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1 Introduction

During the last years, there has been a revived interest in the theory of
dynamic contracting®. However, although most of the research incorporates
some form of limited commitment /enforcement, little has been done in terms
of extending the notion of commitment per se. In particular, there is no rea-
son to believe that (the value of) the outside option is constant across the
history of observables. For example, it is unrealistic to treat the reservation
utility of a CEO as fixed regardless of the situation in his/her firm, indus-
try, or the economy as a whole. The dependence could come through many
channels- externalities, different types of agents, a certain structure of beliefs,
but more importantly, it can significantly influence the nature of the relation-
ship and the form of the optimal contract. It would be interesting to see how
the agent is actually compensated for variability in the value of his/her out-
side options. When would his/her participation constraint bind? How is the
agent’s wealth affected in the short and the long run? In fact, would there
be a limiting distribution and how would it depend on initial conditions?
Such questions can only be analyzed in a generalized framework allowing
for history-dependent reservation utilities. Moreover, extending the notion
of commitment can bring some important insights into various contractual
problems. For example, in order to address the wide use of broad-based stock
option plans, Oyer (2004) builds a simple two-period model where adjusting
compensation is costly and employee’s outside opportunities are correlated
with the firm’s performance.

The current paper generalizes the notion of commitment by defining the
outside options on the history observed in a dynamic contractual setting. I
prove existence and obtain the first in the literature characterization of such
an environment. The characterization is very general in terms of assumptions
and, more importantly, is fully recursive. Its convergence properties make
it perfect for computing the optimal contract for a general class of dynamic
hidden action models.

I consider a moral hazard problem in an infinitely repeated principal-
agent interaction while allowing the reservation utilities of both parties to
vary across the history of observables. More precisely, to keep the model

3See, for example, Fernandes and Phelan (2000), Ligon, Thomas and Worrall (2000),
Wang (2000), Phelan and Stacchetti (2001), Sleet and Yeltekin (2001), Ligon, Thomas and
Worrall (2002), Ray (2002), Thomas and Worrall (2002), Doepke and Townsend (2004),
Jarque (2005), Abraham and Pavoni (2008).
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tractable, the reservation utilities are assumed to depend on some finite
truncation of the publicly observed history. The rest of the model is standard
in the sense that the principal wants to implement some sequence of actions
which stochastically affect a variable of his/her interest, but suffers from the
fact that the actions are unobservable. For this purpose, the optimal contract
needs to provide the proper incentives for the agent to exercise the sequence
of actions suggested by the principal. The incentives, however, are restricted
by the inability of the parties to commit to a long-term relationship. It is
here where the dynamics of the reservation utilities enters the relationship by
reshaping the set of possible self-enforcing, incentive-compatible contracts.
In order to be able to characterize the optimal contract in such a setting,
I construct a reduced stationary representation of the model in line with
the dynamic insurance literature. The representation benefits from Green
(1987)- the notion of temporary incentive compatibility, Spear and Srivastava
(1987)- the recursive formulation of the problem with the agent’s expected
discounted utility taken as the state variable, and Phelan (1995)- the recur-
sive structure with limited commitment, but is closest to Wang (1997) as far
as the recursive form is concerned. Unlike Wang (1997), however, I formally
introduce limited commitment on both sides and provide a rigorous treat-
ment of its effect on the structure of the reduced computable version of the
model. A parallel research by Aseff (2004) uses a similar general formula-
tion?, but via a transformation due to Grossman and Hart (1983) constructs
a dual, cost-minimizing recursive form closer to Phelan (1995) in order to
solve for the optimal contract. Such a procedure, however, exogenously im-
poses the optimality of a certain action on every possible contingency.
After existence is proved, the general form of the model is reduced to
a more tractable, recursive form where the state is given by the agent’s
(promised) expected discounted utility. On a different dimension, the state
space includes the set of possible truncated histories in order to account for
their influence® on the reservation utilities. This recursive formulation does
not rely on the first-order approach and is not based on Lagrange multipliers
[cf. Marcet and Marimon, (1998)]. In fact, all I need is continuity of the
momentary utilities. I first consider an auxiliary version where the participa-
tion of the principal is not guaranteed. The solution of this problem can be

4His benchmark model is a full-commitment one, but he considers limited commitment
on part of the agent as an extension.

5The relationship between the history of observables and the reservation utilities is
predetermined since the reservation utilities are exogenous to the problem.



computed through standard dynamic programming methods once the state
space is determined. Following the approach of Abreu, Pearce and Stacchetti
(1990), the state space is shown to be the fixed point of a set operator and
can be obtained through successive iteration on this operator until conver-
gence. Given the solution of the auxiliary problem, I resort to a procedure
outlined by Rustichini (1998) in order to solve for the optimal incentive com-
patible, two-side participation guaranteed supercontract. This is achieved by
severely punishing the principal for any violation of his/her participation con-
straint. The procedure allows of recovering the subspace of agent’s expected
discounted utilities supportable by a self-enforcing incentive-compatible con-
tract.

