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Abstract The paper suggests a new—to the best of the author’s knowledge—
characterization of decisions, which are optimal in the multi-objective optimization
problem with respect to a definite proper preference cone, a Euclidean cone with a
prescribed angular radius. The main idea is to use the angle distances between the
unit vector and points of utility space. A necessary and sufficient condition for the
optimality in the form of an equation is derived. The first-order necessary optimality
conditions are also obtained.
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Mathematics Subject Classification 90C29

1 Introduction

Optimization problems with several objective functions conflicting with one another
are encountered in many situations in practice. In analyzing such a problem, the con-
cept of Pareto-optimal decisions, which cannot be improved for each criterion without
deteriorating the others, plays an important role. The Pareto optimality notion is used
in solving some engineering and finance problems (see, e.g., Steuer [1]), insurance
theory problems (e.g., Golubin [2]), etc. There is a large variety of methods for deter-
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mination of Pareto-optimal solutions and their generalizations, in which the optimality
is understood with respect to various kinds of preference cones,Miettinen [3] and Jahn
[4]. Many of them are based on a scalarization approach [3,5–7] that transforms the
initial problem into a single-objective optimization problem. Usually, it involves some
parameters that are changed in order to detect different Pareto-optimal points: weights
in the linear scalarization function in [6] or, more generally, a composition of the
vector objective function and a linear functional from the dual cone of the preference
(ordering) cone; and norm parameter for Lp-scalarization in Nikulin et al. [7]. Another
group of methods for approximating the Pareto frontier for various decision problems
with a small number of objectives (mainly, two) are provided in Ruzika and Wiecek
[8]. Makela et al. [9] investigate different types of zero-order geometric conditions
for characterization of trade-off curves. In Giannessi et al. [10], equivalence relations
between vector variational inequalities and themulti-objective optimization problems,
including the existence of their solutions, are discussed.

The present paper suggests a new “angle distance” scalarization technique for the
multi-objective problemwith a definite kind of preference cones, the so-called Euclid-
ean cones. In distinction to the existing scalarization methods for non-concave multi-
objective problems, which detect only a part of all optimal points, we prove that the
set of all optimal solutions to the multi-objective problem coincides with the set of
all solutions to some equation derived in the paper. Note that the equation does not
use any exogenously specified parameters. The first-order necessary conditions for
optimality are also derived.

2 Model Description

Formally, the multi-objective optimization problem can be written as

max F(x) := (F1(x), . . . , Fn(x)) s.t. x ∈ X, (1)

where X is a decision set or a set of admissible points and Fi (x) are scalar objective
functions or utilities defined on X . Remark that Fi (x) are not supposed to be concave.

A generalization of the well known Pareto optimality notion is the following (see,
e.g., Boyd and Vandenberghe [11, p. 174]): Let K be a proper cone, i.e., it is convex,
closed, the interior int K �= ∅, and K is pointed, (if x ∈ K and−x ∈ K then x = 0). A
point x∗ ∈ X is called optimalwith respect to the cone of preferences K (or K -optimal)
if and only if (iff) there is no other x ∈ X such that

F(x) �= F(x∗) and F(x) − F(x∗) ∈ K . (2)

A point x∗ ∈ X is called weak K -optimal iff there is no other x ∈ X such that

F(x) − F(x∗) ∈ int K . (3)

Our goal is to find necessary and/or sufficient conditions for optimality in problem
(1) for a concrete kind of the cone K , which is introduced below. The concept of
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Pareto optimality has its root in economic equilibrium and welfare theory. In the eco-
nomic terms, we try to explain specifics of the suggested modification of the Pareto
optimality notion. Given a set X of alternative allocations of goods or income for a
set of n individuals or members of a community, a change from one allocation x to
another y is reckoned as an “ideal” improvement if each member increases his/her
own utility by the same quantity. This means that the increment vector F(y) − F(x)
lies on the half-line L I, generated by the unit vector (1, . . . , 1)T ∈ R

n and origi-
nated from zero (furthermore, we will use the normalized variant of the unit vector,
r := (1/

√
n, . . . , 1/

√
n)T). A change is considered an improvement if a measure of

discrepancy between F(y) − F(x) and the “ideal” improvement is not greater than a
prescribed constant a. An allocation is K -optimal when no further improvement can
be made.

