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We prove that, for a spatial voting setting with convex preferences, the locally 
uncovered set, proposed by Schofield (1999), is closely related to the dimension-by- 
dimension median of Shepsle (1979). It is shown that every point in the interior of 
the locally uncovered set can be supported as a dimension-by-dimension median by 
some set of basis vectors for the space of alternatives. Moreover, for a two-dimensio-
nal policy space, the locally uncovered set and the set of dimension-by-dimension 
medians coincide. We also introduce a measure that allows to differentiate locally 
uncovered alternatives and chose the best one.  

 
Introduction 
 
It is well known that the preference relationship generated by majority voting is 

not transitive [Plott, 1968]. Several solution concepts have been investigated in theo-
retical and empirical voting literature. The uncovered set [Miller, 1980; McKelvey, 
1984] is a set of all alternatives that beat any other alternative either directly, or 
with the help of one intermediate alternative (and hence are not «covered»). It is a 
well-known construction but is difficult to obtain analytically or numerically [Miller, 
2007; Bianco, Jeliazkov, Sened, 2004]. The locally uncovered set, or heart [Schofield, 
1999; Schofield, Sened, 2006] is another set-based solution concept. A locally unco-
vered alternative is not covered by any alternative in some small neighborhood around 
it. The locally uncovered set is much simpler to calculate; in this work, we relate it 
to a well-known point solution concept – the dimension by dimension median1, 
interpreted as a structurally induced equilibrium by Shepsle (1979) and Shepsle and 
Weingast (1981). Its principal drawback is that it is not invariant to linear transforma-
tion of voter ideal points. 

The following example illustrates the concept of the dimension-by-dimension 
median, and how it can depend on the voting agenda. A three-member committee 
                                                 
1 There are several other solution concepts in the social choice theory, such as the Banks 
set, the competitive solution. 
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votes to determine the allocation ),(= 21 xxx  of a budget to two projects. There 
are three committee members with Euclidian preferences:  

|,|=)( xvxu ii −−  

where iv  is the best alternative of committee member .i  Let ,(1,1)=1v  (2,1)=2v  
and .(1,2)=3v  Suppose that the committee votes on each issue separately. Fix any 
value of .2x  Then the preferences of all three members are single-peaked with 
respect to .1x  Moreover, the best value of 1x  for each member does not depend on 
the value of .2x  Hence, voter 3 is the median voter with respect to the first di-
mension, with the median position being .1=*

1x  Similarly, the median with respect 
to the second dimension is .1=*

2x  

Now suppose that the candidates first vote on the combined budget .21 xx +  
The preferences with respect to combined budget will once again be single-peaked, with 
the best alternatives being 2=21 xx +  for committee member 1 and 3=21 xx +  for 
members 2 and 3. Hence we have .3=*

2
*
1 xx +  The second vote is on the distribution 

of the agreed-upon budget between the two projects. Here, committee member 1 will 

be the median voter, preferring .= *
2

*
1 xx  Finally, this gives us .

2
3== *

2
*
1 xx  

One can see that the selection of voting agenda can be used to strategically 
manipulate the outcome of the voting process. But what is the set of outcomes that 
can be achieved by choosing different voting agendas? Geometrically, the outcomes 
in the first and second case are related. One can obtain the second outcome by 
rotating the best alternative of each voter by 45 degrees, calculating the median po-
sition along each dimension, and then rotating the resulting dimension-by dimension 
median back by –45 degrees. Feld and Grofman (1988) proposed a generalized 
solution concept, the Schattschneider set, as the locus of all such dimension-by-
dimension median points that could be obtained by some rotation of the set of voter 
ideal points. They also derived bounds on this set, relating it to another solution 
concept – the yolk2. 

It was shown that the Schattschneider set must lie within K  yolk radii from 
the center of the yolk, where K  is the number of policy space dimensions. 

Austen-Smith and Banks (2005) suggested a generalization of this concept, by 
considering not only rotations, but arbitrary nondegenerate linear transformations. 
They have proven the existence of such a solution for any linear transformation, and 
for any concave voter preferences. In this work we take a step further, investigating 
                                                 
2 The yolk is the smallest sphere that intersects all median hyperplanes. 
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the properties of the generalized Schattschneider set. We find that this set contains 
the locally uncovered set; for the two-dimensional case, the two sets coincide. 