The rest of the paper is structured as follows. Section 2 presents the
dynamic model. Section 3 derives the reduced recursive formulation. Section
4 concludes. Appendix 1 contains all the proofs.

2 Dynamic model

The model considers a moral hazard problem in an infinite horizon principal-
agent framework with limited commitment on both sides. Each period, the
principal needs the agent to implement some action that stochastically affects
a variable of principal’s interest, but suffers from the fact that the action is
observable only by the agent. Given that the variable of interest to the
principal is publicly observable, the principal may want to condition the
wage of the agent on the realization of this variable instead. However, the
issue of inducing the proper incentives is further complicated by the lack
of commitment to a long-term relationship. The commitment problem is
structured very generally in the sense that the reservation utilities are allowed
to depend on some truncation of the publicly observed history.

Consider, for example, the interaction between the firm’s shareholders
(the principal) and its CEO (the agent). The CEO may exert a different
amount of effort which on its turn randomly affects the success of the cor-
poration illustrated by its observed gross profit. Both the principal and the
agent have some outside options: the firm may close, while the agent may
quit and start working for another employer. These options are represented
by reservation utilities which may vary on the history of observables (in this
case, the history of firm’s realized gross profits).



First, I will introduce some notation. Let Z be the set of integers with
Zy+ and Z4 denoting the sets of positive and respectively nonnegative in-
tegers. Time is discrete and indexed by t € Z. Let y; denote a particular
realization of the variable of interest to the principal in period ¢. This out-
come is realized and observed by both the principal and the agent at the end
of the period. As a matter of fact, at the beginning of period ¢ there is a
stream of previously realized outcomes which we denote by y*~!. Given that
the end-of-period-t realization is y;, the history of outcomes at the begin-
ning of period t 4 1 is simply 4 = (ytfl, yt). The set of possible outcomes
is assumed a time- and history-invariant, finite set of real numbers which is
denoted by Y. For concreteness, we assume that it consists of n > 1 distinct
elements.

There is an initial period of contracting which we normalize to 0. At
the beginning of this initial period, an outcome history of length 0 € Z,
is observed. Therefore, a period-0 contracting problem should be defined
on nY initial history nodes.® Both the principal and the agent can only
commit to short term contracts, therefore it is natural to start with a series
of single-period contracts defined on all possible contingencies stemming from
some initial node. Each such contract is history dependent and specifies an
action and a monetary transfer from the principal to the agent contingent on
the particular outcome observed at the end of the period. The timing is as
follows. A short-term contract is signed at the beginning of the period. Then,
the agent implements some action which is unobserved by the principal and
may not be the one specified in the contract. Nature observes the action and
draws a particular element of the set of possible outcomes according to some
probability distribution. The outcome is observed by both parties and the
agent receives the transfer corresponding to this particular outcome.” Then,

6As it will become clear afterwards, history will not matter at the initial period of
contracting unless the reservation utility of either the principal or the agent is history
dependent. Since in order to keep the problem tractable, I allow the reservation utilities
to vary across a finite truncation of the observed history with length 6 (Assumption 2), it
would be natural to consider the contracting problem as defined on nf initial nodes. As
for the existence of an initial period of contracting, note that we can modify the period-
0 contracting problem [PP] so that the principal should provide the agent with a given
initial (expected discounted) utility level resulting from a previous round of long-term
contracting.

7Given the above setup, the principal’s ability to commit to a short-term contract
should be understood as an ability to commit to providing the agent with the promised
monetary transfer. Indeed, the transfer specified in the short-term contract signed at the
beginning of the period occurs at the end of the same period.



a new period starts, a new short-term contract is signed, and so on.

Formally, at the beginning of each period t € Z, after a particular his-
tory y*~! has been publicly observed,® a single-period contract c; (ytfl) =
{ar (") ,we (" 'y) : y € Y} is signed between the principal and the
agent. Hereafter, for the sake of simplicity, I will often denote such a con-
tract by ¢; with the clear understanding that it is defined on a particular
history 3*~!. The contract specifies an action a; to be implemented by the
agent. To make the analysis tractable, the action is assumed one-dimensional
and the action space is taken compact, time- and history-invariant. Formally,
a; € A, where A C R compact. The contract also specifies a compensation
scheme {w; (.,y) : y € Y} under which the agent will receive a monetary pay-
off wy (., y) in the end of the period if the (end-of-period) outcome is y for
any y € Y. The space of possible wages, W, is assumed a compact, time-
and history-invariant subset of R.% After the contract is signed, the agent
exercises action aj € A which is not necessarily the one prescribed by the
contract. Then, outcome y; is realized and the agent receives wy (., y:). At
the beginning of period ¢ + 1, contract c;y1 (y') is signed and so on.