The measure of discrepancy, which defines the very cone K of preferences, is
proposed to be the following. Let p1 and p2 be, correspondingly, the orthogonal
projections of F(y) − F(x) on the “ideal equality” half-line L I and on the hyper-
plane orthogonal to the vector r . The measure of discrepancy is the norm of p2 per
unit of the norm of p1, that is, ‖p2‖/‖p1‖, where ‖z‖ is the Euclidean norm in R

n ,

‖z‖ =
√∑n

1 z
2
i . Passing to the angle distance, in our case, we have that the above-

mentioned discrepancy constraint is

tan(F(y) − F(x), r) :=
√
1 − cos2(F(y) − F(x), r)/ cos(F(y) − F(x), r) ≤ a.

Recall, the cosine of the angle between non-zero vectors x and y is given by

cos(x, y) = < x, y >

‖x‖‖y‖ ,

where 〈x, y〉 denotes the scalar product, 〈x, y〉 =∑n
1 xi yi . In terms of cosine, the latter

inequality is expressed as cos(F(y) − F(x), r) ≥ s, where s = 1/
√
a2 + 1. Now we

define the preference cone K as

K (s) := {x ∈ R
n : cos(x, r) ≥ s} ∪ {0} (4)

under a given s ∈]0, 1[. Thus, K (s) is a set of vectors x such that the angle between
the “ideal” direction r and each x is not greater than arccos s (see Fig. 1). Such a cone
is called in Boyd and Vandenberghe [11, p. 449] a Euclidean cone with the axis r and
angular radius arccos s.

Next we impose some reasonable lower and upper boundaries on values of s—it is
the same as imposing upper and lower boundaries on the discrepancy limit a. The cone
of the largest angular radius is supposed to include the n orts (0, . . . , 0, 1, 0, . . . , 0)T

of the Pareto preference cone Rn+ as boundary points. Hence, the cosine of the angle
between r and each ort is 1/

√
n = s. The cone of the smallest angular radius

is supposed to include the n orthogonal projections of r on the coordinate planes
(x1, . . . , xi−1, 0, xi+1, . . . , xn) as boundary points. Therefore, the cosine of the angle
between r and each projection is
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Fig. 1 A preference cone K (s) with angular radius α = arccos s.

∑n
i=2 1/

√
n√

n−1
n

=
√
n − 1√
n

= s.

Roughly saying, this cone is “inscribed” of Rn+, while the previous cone is “circum-
scribed” of Rn+. Then, a collection of the preference cones to be considered is

{
K (s), s ∈ S :=

[
1/

√
n,

√
n − 1/

√
n
]}

,

where K (s) is defined by (4). It is worth noting that, if n = 2 (bi-objective optimization
problem (1)), then the set {K (s), s ∈ S} consists of a single coneR2+ as the interval S =[
1/

√
n,

√
n − 1/

√
n
]
converts into a point 1/

√
2, so the K (s) optimality coincides

with the Pareto optimality notion. This particular case was studied in Golubin [12].
Note also that in the case n > 2, none of the cones in {K (s), s ∈ S} coincide with
R
n+. Indeed, if s > 1/

√
n, then the ort x = (1, 0, . . . , 0)T ∈ R

n+ does not belong to
any K (s) as

cos(x, r) = < x, r >

‖x‖ = 1√
n

< s.

If s = 1/
√
n, then a vector x = (−(n − 2)/2, 1, . . . , 1)T /∈ R

n+ is a boundary point
of K (s) as cos(x, r) = 1/

√
n.

