ω� ∧ ω�

2
=

1
2

{∫ ∞

0

(
X
f2/μ
2 G1(τX

f2/μ
2 , X2)

)∣∣
X2=∞ dτ

−
∫ ∞

0

(
X

−ν/f1
1 G2(X1, tX

−ν/f1
1 )

)∣∣
X1=∞ dt

}
. (A.1)

We calculate the first integral in the right-hand side. Using the explicit formula
for KR(X1, X2) as in the proof of Theorem 9.1, we obtain

KR(τXf2/μ
2 , X2) =

∑
σ∈Rr

crσX
f2N

(1)
σ /μ+N(2)

σ
2 τN

(1)
σ .

It follows that

KR(τXf2/μ
2 , X2) =

( ∑
σ∈Rλ

r

crστ
N(1)

σ

)
Xλ

2 +O(Xλ−1
2 ) (A.2)

as X2 → ∞. Here we write

λ
def= max

σ∈Rr

(
f2
μ
N (1)
σ +N (2)

σ

)
, Rλ

r
def=
{
σ ∈ Rr

∣∣∣∣ f2μ N (1)
σ +N (2)

σ = λ

}
. (A.3)

We also introduce a shorthand notation for sums over Rλ
r . Namely, we put

Σ[γ(N (1)
σ )] def=

∑
σ∈Rλ

r

γ(N (1)
σ ) crσ τ

N(1)
σ .

In particular, in this notation formula (A.2) has the form

KR(τXf2/μ
2 , X2) = Σ[1]Xλ

2 +O(Xλ−1
2 ).

We similarly obtain

(D1KR)(τXf2/μ
2 , X2) = Σ[N (1)

σ ]Xλ
2 +O(Xλ−1

2 ),

(D2KR)(τXf2/μ
2 , X2) = Σ

[
λ− f2

μ
N (1)
σ

]
Xλ

2 +O(Xλ−1
2 ),

(D2
1KR)(τXf2/μ

2 , X2) = Σ[(N (1)
σ )2]Xλ

2 +O(Xλ−1
2 ),

(D1D2KR)(τXf2/μ
2 , X2) = Σ

[
N (1)
σ

(
λ− f2

μ
N (1)
σ

)]
Xλ

2 +O(Xλ−1
2 ),

where Dj = Xj
∂
∂Xj

. Substituting these asymptotic expressions into the formula

G1(X1, X2) =
D2KR ·D2

1KR −D1D2KR ·D1KR
X1(KR)2
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for G1, we obtain(
X
f2/μ
2 G1(τX

f2/μ
2 , X2)

)∣∣∣∣
X2=∞

=
Σ[λ− f2

μ N
(1)
σ ]Σ[(N (1)

σ )2] − Σ[N (1)
σ (λ− f2

μ N
(1)
σ )]Σ[N (1)

σ ]

τ(Σ[1])2

= λ
Σ[1]Σ[(N (1)

σ )2] − (Σ[N (1)
σ ])2

τ(Σ[1])2
= λ

∂

∂τ

(
Σ[N (1)

σ ]
Σ[1]

)
.

Therefore, the desired integral has the form∫ ∞

0

(
X
f2/μ
2 G1(τX

f2/μ
2 , X2)

)∣∣∣∣
X2=∞

dτ = λ
Σ[N (1)

σ ]
Σ[1]

∣∣∣∣∞
τ=0

= λ
(

max
σ∈Rλ

r

N (1)
σ − min

σ∈Rλ
r

N (1)
σ

)
. (A.4)

Writing l = r(2) + σ, it follows from (7.11) that

σ ∈ Rr ⇐⇒ l ∈ Z
3
+.

We use the explicit formulae (5.9) for the basis ρ(1), ρ(2) and the representa-
tion (4.3):

l1 = r
(2)
1 +N (1)

σ f2 +N (2)
σ μ,

l2 = r
(2)
2 −N (1)

σ f1 +N (2)
σ ν, (A.5)

l3 = r
(2)
3 +N (2)

σ .

The first relation in (A.5) and the definition (A.3) imply that

λ =
1
|μ|
(
r
(2)
1 − min

l∈Δ[M ]
l1
)

=
r
(2)
1 − r

(3)
1

|μ| (A.6)

in view of the formulae (6.6a): minl∈Δ[M ] l1 = r
(3)
1 .

Furthermore, it follows from the first and third relations in (A.5) that

N (1)
σ =

|μ|
f2

(l3 − r
(2)
3 ) +

1
f2

(l1 − r
(2)
1 ),

whence we obtain

max
σ∈Rλ

r

N (1)
σ =

|μ|
f2

max
l∈Δ[M ]

l1=r
(3)
1

l3 +
1
f2

(r(3)1 − r
(2)
1 − |μ|r(2)3 ),

min
σ∈Rλ

r

N (1)
σ =

|μ|
f2

min
l∈Δ[M ]

l1=r
(3)
1

l3 +
1
f2

(r(3)1 − r
(2)
1 − |μ|r(2)3 ).

Lemma A.1. Let (j, k, s) be a cyclic permutation of (1, 2, 3) and let l∗ be the point
at which minl∈Δ[M ] ls is attained. Then the following relations hold :

1
fk

(
max
l∈Δ[M ]
ls=l∗s

lj − min
l∈Δ[M ]
ls=l∗s

lj

)
=
[
l∗j
fk

]
+
[
l∗k
fj

]
=
[
r
(k)
k

fj

]
,

where r(k) is the vertex (6.6a) of the Diophantine skeleton Δ[M ].
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By Lemma A.1, we have

max
σ∈Rλ

r

N (1)
σ − min

σ∈Rλ
r

N (1)
σ =

|μ|
f2

(
max
l∈Δ[M ]

l1=r
(3)
1

l3 − min
l∈Δ[M ]

l1=r
(3)
1

l3

)
= |μ|

[
r
(3)
3

f2

]
.

Using the last formula and (A.6), we see from (A.4) that∫ ∞

0

(
X
f2/μ
2 G1(τX

f2/μ
2 , X2)

)∣∣∣∣
X2=∞

dτ = (r(2)1 − r
(3)
1 )
[
r
(3)
3

f2

]
.

We similarly evaluate the integral

−
∫ ∞

0

(
X

−ν/f1
1 G2(X1, tX

−ν/f1
1 )

)∣∣∣∣
X1=∞

dt = (r(2)2 − r
(1)
2 )
[
r
(1)
1

f3

]
.

Summing these two integrals in (A.1), we obtain (9.4).
If all three of the numbers M12, M23, and M31 in the representation (6.5) are

non-negative, then the coordinates of the vertices r(s) in (9.4) are given by the
formulae (6.6b). Substituting them into (9.4), we obtain (9.4a).
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