Hereafter, I will refer to any sequence of outcomes, actions, or wages as
admissible if all their elements belong to Y, A, or W, respectively.

In order to simplify the analysis, I assume that the probability distribu-
tion of the variable of interest to the principal depends only on the action
taken (earlier) in the same period!? and that each value in the admissible

8You may note that an outcome history y*~1 consists of 6 elements corresponding to

the initial history observed at the beginning of period 0 and t elements from period 0 to
period t — 1.

9The compactness assumption can easily be defended by economic considerations. Con-
sider W = [w,w| C R, where w may either be zero or a higher number that corresponds
to the legally established minimum wage, while W is some finite number reflecting the
boundedness of the principal’s total wealth (the discounted sum of maximum possible
income flows). For example, if we treat y as profits, then @ may be taken equal to rlnf’éz,
where Bp is the relevant discount factor, or to a lower number reflecting restrictions on
the principal’s ability to borrow against future profits. In Morfov (2010a), a minimum
wage level is assumed and from there a theoretical upper bound on the wage is derived in
Proposition 1. In the same paper, two other possibilities are considered. The first deals
with the case where the principal can borrow up to max Y —y units of consumption, where
y is current gross profit. Then, we can take w = max Y. The second case assumes that
the principal is prohibited from borrowing, so the wage cannot exceed the current gross
profit realization. Note that we can easily extend this case to the environment described
here, by taking W = max Y and additionally requiring w; (.,y) <y, Vy € Y.

10While the framework can be modified to include some form of “action” persistence
[see, for example, Fernandes and Phelan (2000) and Jarque (2005)], such an extension




set Y is reached with a strictly positive probability.

Assumption 1 For any period t € Z, any admissible outcome history yt =
(y'"1,yt) , and any admissible action sequence a' = (a'~*, a;), the probability
that y; is realized given y*=! has been observed and a® has been implemented

equals m (ys,a;) where m:Y x A — (0,1) such that Va € A, > 7w (y,a) =1
yey

andVy €Y, 7 (y,.) continuous on A.

The continuity of 7 in its second argument is a regularity condition which
is trivially satisfied if A is finite.

The principal’s (end-of-)period-t utility is denoted by w (ws,y:), where
u: W xY — R is assumed continuous, decreasing in the agent’s wage,
and increasing in the outcome. The principal discounts the future by a
factor Bp € (0,1). The agent’s (end-of-)period-t utility is given by v (wy, at)
with v : W x A — R continuous, increasing in wage, and decreasing in the
implemented action.!! The agent discounts the future by a factor 34 € (0,1).
Note that given our assumptions, the expected discounted utilities of both
the agent and the principal are bounded at any node.

As already mentioned, the agent need not necessarily implement the ac-
tion specified in the contract. Indeed, if another action brings the agent
strictly higher utility, he/she will find it profitable to deviate. Therefore,
the contract should provide the proper incentives to the agent in order for
him/her to exercise exactly the action recommended by the principal.

Limited commitment is assumed on both parts in the sense that both the
principal and the agent can commit only to short-term (single-period) con-
tracts. This assumption is intended to reflect legal issues on the enforcement

will be of little value here since the current paper aims to characterize the effect of a
generalized form of limited commitment on the optimal dynamic contract. Given that the
reservation utilities are allowed to vary across the history of observables, we have another
form of persistence which should be analyzed in isolation from potential long-term effects
coming from agent’s action choice.

1 Note that we effectively prohibit the agent from borrowing or saving. While extend-
ing the model in that direction is possible, introducing such a behavior would shift the
focus to incentive-compatibility, while in the current research I seek to analyze the role of
the participation constraints in the optimal contract. Moreover, without a set of strong
assumptions justifying the first-order approach, such an extension would be very hard to
deal with on a practical level given the increase in the dimensionality of the state space
of the recursive form.



of long-term contracts. However, at the initial period the principal can offer
a long term contract (a supercontract) that neither he/she, nor the agent
would like to renege on,'? and that would provide the necessary incentives
for the agent to exercise the sequence of actions proposed by the principal.
We will refer to this supercontract as a self-enforcing, incentive-compatible
contract and would concentrate on the one maximizing the utility of the
principal.

Regarding the issue of commitment, the reservation utilities take values
in R and are allowed to vary across the history of observables. Since it is
not practical to define reservation utilities on infinite histories, I make the
following assumption.

Assumption 2 The reservation utilities of both the principal and the agent
exogenously depend on the previous 6 outcomes.