Denote by KU and KL the biggest cone K (1/
√
n) and the smallest cone

K (
√
n − 1/

√
n) correspondingly. We call a point x∗ upper (lower) optimal iff x∗

is optimal in (1) with respect to KU (KL).
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From the definition, it is easily seen that all the components of any non-zero x ∈
KL are necessarily non-negative, and at most one of them is zero. Indeed, let x =
(0, . . . , 0, xi+1, . . . , xn)T have i (≥ 2) zero components. Then,

cos(x, r) ≤
√
n − i√
n

<

√
n − 1√
n

.

As was shown above, for n > 2, a vector x ∈ KU may have some (not all) negative
components.

Returning to the description of K (s)-optimality in economic terms, one can say
that a KL -improvement of an allocation is that necessarily making at least n − 1
members of a community better off without making the other member worse off,
while a KU -improvement may involve decreases in the utilities of some members;
however, increases in the utilities of the others make the situation better from the
view-point of the community as a whole.

Let X∗
U, X∗

L, and X∗(s) denote, respectively, the sets of all upper optimal, lower
optimal, and K (s)-optimal points. By construction, K (s1) ⊂ K (s2) for s1 > s2,
si ∈ S. Then, according to the K (s)-optimality definition,

X∗
U ⊆ X∗(s2) ⊆ X∗(s1) ⊆ X∗

L. (5)

As compared with the Pareto optimality notion, where the preference cone is Rn+, the
cone KL ⊂ R

n+ and R
n+ ⊂ KU. It leads to that X∗

U ⊆ X∗
PO and X∗

PO ⊆ X∗
L, where

X∗
PO denotes the set of all Pareto-optimal points.
Furthermore, when deriving optimality conditions, we will need not only the cone

K (s), but also the dual cone of it. Recall that the dual of a cone K is the set
K ∗ = {x ∈ R

n :< x, y >≥ 0 for all y ∈ K }. Below we give a description of
the dual of a Euclidean cone with an arbitrary axis,

K (q, s) := {x ∈ R
n : cos(x, q) ≥ s} ∪ {0},

where s ∈]0, 1[ and q ∈ R
n with ‖q‖ = 1. As is known (Boyd and Vandenberghe [11,

p. 449]), it can be represented as the image of the second-order cone {x = (x̃, xn) ∈
R
n : xn ≥ ‖x̃‖} under an appropriate nonsingular linear mapping A. Instead of

obtaining the form of K ∗(q, s) in terms of the matrix A, we give a simple description
of it as a cone K (q, s′) with a definite cosine value s′.

Lemma 2.1 The dual of the cone K (q, s) is

K ∗(q, s) = K
(
q,

√
1 − s2

)
. (6)

Proof By the definition of the cone, it suffices to consider only the vectors of K (q, s)
and K ∗(q, s) that have a unit norm. Thus, we focus on describing the set

E = {
x ∈ R

n : ‖x‖ = 1,< x, y >≥ 0 for all y ∈ K (q, s) such that ‖y‖ = 1
}
.
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First, study the two-dimension case n = 2. Clearly, x ∈ E as long as the angle between
x and “the worst” vector y∗ ∈ K (q, s) (with a unit length), which has the largest angle
distance from x , is not greater than π/2. The cosine of the angle α between y∗ and q
is cosα = s, and therefore cos(x, q) =< x, q >≥ cos{π/2 − α} = √

1 − s2. Thus,
(6) is true for n = 2.

Now proceed with the case n > 2. Note, first of all, that q ∈ E and −q /∈ E .
Fix any x ∈ E such that x �= q, and prove that < x, q >≥ √

1 − s2. Let � be a
two-dimension plane passing through the vectors x, q, and 0, i.e., the intersection of
all hyper-planes in R

n containing these three points—note that x and q are linearly
independent. Denote by y∗ any minimum point in the problem

min < x, y > s.t. < y, q >≥ s, ‖y‖ = 1 (7)

and show that y∗ ∈ �. Consider, at first, an auxiliary problemwith a wider and convex
set of admissible points:

min < x, y > s.t. < y, q >≥ s, ‖y‖ ≤ 1. (8)