 
Results 
 
Let KL ℜ=  be a finite-dimensional space of alternatives. Suppose that 

},{1,= NI K  is the set of voters, with N  an odd number. Assume that each voter 
Ii∈  has a binary preference relationship defined over L  that described by a con-

tinuously differentiable and strictly concave utility function .: ℜ→Lui  Denote by 
NLU ℜ→:  the profile of utility functions. Denote by U  the space of such 

utility function profiles on .L  Define by  the majority preference relationship on :L   

.
2

>)}()(|{#  ,, nyuxuIiyxLyxeveryFor ii ≥∈⇐∈  

Let f  be the strict counterpart of . 

Denote by ),,(= 1 KbbB K  a basis of .Kℜ  Denote by B  the set of all ba-
ses. Let }|{=),( ℜ∈+ αα jj bxbxl  be the line parallel to the thj  axis running 
through .x  As the utility functions of the voters are strictly quasi concave, the 
preferences of all voters are single-peaked on any ,),( jbxl  for any Lx∈  and 

.BB∈  The following definition can now be given. 

Definition 1. Let BB∈  be a basis. We say that Lx ∈*  is a dimension-by-
dimension median with respect to ,B  if for any ,},{1,= KKj K∈  we have 

yx f*  for all ,),( *
jbxly∈  .= *xy /   

In the example given in the introduction, the voting procedure where the com-
mittee votes separately on each issue corresponds to basis vectors (1,0)=1b  and 

.(0,1)=2b  For the second case, the basis vectors are (1,1)=1b  and .1,1)(=2 −b  
For this special case of Euclidian preferences, for any two pairs of basis vectors, the 
median alternative with respect to the first coordinate does not depend on the value 
of the second coordinate; the dimension-by-dimension median is (1,1)  for the first 

case, and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2
3,

2
3

 for the second. 

This makes the computation of the dimension-by-dimension median for 
Eucledian preferences very straightforward. 

In the general case, the median with respect to the first coordinate does de-
pend on the value of other coordinates; however, Austen-Smith and Banks (2005, 
Theorem 5.1) have shown that such median always exist3: 
                                                 
3 Their setting was more general, as they allowed a different social choice rule for 
each dimension. Here, we only consider majority voting. 
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Theorem 1 [Austen-Smith, Banks, 2005]. Suppose that the strategy space 
for each candidate is some convex and compact subset of .L  Then for all UU ∈  
and ,BB∈  there exists a dimension-by-dimension median.  

We now give the definition of local covering.  

Definition 2. An alternative Lx∈  is locally uncovered if for every its 
neighborhood )(xN  there exists a neighborhood )(~ xN  such that for every ,xy f  

)(~ xNy∈  there exists )(xNz∈  such that .yzx ff  The set  

}|{= uncoveredlocallyisxLxH ∈  (1) 

is called the heart or the locally uncovered set.  

If an alternative is not locally uncovered, we say that it is locally covered4. In 
terms of sequences it formally means that an alternative x  has a neighborhood )(xN  
such that there exists a sequence ,xy →ξ  such that for every ξ  conditions 

xyz ff ξξ  and ξzx f  are true for no .)(xNz ∈ξ  

For the two-dimensional case and Euclidian preferences, the locally uncove-
red set has a neat geometric interpretation that makes it possible to compute the set 
easily: An alternative belongs to the locally uncovered set if and only if there are 
two voter ideal points that satisfy two conditions. First, the two voter ideal points 
and the alternative are not collinear. Second, there exist two median lines, running 
through the alternative and each of the two voter ideal points. Thus the boundary of 
the set is formed by some segments of those median lines that run through at least 
two voter ideal points. As we shall see below for two-dimensional case and any 
profiles the locally uncovered set coincides with the set of dimension-by-dimension 
medians defined for all possible bases. Moreover, Lemmas 3 and 2 will give us a 
tool to construct the basis for any two-dimensional case. 

Every locally uncovered point is not Pareto-dominated. Indeed, if x  is Pareto 
dominated by ,y  i.e., if )(>)( xuyu ii  for all i  then there can be no majority 
coalitions ITS ⊂,  that there is z  such that )(>)( yuzu ii  for all Si∈  and 

)(<)( xuzu ii  for all Ti∈  (otherwise for TSi ∩∈  one derives )(<)( xuyu ii ). 
The locally uncovered set and the uncovered set are geometrically unrelated. 

One can construct examples (see [Bianko, Jeliazkov, Sened, 2005] of alternatives 
belonging to the uncovered set, but not to the locally uncovered set, and vice versa. 