The assumption says that the reservation utilities are finite-history de-
pendent, but time independent. Note that the history dependence is trun-
cated to the realizations in the previous 6 periods. This is no coincidence.
Analogously, we could have started with potentially infinite histories in pe-
riod 0, introduced finite-history dependence of different length: 6p for the
principal and 64 for the agent, and then considered finite truncations with
length 6 := max {0p, 04} of the infinite histories observed in period 0.

Let Y9 denote the set of possible outcome streams of length # periods, or,
alternatively, the set of possible initial histories observed at the beginning
of period 0. For concreteness, let us enumerate this set using some bijective
function { : Y? — L, where L := {1,...,n9}. Hereafter, all functions and
correspondences with domain Y? will be considered as vectors or Cartesian
products of sets indexed by L. Moreover, we will often abuse the notation
and use [ as its inverse, namely, as the initial history to which the particular
index corresponds.

Given this indexing, we will denote the reservation utilities of the princi-
pal and the agent at node y*~! € Y x [ as U, and V, respectively, Vt € Z .,
VIl € L. For example, if the history observed in the previous # periods has
been (y;—g, ..., yt—1), the principal’s reservation utility in the current period

12That is, a self-enforcing contract extending the definition of Phelan (1995) to my
generalized notion of limited commitment.



will be U, , where I =1 (y;—g, ..., y+—1) is the index of the particular outcome
stream.

For any | € L, we will define a long-term contract (a supercontract), ¢ :=
(a,w), where a := {a; (y' 1) :y'"1 €l x Yt}fio and w = {w, (v, u)
(yt’l,yt) € 1l xY!x Y}, are the plan of actions and respectively the
sequence of wages defined the whole tree of contingencies stemming from
an initial history {.!> The supercontract prescribes a single action at every
node, but specifies the agent’s compensation as further dependent on the
end-of-period outcome, i.e., as a function with domain Y, or alternatively,
as a vector of n elements.'* Let V, (c, yT’l) and U, (c, yTﬁl) be the expected
discounted utilities of the agent and respectively the principal at node y7~*
given a supercontract c, i.e.:

Vi (e,y™1) = tiﬁf[T S > v(wy, ay)

Y €Y yr€eyY

U- (vaT_l) = tiﬁ?T Do e 2 u(we,yr)

yt€Y y-€Y

T (yi; a; (yifl))»

™ (yi,ai (y'1)).

=~ 13-

s
Il
3

At time 0, after a truncated history [ has been observed, the principal is
solving the following problem:

[PP]
supUy (¢, 1) s.t.:
‘ ar € A, Vnai(l) (1)
wr (L y) €W, Vy € Y, Vnai(l) (2)

Vi (a,w,y7 1) > V; (d/,w,y" 1), V(d : Vnai(y™ ), a) € A), Vnai(l) (3)

v, (c, yT—e—l,f) > V7, Vnai(l) (4)

13Note that the supercontract depends on the initial history, but to ease up the expo-
sition, I suppress this dependence notationally.
MRemember that Y is finite with cardinality n.
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Ur (ey™""1,1) 2 Up, ¥nai(l) (5)

where “Vnai(l)” should be understood as “for any node after and including
I”, that isVy™ " € Ix Y™, V1 € Z,.

This is a time-0, history-I/ contracting problem that mimics dynamic con-
tracting from this node on. That is, at [, the principal solves for a sequence
of future strategies on all possible contingencies, so at each node the con-
tinuation strategy needs to be self-enforcing and incentive compatible. As
in the standard model of dynamic contracting, these strategies are history-
dependent. Here, we additionally have that each decision node is character-
ized by a specific pair of reservation utilities which depend on the history of
observables. Nevertheless, as the next section shows, the problem does pos-
sess a recursive representation in the spirit of Spear and Srivastava (1987).

Constraints (1) and (2) guarantee that the action plan and respectively
the wage scheme are admissible. That is, at any node of the tree stemming
from [, the supercontract prescribes an action from A and specifies a com-
pensation scheme that maps Y to W. (3) guarantees that the contract is
incentive compatible on any node. For example, at the initial node [, it re-
quires that the action plan of the principal should make the agent weakly
better off in terms of period-0 expected discounted utility than any other se-
quence of admissible actions.!® (4) and (5) are the participation constraints
of the agent and respectively the principal which due to limited commitment
should hold at any node. These constraints guarantee the participation of
(v
the expected discounted utility of the agent should be no less than his/her
respective reservation utility at this node, V7, and the expected discounted
utility of the principal should be greater or equal to Uz

For future reference, we denote the problem above as [PP] and its supre-
mum as U™,

The solution of [PP], if such a solution exists, would be the self-enforcing,
incentive-compatible contract that maximizes the utility of the principal at
the initial period of contracting.