Due to convexity of the set {y : ‖y‖ ≤ 1}, linearity of both the goal function< x, y >

and the inequality < y, q >≥ s, we have the following (see, e.g., Bazaraa and Shetty
[13]): If y′ solves (8), then there exists λ ∈ [0,∞[ such that y′ solves the problem
min‖y‖≤1

< x, y > −λ < y, q >. Whence, y′ = −(x − λq)/‖x − λq‖, and therefore y′

is a solution to (7) also. Thus, y∗ is a linear combination of vectors x and q; hence,
y∗ belongs to �. The latter brings us to the two-dimension case considered above, so
< x, q >≥ √

1 − s2.
By analogous reasonings, it can easily be shown that, if x /∈ E and x �= −q, then

< x, q ><
√
1 − s2.

To sum up, a vector x (of a unit norm) belongs to E if and only if (iff) < x, q >≥√
1 − s2, which completes the proof. ��
By definition, KU = K (1/

√
n) and KL = K (

√
n − 1/

√
n). Therefore, Lemma

2.1 gives, in particular, that KU and KL are dual cones,

K ∗
U = KL and K ∗

L = KU.

Moreover, the only self-dual cone in the collection {K (s), s ∈ S} is K (1/
√
2). This

is a Lorentz cone (Dattorro [14, p. 92]) with the axis r and its aperture or, in other
words, its double angular radius equal to a right angle.

3 An “Angle Distance” Scalarization of the Problem

Let us reformulate the above-given definition (3) of weak K -optimality for the case
K = K (s): for any x ∈ X such that F(x) �= F(x∗), the cosine of the angle between
F(x) − F(x∗) and r is not greater than s (see Fig. 2), that is,
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Fig. 2 A non-convex utility space in R
2 with a weak optimal vector F(x∗).

∑n
1(Fi (x) − Fi (x∗))/

√
n

‖F(x) − F(x∗)‖ ≤ s. (9)

Define a scalar function on X ,

G(x) := sup
y∈X

n∑

i=1

(Fi (y) − Fi (x)) − s
√
n‖F(y) − F(x)‖. (10)

By construction, G(x) ≥ 0 for any x ∈ X and takes values in the extended real half-
line R+ ∪ {∞}. Now the necessary and sufficient condition (9) for the weak K (s)-
optimality of x∗ can be rewritten as G(x∗) ≤ 0. Taking into account that supremum
in the right-hand side of (10) is attained, in particular, at y = x∗, the latter inequality
is equivalent to G(x∗) = 0. Thus, we have proved the following proposition

Proposition 3.1 A point x∗ is weak K (s)-optimal if and only if (iff) x∗ is a root of the
equation

G(x) = 0, (11)

where G(x) is defined in (10).

Tofind the K (s)-optimal (strong) solutions, return to condition (2). Thismeans that the
cone K (s)+F(x∗) has no common point with the utility spaceF := {F(x) : x ∈ X},
except F(x∗). So, all we need is to find the weak K (s)-optimal point and to exclude
the situation like that depicted in Fig. 2.
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Proposition 3.2 A point x∗ is K (s)-optimal iff x∗ is a root of (11), and maximum in
the problem

max
y∈X

n∑

i=1

(Fi (y) − Fi (x
∗)) − s

√
n‖F(y) − F(x∗)‖ (12)

is attained at a “unique” point in the sense that, if y∗ gives maximum in (12) then
F(y∗) = F(x∗).

Remark 3.1 One can easily verify that the “angle distance” scalarization introduced
in (10) and providing necessary and sufficient conditions for optimality in the multi-
objective optimization problem (with respect to the cone K (s)) can be replaced in the
case of Pareto optimality (where the preference cone isRn+) by amaximin scalarization,
G1(x) := sup

y∈X
min

i=1,...,n
Fi (y) − Fi (x). The equation corresponding to (11) is then

G1(x) = 0. Generally saying, the function G1(x) does not seem convenient for
applications because it is not smooth. G1(x) is different from (10) even in the case
n = 2, where the set {K (s), s ∈ S} consists of the single Pareto cone R2+.