We now proceed to derive the relationship between the locally uncovered set 
and the dimension-by-dimension medians. First, we provide several supplementary 
definitions. 
                                                 
4 Schofield (1999) have shown that the locally uncovered set is, in general, nonempty 
and closed. 
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Let IS ⊆  be a coalition of voters. Denote by  

}0>),(|{=),( SivxuvSxV i
K ∈∀〉〈∇ℜ∈  

the set of directions in which all members of S  would agree to move away from .x  

Let 
2

1= +Nk  be the size of the smallest winning coalition. Put  

).,(=)(
||,

SxVxW
kSIS

U
≥⊆

 

The structure of the set )(xW  is similar in shape to the set )(xω  in a small 
neighborhood of .x  

Two properties of )(= xWW  are immediately apparent. First, the set W  is 
an open cone, i.e., for all 0>λ  we have .WW ⊆λ  In general it is not convex. Se-
cond, if 0)( ≠∇ xui  for all ,Ii∈  then we have  

           )),((b)(=  &  =)( WWdWWLWW −∪−∅− UUI   (2) 

where )(b Cd  denotes the boundary of .LC ⊂  

The following two lemmas present supplementary results. 

Lemma 1. If ,Hx∈  then  

               ).())((c  )( xWwvthatsuchxWlwxWv ∉+∈∃∈∀  (3) 

Notice that in view of (2) this is not equivalent to .))((c xWlwv −∈+  Here 
)(c Al  denotes the closure of the set .KA ℜ⊆  

Lemma 2. An alternative Lx∈  is a dimension-by-dimension median for 
some basis BB∈  if and only if  

).(      )(, xWwvthatsuchxWwv ∉+∈∃  (4) 

Consequently Lx∈  is not a dimension-by-dimension median for any basis if 
and only if )(xW  is an open half-space.  

Now the first main result of this work follows immediately. 

Theorem 2. Suppose that .Hx∈  Then there exists a basis BB∈  such that 
x  is a dimension-by-dimension median with respect to .B   
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Proof of Theorem 2. 
Suppose that some Hx∈  is not a dimension-by-dimension median for any 

basis. Then, by Lemma 2, )(xW  is an open halfspace. But this implies 
,)(=))((c)( xWxWlxW +  which contradicts Lemma 1. ... DEQ   

Finally, for the two-dimensional case, the sets of dimension-by-dimension me-
dians and the locally uncovered set are identical. First we state a supplemental result.  

Lemma 3. Let .2=K  Then an alternative Lx∈  is a dimension-by-dimen-
sion median for some basis BB∈  if and only if  

).(      )( )( xWwvthatsuchxWwxWv ∉+∈∃∈∀   (5) 

Notice that the only difference between (4) and (5) is in the first quantor: 
existential in (4) and universal in (5).  

Theorem 3. Let .2=K  Then Hx∈  if and only if it is a dimension-by-
dimension median with respect to some basis.  

For three and more dimensional policy space there may exist a basis for a 
dimension-by-dimension median even if the alternative is locally covered, as the 
following example demonstrates. 

Example 1. Let ,= 3ℜL  ,{1,2,3}=I  0=x  and the gradients of the utility 
functions be:  

1,1).1,(=)(1,1),(1,=)((0,0,1),=)( 321 −−∇−∇∇ xuxuxu  

Consider the following basis:  

(2,1,0).= 1,2,1),(= (1,2,1),= 321 bbb −  

The alternative x  is a dimension-by-dimension median according to the basis. 
Indeed, ,1=),( 11 〉〈∇ bxu  ,0=),( 12 〉〈∇ bxu  ;2=),( 13 −〉〈∇ bxu  therefore voter 
2 is the median voter according to the basis vector .1b  Similarly, a median voter 
exists for all other basis vectors. 

On the other hand, x  is not locally uncovered. Moreover, it is Pareto-dominated: 
if we take ,(0,0,1)=v  we are going to have ,0>),(1 〉〈∇ vxu  ,0>),(2 〉〈∇ vxu  
and .0>),(3 〉〈∇ vxu  It follows that for some ,0>ε  alternative vx ε+  is prefer-
red by all three voters to .x  Hence x  is locally covered.  