Let I'y-—1 := {c: (1) — (5) hold after y™~'}. This is the set of admissible,
incentive-compatible, self enforcing contracts that can be signed at node

T—1 _ T—0—1
- 7l )

both parties at each contingency. For example, at node y

151n our framework, we actually have that incentive compatibility on any node is equiv-
alent to initial (time-0) incentive compatibility (see Lemma 1 in the Appendix).
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T—1

y In particular, consider I';, the set of such contracts available at an
initial history . We shall assume that this set is non-empty for any [ € L.'6

Assumption 3 VI € L, I'; # 0.

3 Recursive Form

In this section, we will prove existence and construct an equivalent recursive
representation of [PP]. We start by establishing the equivalence of incen-
tive compatibility at all contingencies to Green (1987)’s temporary incentive
compatibility at all contingencies.

Proposition 1 Let (1) and (2) hold afterl € L. Then, (3)

Vnai(l), Vy (a,w,yr—l) >V, (a',wayT*I) ’

Va'ra (y7 ) €A andVy €Y, Vnai(y" N y), ai () =a () (6)

The proposition says that constraint (3) is equivalent to requiring that
at any date 7, after any history y” !, there is no profitable deviation in
the current period which will make the agent strictly better off (in expected
utility terms) given that he/she fully complies to the plan in the future. The

161f the set is empty for some initial history, then there does not exists an incentive-
compatible, self-enforcing supercontract at this node. As our numerical estimates in Mor-
fov (2010a) demonstrate, this is hardly the case: in fact there is a wide interval of possible
utility promises to the agent that can be supported by a contract of such type for any initial
history node. Also note that for suitably chosen reservation utility values, the incentive
compatible contract will behave as a full-commitment one, so any violation of Assumption
3 will directly imply the non-existence of the latter. Therefore, it is more a problem of
choosing the “proper” (not too high) reservation utilities than anything else. Nevertheless,
Morfov (2010b) considers an extension that allows for permanent separations and does
not require an assumption of this sort.
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proposition allows us to focus on single-period deviations, which is the first
step towards a recursive structure.

Consider two types of supercontracts. The first, hereafter referred to as a
2P contract, is an incentive-compatible supercontract which is self-enforcing,
i.e., guarantees the participation of both the agent and the principal. The
second, hereafter referred to as an AP contract, is an incentive-compatible
supercontract which guarantees the participation of the agent, but not nec-
essarily the one of the principal.!” Note that the set of possible 2P contracts
that can be signed at node y™~! was already denoted by [y~-1. Let I‘ﬁfil be

the set of possible AP contracts that can be signed at node y™~!. Formally,
F‘y“Tp_l := {c: (1) — (4) hold after y"~'}. Now, we are going to consider the
sets of agent’s initial utilities that can be guaranteed/supported by a 2P and
respectively an AP contract.

Let I be some initial history node. Take an arbitrary period 7 and a
history y” ' stemming from [, i.e., y""' € Ix Y. Let V2 (y"!) be the set
of admissible values for the expected discounted utility of the agent signing
at date 7 after a history y™ ! a 2P contract with the principal. Formally,
V2r (yT_l) ={V €R:3cely -1 such that V; (c, yT_l) = V}. Let us also
introduce another set, VA? (yT_l), which gives us the possible discounted
utilities of the agent signing at date 7 after a history y"~! an AP contract
with the principal. Formally, VAP (y™=!) :={V eR:3c€ F?fil such that
V. (c, yT*I) = V'}. Since every 2P contract is an AP contract, the agent’s
utilities supportable by a 2P contract will be a subset of the agent’s utilities
supportable by an AP contract. Formally, V2 (yT_l) c VAP (yT_l) for
any | € L, 7 € Zy, and y7~! € | x Y". Now, we are ready to introduce
the sets of principal’s initial utilities that can be supported by a 2P and
respectively an AP contract promising a certain initial utility to the agent.

For any V € V2P (yT*I), let U2F (V7 yT’l) be the set of possible val-
ues for the expected discounted utility of the principal signing at node 37 ~*
at time 7 a 2P contract that would give the agent an initial expected dis-
counted utility of V, ie., U?Y (V,y™!) := {U € R: 3¢ € I';--1 such that
V. (c, y"*l) =V and U, (c,y”l) = U}. For any V € VAP (y"fl), let
UAP (V,y™~1) be the corresponding set (defined accordingly) in case the
principal is signing an AP contract instead.

17Tt may be easier to remember the abbreviations in the following way: AP=‘“agent
participates”; 2P= “two [...] participate”, i.e., both the agent and the principal participate.
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Then, for any V € V2P (yT_l), we have U2P (V, yT_l) cuAr (V, yT_l),
while for V € VAP (y=1) \ V2P (y7=1), UZF (V,y" ') is not defined.

Proposition 2 Let | € L and i € {2P,AP}. Then, for any T € Zy and
y e YT x 1 (a) Vi(yTl) = V§(l) compact; (b) YV € Vi(y™t),
Ut (V, yT_l) = U (V,1) compact.