4 Zero-order Optimality Conditions

First, we consider conditions for upper optimality, where, recall, the cone of prefer-
ences KU = K (1/

√
n) is the biggest cone of the family {K (s), s ∈ S}.Next statement

deals with a zero-order condition for weak optimality of some point x∗, i.e., with a
condition for solvability of equation (11) with respect to x∗, where s = 1/

√
n. Denote

by �∗
i (x) := Fi (x) − Fi (x∗), i = 1, . . . , n, where x∗ ∈ X and x ∈ X .

Proposition 4.1 A point x∗ is weak upper optimal iff, for all x ∈ X such that
n∑

i=1
�∗

i (x) > 0, if any, it holds that
∑

i, j : i �= j
�∗

i (x)�∗
j (x) ≤ 0.

Proof A point x∗ is a root of (11), where now s
√
n = 1, iff y = x∗ is a maximizer in

problem (12). In our notation, this is equivalent to

√√√√
n∑

i=1

(�∗
i (x))

2 ≥
n∑

i=1

�∗
i (x) (13)

for any x ∈ X . If x is such that
n∑

i=1
�∗

i (x) ≤ 0, then (13) holds. If
n∑

i=1
�∗

i (x) > 0 then,

after squaring both parts of (13), we have that (13) holds iff
∑

i, j : i �= j
�∗

i (x)�∗
j (x) ≤ 0.

��
Remark 4.1 It is easily seen that the statement of Proposition 4.1 can be reformulated
as follows: A point x∗ is weak upper optimal iff x∗ is a root of an equation g(x) = 0,
where the function
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g(x) := sup
y∈A(x)

∑

i, j : i �= j

(Fi (y) − Fi (x))(Fj (y) − Fj (x)) (14)

and the set A(x) :=
{
y ∈ X :

n∑
i=1

Fi (y) − Fi (x) ≥ 0

}
. Let us consider the case of

linear objective functions. Let X ⊆ R
k and F(x) = Cx , where C = (ci,l) is a given

n × k matrix. Then, the function G(x) defined in (10) can be rewritten as

G(x) = sup
y∈X

n∑

i=1

k∑

l=1

cil(yl − xl) − s
√
n‖C(y − x)‖.

The terms
n∑

i=1
�∗

i (x) and
∑

i, j : i �= j
�∗

i (x)�∗
j (x) used in Propositions 4.1 take the forms

n∑

i=1

�∗
i (x) =

k∑

l=1

dl�∗
l and

∑

i, j : i �= j

�∗
i (x)�∗

j (x) =
∑

1≤l,m≤k

dlm�∗
l �∗

m,

where now �∗
l := xl − x∗

l , dl :=
n∑

i=1
cil , and dlm := ∑

i, j : i �= j
cil c jm with l

= 1, . . . , k and m = 1, . . . , k. Thus, in problem (14), the set A(x) is defined by a lin-

ear form
n∑

i=1
Fi (y)− Fi (x) =

k∑
l=1

dl(yl − xl) (with respect to y), and the goal function

is quadratic
∑

i, j : i �= j
(Fi (y)− Fi (x))(Fj (y)− Fj (x)) = ∑

1≤l,m≤k
dlm(yl − xl)(ym − xm).

Note that the matrix D = (dlm) may be neither positive semidefinite nor negative
semidefinite, depending on the entries of C .

An analog of Proposition 4.1 with respect to the (strong) upper optimality follows
from the fact that in this case, inequality (9) converts into the strict inequality.

Proposition 4.2 A point x∗ is upper optimal iff, for all x ∈ X such that F(x) �= F(x∗)
and

n∑
i=1

�∗
i (x) ≥ 0, if any, it holds that

∑
i, j : i �= j

�∗
i (x)�∗

j (x) < 0.

Return to the general case of the preference cone K (s), s ∈ S. A sufficient condition
for K (s)-optimality in the proposition below is a direct consequence of the known
result (see, e.g, Boyd and Vandenberghe [11, p. 178]) for our case of the Euclidean
cone, where the dual cone K ∗(s) = K (

√
1 − s2).