 
Discussion 
 
Austen-Smith and Banks (2005) have shown that the dimension-by-dimension 

equilibrium exists for any set of basis vectors. Their proof, however, was non-con-
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structive and gave no hint to where the median would actually be located. In this 
work, we prove that the set of dimension by-dimension medians contains the locally 
uncovered set. This result signifies the importance of both solution concepts in the so-
cial choice theory. 

 
Proofs 
 
Proof of Lemma 1. 

Without loss of generality put .0=x  Take .Wv∈  Let .
||||

=
v
vv εε  For all 

sufficiently small 0>ε  we have ,xv fε  that is, ,IR ⊂∃  ,
2

|>| NR  such that 

,)(>)( xuvu ii ε  .Ri∈  Clearly we have also .)(RVv∈  According to Definition 
2, take )(xN  to be the open ball of radius ,0>δ  and )(~ xN  to be the open ball 
of radius .0>ε  Take )(xNy ∈δ  such that  

.δεδ yxandxvy fff  

From Definition 2 it follows that for any 0>δ  there exists 0>ε  such that 
the pair ),( δε yv  does exist. Hence one can find a sequence 0),( →ξξ δε  such 
that for ∞→ξ  the following holds:  

• we have s
y

y
→

|||| ξ

ξ  and, as soon as s  and v  are not collinear (since 

Ws∉ ), we also have ;0>
||||

α
εξ

ξ →
y

 

• we have ,
||||

s
vy

vy
′→

−

−

ξξ

ξξ  while ;0>
||||

β
εξ

ξξ →
− vy

 

• there exist ,, ITS ⊆  kTS |=|=||  such that ,)(<)( xuyu ii ξ  Si∈∀  

&  )(>)( ξξ vuyu ii , .Ti∈∀  

Consider )(iii  and the equality  

.
||||

||||
=

||||

||||

|||| ξ

ξ

ξ

ξ

ξξ

ξξ

ξ

ξξ

εε y

yy

vy

vyvy

v
v

⋅
−

−
⋅

−
+  
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Let .∞→ξ  In the limiting case we obtain  

.||||=||||  &  ))((c  &  )( svsvvTVlsxWs αβ ′+∈′∉  

It remains to put .||||= svw ′β  ... DEQ   

Proof of Lemma 2. 

Necessity. Suppose that 0=x  and that for all ,, Wwv ∈  we have 
Wwv ∈+  ⇐  .WWW ⊆+  Since W  is a cone, the condition WWW ⊆+  im-

plies the convexity of .W  It follows that both W  and W−  are open and convex. 
Now by (2) it is easy to see that )(b Wd  is a hyperplane of dimensionality .1−K  
Indeed, applying the separation theorem one can find Kh ℜ∈  strictly separates W  
and ,W−  i.e. there exists a real number γ  such that  

}.<,|{  &  }>,|{ γγ 〉〈ℜ∈⊆−〉〈ℜ∈⊆ yhyWyhyW KK  

Clearly, .0=,= 〉〈 xhγ  Moreover, assuming that there exists 

Wyhyz K \0}>,|{ 〉〈ℜ∈∈  

and again applying the separation theorem, one can find Kp ℜ∈  such that  

}.,>,|{ 〉〈〉〈ℜ∈⊆ zpypyW K  

Now we have constructed the set  

∅/〉〈ℜ∈∩〉〈〉〈ℜ∈ =0}>,|{},<,|{ yhyzpypy KK  

that has no common points neither with W  nor with ,W−  which contradicts (2). 
The similar is true for ,W−  so we have proven that  

0}.=,|{=))((b=)(b=)(b 〉〈ℜ∈−∪− yhyWWdWdWd K  

Suppose that x  is a dimension-by-dimension median for some basis .B  Now 
if WWW ⊆+  we must have )(b),( Wdbxl j ⊆  for all ,Kj∈  since otherwise 

∅≠∩Wbxl j ),(  for some ,Kj∈  so for all Wbxly j ∩∈ ),(  we will have 
,xy f  that contradicts the choice of .x  But )(b),( Wdbxl j ⊆  is impossible for 

every Kj∈  as a set of 1−K  dimensionality cannot contain a basis of .Kℜ  
Therefore WWW ⊆+  cannot be true for a dimension-by-dimension median. 

Sufficiency. Let Wwv ∈,  with .Wwv ∉+  One can think also that each 
linear functional ⋅〉〈∇ ),(xui  is non-zero on the space spanned by v  and :w  since 
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W  is open then suitable points from the neighborhoods of v  and w  can always be 
selected. 