Part (a) of the proposition says that the sets of possible expected dis-
counted utility values for the agent signing a 2P or AP contract are time
invariant and compact. Furthermore, the history dependence of these sets
is restricted only to the previous (as of signing) 6 realizations. As part (b)
indicates, the result also applies to the set of possible expected discounted
utilities of the principal signing a 2P or AP contract guaranteeing a partic-
ular initial utility to the agent.

To ease up the notation, we will hereafter refer to these sets as V2 (1),
VAP (1), U?P (V,1), and UAP (V,1).

Remember that U;* is the supremum of the principal’s problem [PP]. We
state the following result.

Proposition 3 (FEzistence of an optimal contract): For anyl € L, 3¢, € T
st UM =Up (e,1).

The proposition establishes the existence of an optimal 2P contract. How-
ever, due to the complexity of the problem, the optimal contract cannot be
derived analytically. Nevertheless, I show that it can be characterized and
given a computable representation. In the spirit of Spear and Srivastava
(1987), this is done by constructing a recursive version of [PP] taking the
agent’s expected discounted utility as a state variable. Up to certain quali-
fications, this new formulation of the problem can be addressed by dynamic
programming routines.

I will first establish a useful result which is related to the transformation
of the dynamic principal’s problem to a series of static problems defined on
an endogenously obtained state space.

Fix | € L. By Proposition 2 (b) for any V € V2P (1), U?F (V, 1) is compact
and therefore, we can define U™ (V1) := maxU?" (V,1) as the maximum

14



utility the principal can get by signing a 2P supercontract offering V' to the

agent. Furthermore, let U} := sup U*(V,1).
VevzP(l)

Proposition 4 Vi€ L, U* =U; = ” H\}%}P((Z)U* (V. 0.
€

This proposition shows that the principal is indifferent between directly
maximizing his/her utility given I, or first finding the maximum utility he/she
can obtain by guaranteeing the agent a certain initial level of utility and then
maximizing over the resulting set.'®

Let Iy : L xY — L give the index of the initial history tomorrow given
the index of the initial history today and the new realization of the variable.
Consider, for example, that we are in period ¢. At the beginning of ¢, an
initial history (y¢—g, ..., yt—1) with index [ has been observed. At the end of
the period, an outcome y;_; is realized. Then, at the beginning of period
t+1, the observed initial history will be (y4—g+1, ..., y:) and will have an index
I+ (I,y:). We will often abuse the notation and use I, instead of I=1 (I3),
i.e., replace the initial history tomorrow by its index.

Consider the state space {(V,1):V € VAF (l)}leL that matches initial
histories of outcomes with initial utility promises supportable by an AP
contract.'® Let cr(V,1) = {(a_(V,1),wy(V,1,y),Vi(V,l,y)) : y € Y} be a
stationary contract defined on a point (V,[) of the state space, where a_ (.)
is the agent’s action in the beginning of the period, w4 (., y) is the wage the
agent will receive in the end of the period if the realization of the variable
of interest to the principal is y, Vy € Y, and V4 (.,y) is the end-of-period
expected discounted utility of the agent in case of realization y, Vy € Y. Since

18Note that the original problem can be set as the principal maximizing expected dis-
counted utility given an initial truncated history ! at period 0, where the maximum is
taken over a set of 2P supercontracts promising the agent an initial expected discounted
utility of V; for any I € L and V; € V2P (I). The promise should be consistent (in a sense
that will soon become clear; see (9)) and can be considered a leftover from a (remote)
previous round of contracting. Then, the original problem is defined on {V2F (I):1 € L}
and the recursive representation will be equivalent to the one obtained here without the
need to maximize U* (.,1) over V2P (). Namely, we would have U** (.,1) = U* (.,1) over
V2P (1). Since the static form characterizing both [PP] and the problem described here
is the same, I choose to present the former because of the more involved description and
notation of the latter.

19The possible initial histories (of length @) enter the picture because they could poten-
tially affect the reservation utility values.
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the realization of the variable in question is not known when this contract is
signed, the wage and the end-of-period utility of the agent are specified for
all possible outcomes, Y. Although the stationary contract depends on the
initial history and the particular expected discounted utility of the agent in
the beginning of the period, I will often suppress this dependence notationally
and refer to the contract simply as cg = {(a—,wy (y),Vy (y)) : y € Y}. Let
USCB; denote the space of bounded upper semicontinuous (usc) functions
from VAP () to R endowed with the sup metric. Define VAP := {VAF (1)}
as the set of possible initial discounted utilities of the agent signing an AP
contract ordered by initial history. Since L is finite, this set inherits the
properties of VAL (1) established in Proposition 2 (a). Then, for any U =
{U,} with U; € USCBy, Vi € L, define the operator T as follows. For any