Proposition 4.3 Let λ ∈ int K (
√
1 − s2) and x∗ be a maximizer in the problem

max
n∑

i=1

λi Fi (x) s.t. x ∈ X. (15)

Then, x∗ is K (s)-optimal.
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Since K ∗
U = KL and K ∗

L = KU, next statement directly follows from Proposition
4.3.

Corollary 4.1 Let λ ∈ int KL (λ ∈ int KU ) and x∗ be a maximizer in problem (15).
Then, x∗ is KU -optimal (KL-optimal).

Remark 4.2 According to the definitions of the cones KL and KU, any weight
vector λ ∈ int KL is necessarily positive (component-wise), while λ ∈ int KU
may have some negative components. For instance, in the case n = 4, a vector
λ = (1, 1, 2, 2)T ∈ int KL as cos(λ, r) = 6/

√
40 > s = √

n − 1/
√
n = √

3/2;
a vector λ = (−ε,−ε, 1, 1)T, where ε ∈]0, 2−√

3[, belongs to int KU as cos(λ, r) >

s = 1/
√
n = 1/2.

The existence of an upper optimal point (and, therefore, any K (s)-optimal point for
s ∈ S (see (5)) is guarantied by solvability of problem (15) with positive λ ∈ int KL,
which, in turn, is guaranteed by compactness of X and upper semi-continuity of all
Fi (x).

Remark 4.3 Return to the case of linear objective functions described in Remark 4.1.
Recall that, if n = 2 (bi-objective optimization problem), then the set {K (s), s ∈ S}
consists of a single coneR2+, so the K (s) optimality coincides with the Pareto optimal-
ity notion. In order to obtain onePareto-optimal point, the simplestway is to solve prob-

lem (15) with a weight vector λ = (λ1, λ2)
T > 0 and Fi (x) =

k∑
j=1

ci j x j , i = 1, 2.

From Proposition 4.2 (see also Remark 4.1), it follows that the set of all Pareto-optimal
points is determined as follows: Define the function (see (14))

g(x) = sup
y∈A(x)

∑

1≤l,m≤k

dlm(yl − xl)(ym − xm), (16)

with the set A(x) = {y ∈ X :
k∑

l=1
dl(yl −xl) ≥ 0} for x ∈ X , where now dl = c1l +c2l

and dlm = c1l c2m + c2l c1m, l = 1, . . . , k, and m = 1, . . . , k. Then, the set of all
Pareto-optimal points is the set {x∗} of roots of the equation g(x) = 0 such that
maximum in (16) under x = x∗ is attained at a “unique” point in the sense that, if y∗
gives maximum in (16), then Cy∗ = Cx∗. In the case where the decision set X is a
polyhedron, X = {x ∈ R

k : Ax = b, x ≥ 0}, (15) becomes a linear programming
problem,while themaximization problem in (16) is a quadratic programming problem,
and the equation g(x) = 0 is non-linear.

5 First-Order Necessary Conditions for Optimality

Let x∗ be a weak K (s)-optimal point, i.e., a root of (11). Denote by y∗ a maximum
point in (12). It is easily seen that y∗ is also weak K (s)-optimal. We will call such
a pair (x∗, y∗) a weak K (s)-optimal pair. Of course, if y∗ is taken equal to x∗, then
(x∗, x∗) is always a weak K (s)-optimal pair. Amore interesting situation is that where
x∗ is not a unique solution to maximization problem (12). In the sequel of this section,
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we suppose that the decision set X ⊆ R
k and utility functions Fi (x), i = 1, . . . , n,

are differentiable on R
k .