Now consider the following linear interval:  

(0,1)}.|))((1{=),( ∈+−++ λλλ wvvwvv  

Remember that for the right endpoint we have .Wwv ∉+  Define wvs +=  if 
.),( Wwvv ⊂+  If it is not so then find a point ),( wvvs +∈  such that Wsv ⊂),(  

and .)(b Wds∈  Since ,),( Wwvv ⊂/+  it is possible to find such a point. We have 
,0≠s  as v  and wv +  are not collinear. By construction  

).(b),( WdsandWsv ∈⊂  

It now follows that for some majority coalition S  we have )),((c SxVls∈  
and, without lost of generality, .),( SxVv∈  It also follows that for some other 
majority coalition T  we have ,0),( ≤〉〈∇ sxu j  .Tj∈  So, it follows that there are 
two majority coalitions S  and ,T  such that  

.  0),(  0),( TjsxuandSisxu ji ∈∀≤〉〈∇∈∀≥〉〈∇  

From this we conclude that for all ,),( sxly∈  xy =/  we have ,yx f  or 
equivalently that x  is the median along .),( sxl  This is indeed the case, as the 
maxima of the utility functions for members of S  over ),( sxl  are located in the 
ray ,0}|{=),( ≥++ ααsxsxl  while the maxima for the members of T  are lo-
cated on .0}|{=),( ≤+− ααsxsxl  

As both S  and T  are majority coalitions, their intersection TS ∩  is nonempty 
and forms the set of median voters on .),( sxl  Indeed, for any TSk ∩∈  we 
must have .0=),( 〉〈∇ sxuk  Now take and fix some .TSk ∩∈  It follows that 

0>),( 〉−〈∇ svxuk  since .Sk∈  That implies 〉〈∇〉〈∇ wxuvxu kk ),(>0>),(  
if wvs +/=  and 0>),(=),( 〉−〈∇〉〈∇ wxuvxu kk  for .= wvs +  As a result we 
have  

       0.,0=),(0,<),(),( ≠〉〈∇〉〉〈∇〈∇ sandsxuwxuvxu kkk  (6) 

Consider another similarly constructed interval ,),( wv −  where for the right 
endpoint we have .Ww −∈−  We can carry out for this interval an exercise similar 
to the above one and find 0≠′s  such that x  is the median along ,),( sxl ′  and such 
that for a corresponding median voter Im∈  we have5  
                                                 
5 Notice that in this case vs =/′  and ws −/′ =  simultaneously. 
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       0.,0=),(0,>),(),( ≠′〉′〈∇〉〉〈∇〈∇ sandsxuwxuvxu mmm  (7) 

Comparing (6) and (7), we conclude that neither )(xuk∇  and ,)(xum∇  nor 
s  and s′  are collinear. The latter statement follows from the fact that both vectors 
s  and s′  belong to the two-dimensional space spanned by v  and ,w  and they are 
nontrivial solutions of the equations 0=),( 〉〈∇ sxuk  and 0=),( 〉′〈∇ sxum  where 

)(xuk∇  and )(xum∇  are non-collinear vectors. 

Now put sb =1  and :=2 sb ′  they are the first two vectors of the basis B  
that we are constructing. In order to construct the third vector, consider the subspace 
L  spanned by ,},{ 21 bb  and any ,Ws∈  .Ls∉  Consider an open linear interval 

),( ss ′  with ,WLs −∩∈′  where one can put .= vs −′  Choose s  such that all 
functionals ⋅〉〈∇ ),(xui  are non-constant on .),( ss ′  Using the above method one 
can find ),(3 ssb ′∈  (from Wb ∉3  and Wbs ⊂),( 3 ) such that yx f  for all 

.),( 3bxly∈  As ,3 Lb ∉  the vectors },,{ 321 bbb  are linearly independent. Repea-
ting this procedure K  times, we construct the required basis .B  ... DEQ   

Proof of Lemma 3. 