V = {Vi} € {VAPY), TU) = {Tl (U)(Vl)}, where:

Ty (U) ;) = max{ Zeliu (wy (1),y) + BrUL 1) Ve W) (y,0-)} s.t.:

o €A )

wy(y) eW,VyeyY (8)

;/[V (wy (y),a_) + BaVi W7 (y,a_) = Vi )
g[; (wi (), a") + BaVy ()7 (y,0”) < Vi, Va_ € A (10)
Vi(y) e VAT (L (Ly) Yy €Y (11)

Notice that the maximization above is over a set of static contracts at a
particular point (V;,1) of the state space.?? Also note that if the initial history

20This may not show up directly since I have simplified the notation by suppressing the
dependence of cgr on the initial history [ and the particular initial utility V; promised to
the agent.

Notice also that {(V;,1) : V; € VAP (1)} is endogenous to the model, so one may doubt
the usefulness of defining the operator 7' on an unknown state space as well as the practical
benefit of constraint (11). Further in this section, however, we will demonstrate that VAP
can be recovered from the primitives by a recursive procedure in the spirit of Abreu, Pearce
and Stacchetti (1990).
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today is [ and the end-of-the-period realization is y, then the initial history
tomorrow will be [ which in general will be different from [. Therefore, it
is important that we keep track of the initial history update and so each
T; is applied to U, not just to U;.2! The use of max instead of sup in the
definition of T is justified by the fact that we are maximizing an usc function
over a compact set. Constraints (7), (8), and (10) are the stationary versions
of (1), (2), and (6) respectively. In particular, (7) guarantees that the action
is admissible (i.e., an element of A), (8) guarantees that the compensation
scheme is admissible (i.e., mapping Y to W), and (10) is temporary incentive
compatibility.?? (9) is a promise keeping constraint?® which guarantees the
agent an expected discounted utility of V; today. It is a requirement on the
static contract that makes the principal’s initial utility promise to the agent
at node [, V;, consistent with the future promise given the proposed action
and compensation scheme. (11) is another consistency constraint requiring
that the discounted expected utility that the agent will get next period can
be supported by an AP supercontract. Note that (11) implies that the
agent’s continuation utility should not fall below the reservation level on any
respectively updated initial history, i.e., Vi (., y) > Viiay)» Yy €Y. In fact,
constraints (9) and (11) guarantee the dynamic consistency of the series of
static contracts generated by iterating on the operator T

For any [ € L and V € VAP (), we have that UAT (V,]) is compact
by Proposition 3 (b). Then, we can define vt (V1) := max UAP (V1) as
the maximum utility the principal can get by signing an AP supercontract

AP*

offering V to the agent. For any V € VAP let vt (V) = {U (Vl,l)}
be the vector of these maximum utilities indexed by initial history. Next, I

will show that U*" : VAP — R™ is the unique fixed point of the operator
T and can be obtained as the limit of successively iterating on 7T'. I start

with a proposition that establishes some useful properties of U e

Proposition 5 For anyl € L, vt (.,1) is usc and bounded on VAT (1).

210f course, if § = 0, the reservation utilities will be constant at all nodes, so the initial
history will be immaterial for the static contract. The state space will shrink to a single
dimension; namely, the set of expected discounted utilities that can be promised to the
agent will be the same at every node. Then, the history update will prove irrelevant since
U will be defined on the one-dimensional VAP,

22Note that we have made use of (9) when stating temporary incentive compatibility as
(10). Namely, given (9) holds, temporary incentive compatibility is equivalent to (10).

231t is referred to as a re-generation constraint in Spear and Srivastava (1987).
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Note that these properties can directly be translated to v’ , say with
the sup metric over Y.

Proposition 6 T (UAP*) v,

The proposition says that UAP* is a fixed point of the operator T

For the purposes of the next proposition, I introduce some additional no-
tation. Let 8; denote the space of bounded functions from VAP (1)
to R endowed with the sup metric. For any U, U” € {USCB},
define the metric p(U',U"”) = supw (U',U"), where p, (U, U") :=

leL

sup U (W) —=U/" (V})], VIl € L. Note that both suprema in the above
v, evAP ()
definition are achieved.

Proposition 7 (a) T maps ({USCB;}, ) into itself; (b) T is a contraction
mapping with modulus Bp in terms of the metric p; (¢) Let U € ({8}, 1) :

T (ﬁ) —U. Then, U=U"""; () YU € (USCB}, 1), u (T” @), v
— 0, where T" (U) := T(T" 1(U)) for any n € Z, with T° (U) :=U.

n—oo

This proposition shows that the fixed point of T is unique and can be
obtained as a limit of successive iterations on T'. Consequently, we can use
standard dynamic programming techniques in order to solve for the optimal
AP contract.