Proposition 5.1 Let (x∗, y∗) be a weak K (s)-optimal pair and y∗ be an internal point
of X. Then,

n∑

i=1

F ′
i (y

∗)

⎡
⎣

n∑

j=1

�∗
j (y

∗) − s2n�∗
i (y

∗)

⎤
⎦ = 0, (17)

n∑

i=1

�∗
i (y

∗) − s
√
n‖F(y∗) − F(x∗)‖ = 0. (18)

Proof Suppose, at first, that F(y∗) �= F(x∗). Since y∗ solves problem (12), the first-
order optimality condition is

n∑

i=1

F ′
i (y

∗) − s
√
n

n∑
j=1

F ′
j (y

∗)�∗
j (y

∗)

‖F(y∗) − F(x∗)‖ = 0, (19)

where, recall, �∗
j (y

∗) = Fj (y∗) − Fj (x∗). From Proposition 3.1, it follows that

n∑

j=1

�∗
j (y

∗) = s
√
n‖F(y∗) − F(x∗)‖. (20)

After substituting the expression for ‖F(y∗) − F(x∗)‖ into (17), we obtain

n∑

i=1

F ′
i (y

∗)[
n∑

j=1

�∗
j (y

∗) − s2n�∗
i (y

∗)] = 0.

The latter relation admits the degenerated case F(y∗) = F(x∗) also. Taking (19) into
account, we complete the proof. ��
Remark 5.1 The statement of Proposition 5.1 becomes trivial if a maximum point
y∗ in (12) corresponds to the same point in the utility space as x∗, F(y∗) = F(x∗).
Nevertheless, Proposition 5.1 provides an informative necessary condition in the case
where x∗ is weak K (s)-optimal, but not strong K (s)-optimal, as shown in Fig. 2. Note
also that in the case of the upper optimality, with s = 1/

√
n, equation (17) becomes

simpler

n∑

i=1

F ′
i (y

∗)
∑

j �=i

�∗
j (y

∗) = 0. (21)

Below we will need the notion of a local K (s)-optimum. A point x∗ is called local
weak K (s)-optimal iff there exists an ε-neighborhood Oε(x∗) of this point such that
x∗ is weak K (s)-optimal with respect to a smaller decision set Oε(x∗) ∩ X .
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Like Proposition 4.3, next proposition is an application of a known general theorem
(see [4, p. 166]) on necessary optimality conditions to the considered problem with
the Euclidean cone K (s) of preferences.

Proposition 5.2 Let x∗ be a local weak K (s)-optimal point and an internal point of
X. Then, there exists a vector λ ∈ K (

√
1 − s2)\{0} such that

n∑

i=1

λi F
′
i (x

∗) = 0. (22)

Corollary 5.1 Let x∗ be a local weak upper optimal (lower optimal) point and an
internal point of X. Then, there exists a vector λ ∈ KL\{0} (λ ∈ KU\{0}) such that
(21) holds.

6 Perspectives

When the decision set X is defined by the constraints

X = {x ∈ R
k : f (x) ≥ 0, h(x) = 0},

where f : R
k → R

m and h : R
k → R

l are given differentiable functions, a Lagrange
multiplier analog of Proposition 5.2 easily follows from the above-mentioned general
result in [4, p. 166] under an appropriate constraint qualification. At the same time,
such a generalization of Proposition 5.1, as well as obtaining the first-order optimality
conditions in (14), is not so straightforward, because the directional derivatives of
the goal functions have a cumbersome form. Another topic to be investigated is the
finding of the properly optimal solutions to (1) (for the definition, see, e.g., [6]). In
this connection, the following two approaches seem promising: first, analyzing the
objective function equal to a weighted sum of objectives and additional variables (the
so-called surplus and slack variables) like in [6, Theorem 3.4]; second, a modification
of Proposition 3.1, which is based on the use of the scalar function G(x) introduced
in (10). These extensions of Propositions 3.1, 4.1, 5.1, and 5.2, along with finding a
method for determination of a solution to equation (11), seem the directions for further
research.

7 Conclusions

In this paper, a new form of scalarization technique for solving multi-objective opti-
mization has been proposed. It is shown that the introduced “angle distance” scalar-
ization, which is based on the cosine values of the angles between the unit vector and
points of the utility space, gives necessary and sufficient conditions for optimality with
respect to the Euclidean cone of preferences of a prescribed angular radius. Making
use of a description of the dual to the preference cone obtained in the paper, we derived
the first-order necessary conditions for optimality.
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