We need to prove that, in the two-dimensional case, condition (4) implies (5). 
There are two possibilities: 

(i) there exists a pair of vectors )(, xWwv ∈  such that ;Wwv −∈+  

(ii) for every pair of vectors ,)(, xWwv ∈  such that ,Wwv ∉+  we have 
.clWwv ∈+  

Consider (i) and put .)(= wvs +−  By construction we have .,, Wswv ∈  
Any pair of these vectors is non-collinear and forms a basis for the two-dimensional 
space. One can also see that the space is covered by the cones spanned by those 
vectors6: 

}.,{c},{c},{c= wsonsvonwvonL ∪∪   (8) 

Also we have ,= swv −+  ,= wsv −+  ,= vsw −+  but .,, Wswv −∈−−−  
Thus the space is a union of six convex cones. One edge of each cone lies in ,W  
another one in .W−  An arbitrary chosen point Ws ∈′  must lie in one of the cones in 
the right hand side of (8). Let it be { }, .con v w s−∋  Then s′  has to belong to either 

,},{c svon −  or .},{c wson −  If, for instance, ,},{c svons −∈′  then .},{c wsons ′∈−  
Hence, there are ,0>α  ,0>β  such that .= ssw βα −′+  This can be repeated 
for all possible locations of s′  that proves (5) for (i). 
                                                 
6 By definition },{c yxonz ∈  if there exist ,0≥α  ,0≥β  such that .= yxz βα +  
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Analyzing all possibilities via (2) one can conclude that (ii) is possible only 
then W  is open half-plane intersected with a finite number of lines going though 
the origin. This is also true in the general case because for (ii) we have 

.))((c=))((c))((c xWlxWlxWl +  That means that the cone ))((c xWl  is convex 
and, therefore, ))((c xWl  is a closed half-space. 

It follows that (5) is true. Moreover, the fact that Hx∈  can be checked di-
rectly: for ,z  according to Definition 2, one needs take points such that yz −  lies 
on the bisectrice of the angle forming .W   

Proof of Theorem 3. 

The set W  is a union of pairwise non-intersected open convex cones ,ξK  
.,1,= mKξ  Index these cones so that adjoining cones have adjoining numbers (the 

last number adjoins with 1). From each cone take vector ,ξξ Ka ∈  .,1,= mKξ  
Consider the cone hulls },{c= 1+ξξξ aaonM  of adjoining vectors couples. Notice 
that angle between vectors ξa  and 1+ξa  is always less than .π  The family of 
cones constructed in this manner has the following properties: 

(i) We have ,= 2
1 ℜ∪ ξMm  i.e. this is a covering of plane. 

(ii) For every ξ  ,, 1 Waa ∈+ξξ  WMaaon ⊂/+ ξξξ =},{c 1  ⇒  ∃  ,ξξ Mb ∈  
.Wb ∉ξ  One can think that :0> ξα∃  .=1 ξξξξ α baa ++  

(iii) For every ,ξ  for every WMv ∩∈ ξ  there is 0>β  such that ether 
,)(1 ξξβ brav ∈+ +  or ,)( ξξβ brav ∈+  and 0→β  for 0|||| →v  at that. Here 

)( ξbr  is a ray spanned the vector .ξb  

(iv) For every ,ξ  for every )( ξbrz∈ , xz =/  one has zx f  by majority rule, 

i.e. there is ,IT ⊆ξ  
2

|>| NTξ  such that )(<)( xuzu ii  for all .ξTi∈  To see this 

recall that (for 0=x  without loss of generality) Wz∉  and, therefore, 
0}),(|{= ≤〉〈∇∈ zxuIiT iξ  is a majority coalition. However, in the view of 

strictly concave utilities, one has )(>)( zuxu ii  for all .ξTi∈  

We can now construct the two neighborhoods in the definition of a locally 
uncovered alternative, see Definition 2. 

We start by constructing the neighborhood )(xN . First specify the auxiliary 
neighborhood via the conditions  

, ,   0>),(
2
1>),( | },{c 111 +++ ∈∀〉〈∇〉〈∇∩∈ ξξξξξ ξ SiaxuayuWbaony ii  

, ,   0>),(
2
1>),( | },{c 1 ξξξξξ ξ SiaxuayuWabony ii ∈∀〉〈∇〉〈∇∩∈ +  
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where  

.  0},>),(|{= ξξξ ∀〉〈∇∈ axuIiS i  

For continuously differentiable utilities this method defines an open neighbor-
hood )(xM  of .x  Let 1||<|| y  .)(xMy∈∀  Now construct a circular neighbor-
hood )(xN  with the radius equal to the maximal length of any vector ξβayz +=  
or 1= ++ ξβayz  such that )(xMy∈  and z  belongs to ,)( ξbr  .ξ∀  So it is 
defined as follows  

}}{max||<|||{=)( ξξ
ξ

cdzzxN K ∨ℜ∈  

where for m,1,2,= Kξ   

)},( & )(},{c|||{||sup= 1 ξξξξξξ ββ brayxMWbaonyayd ∈+∩∩∈+ +  

)}.( & )(},{c|||{||sup= 1 ξξξξξξ ββ brayxMWbaonyayc ∈+∩∩∈+ +  

Now construct the neighborhood .)(~ xN  Decompose agents' utilities )(⋅iu  in 
a neighborhood of :y  

.  ||),(||),()(=)( Iiyzoyzyuyuzu iiii ∈−+〉−〈∇+  

For ,z  running rays )( ξbr  and y  from Wbaon ∩},{c ξξ  (or from 
Wabon ∩+ },{c 1ξξ ), where ξβayz +=  (or 1= ++ ξβayz ) one will have  

.  ),(),()(=)( Iioayuyuzu iiii ∈+〉〈∇+ ββ ξ  

Here ,))((=)( yoo ii ββ  i.e. it is a function of two variables, y  and ,0≥β  

such that 0))((
→

β

β yoi  for every fixed y  when .0→β  Moreover, since all 

utility functions are ,1C  this function is continuous. For )(xMy∈  and ξSi∈  

one can estimate  

).)((),(
2
1)(),(=)()( yoaxuoayuyuzu iiiiii ββββ ξξ +〉〈∇≥+〉〈∇−  

Now the neighborhood that we are looking for can be chosen from the condition  

. ,  ,,),(
2
1<))(( ξ

β

β
ξξξ ∀∈〉〉〈∇ Siaaxuyo

i
i  
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This is possible because 0>),( 〉〈∇ ξaxui  and by definition of the infinite-
simal ,),(=))(( yyoi ββγβ  where 0=),( yβγ  for 0=β  and moreover 

),( yβγ  is continuous in both variables (utility is continuously differentiable). 

So we have constructed the neighborhoods )(xN  and )(~ xN  such that if  

⇒∈     ),(~ xyxNy f  

⇒∈−∃∈−   },{c=  :   &  = ξξξ baonvxyWvxy  

⇒∈+−−∃ +   )(=  :0> 1 ξξββ braxyxz  

.yzx ff  

Finally, if )(' xN  is an arbitrary neighborhood of ,x  then, according to De-
finition 2, take 0>δ  such that )(')( xNxN ⊂δ  and take )(~ xNδ  as a neighbor-
hood of x  applied for changes of .y  ... DEQ   

 
References  
 
Austen-Smith D., Banks J. Positive Political Theory II: Strategy and Struc-

ture. Michigan studies in political analysis. 2005. 

Bianco W., Jeliazkov I., Sened I. The Uncovered Set and the Limits of Legis-
lative Action // Political Analysis. 2005. 12. P. 256–276.  

Erikso R. Voting on Many Issues, One at a Time. Unpublished paper.  

Feld S.L., Grofman B. Majority rule Outcomes and the Structure of Debate in 
One-issue-at-a-time Decision Making // Public Choice. 1988. 59. P. 239–252.  

McKelvey R.D. Intransitivities in Multidimensional Voting Models and Some 
Implications for Agenda Control // Journal of Economic Theory. 1976. 12. P. 472–482.  

McKelvey R.D. Covering, Dominance, and Institution Free Properties of So-
cial Choice // American Journal of Political Science. 1986. 30. P. 283–314.  

McKelvey R.D., Ordeshook P.C., Winer M.A. The Competitive Solution for 
N-person Games without Transferable Utility, with an Application to Committee 
Games // American Political Science Review. 1978. 72. P. 599–615.  

Miller N. A New Solution Set for Tournaments and Majority Voting // Ame-
rican Journal of Political Science. 1980. 24. P. 68–96.  

Miller N. In Search of the Uncovered Set // Political Analysis. 2007. 15(1). 
P. 21–45.  

Schattschneider E.E. Party Government. 1940.  



 465

Schattschneider E.E. The Semisovereign People. 1960. 

Shepsle K. Institutional Arrangement and Equilibria in Multidimensional Vo-
ting Models // American Journal of Political Science. 1979. 23(1).  

Shepsle K., Weingast B. Structure-induced Equilibrium and Legislative Choice 
// Public Choice. 1981. 37(3). P. 503–519.  

Schofield N. The Heart and the Uncovered Set // Journal of Economics. 1999. 
(Suppl.) 8. P. 79–113.  

Schofield N., Sened I. Multiparty Democracy. Cambridge University Press, 2006. 

 