However, what we are ultimately interested in is solving for the optimal
2P contract. For this purpose, I resort again to dynamic programming using
a method outlined by Rustichini (1998).

First, I will introduce some notation. For any | € L and V; € VAL (1), let
Ir(Vi,U,1) :={cr : (7) — (11) hold at (V,1) and U, 1) (Vi (y)) = Uy,

Vy € Y} for some function U : VAP — (RU {—oo})"e. Additionally, let

Y)?

_ WU UMW) =2 U,
Ar(Vi,U.1) = { Agr (V;,U,1) :== 0 otherwise.
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Denote by USCBA; the space of usc, bounded from above functions
from VAP (1) to RU {—oco}. Then, for any U = {U;} with U, € USCBA,,
Vl € L, define the operator T as follows. For any V € VAP, TWU)wy =

{Il (U)(W) }, where

T (U)yy = max {3 [u(wy (y),y) + BrUi .y (Vi ()7 (y,a-)}

following the convention that T (U) ;) = —oc if Ag (V;,U,1) = 0.

This operator encompasses the lower bounds on the utility of the principal
in the form of additional constraints. The only difference with 7" is that in
case U is lower than the reservation utility of the principal today or at
any possible contingency tomorrow, T becomes —oo. The idea is that any
violation of the constraints in this stationary framework is punished severely
making the contract in question non-optimal. What remains to be shown is
that iterating on this operator will indeed lead us to the optimal dynamic
contract.

Proposition 8 T maps {USCBA,;} into itself.

For any V € VAP let Do (V) := UAY" (V) and D; 1 (V) := T(D;),
Vi € Z,. Note that by Proposition 8 and the fact that I'p (V;, U, 1) is compact
if non-empty for any V; € VAF (1), U € {USCBA;}, and [ € L (trivial), D;
is well defined on VAY for any i € Z, .

Proposition 9 (a) {D;};2, is a weakly decreasing sequence and 3D, €
{USCBA;} : D; (Vi,l) — Do (Vi,1), ¥V, € VAP (), Vi € L; (b) T (Ds,) =

Do.; and (¢) if AD' € {USCBA;} : T (D') = D', then D' < D,.

This proposition says that if we start iterating on the operator T taking
UAP" as an initial guess, we will ultimately converge (pointwise) to D, the
largest fixed point of T'. Next, I establish the relationship between U* and
D
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In the subsequent analysis it will be useful to extend U* on VAP, For
any V € VAP let U* (V) = {17* (Vl,l)} with U (Vj,1) == U* (Vi,1) if
V, € V2P (1) and U* (V},1) := —oo otherwise.

Proposition 10 T ([7*) =U*.

This proposition establishes that the extension of U* on VAP is a fixed
point of T. What remains to be shown is how to recover U* from D,,. The
next proposition gives the answer.

Proposition 11 For any V € VAP, U* (V) = Dy (V).

The proposition provides a straight-forward method of solving for the
optimal 2P supercontract. After we have found the optimal AP contract
we take it as an initial guess and start iterating on the operator 7T until
convergence is reached. Note that convergence here is pointwise and is meant
to be on RU {—o0}. After we have obtained the limit function D, we can
recover the set of possible values for the expected discounted utility of the
agent signing a 2P contract by taking the subset of the domain of D, on
which the limit function takes finite values. More precisely, for any [ € L
we can restrict ourselves only to values of Dy, (.,1) above U,;. Formally,
V2P (1) .= {V e VAP (I) : Do (V,1) > U4, }. Then, for anyV € V3 (l),
we have U* (V;1) = Do (V,1).

However, note that the state space of the recursive problem constructed
for computing the optimal AP contract, VAF | is endogenous. Nevertheless, it
is the largest fixed point of a set operator and can be obtained through suc-
cessive iterations in a procedure introduced by Abreu, Pearce and Stacchetti
(1990).

Choose some V € R : V > max {max VAP (1)}, where the right-hand

side of the inequality is well defined given VAF (I) compact, VI € L and L
finite. Note that given Assumption 3, {Kl,‘/}} # (, VIl € L. Then, for any
X={X}: X;eR,Vie Llet B(X):={B;(X)} with
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B (X):=1{Vie [zl,ﬂ :3e - (7) — (10) and (12) hold at (Vi, 1)},
where (12) is defined as:

Ve (Viy) € X, )N [Ku(l,y),—f—oo) ey (12)

Note that B; (X) gives the set of agent’s initial utilities that are not
below the reservation level (which follows from V; € [Kl , ‘A/D and that can

be supported by a single-round (stationary) contract at [ that is admissible
[i.e., (7) and (8) hold], consistent [i.e., satisfies (9)], temporary incentive-
compatible [i.e., satisfies (10)] and has continuation utilities which are taken
from X and are not below the relevant reservation level [i.e., (12) holds].
In short, B maps continuation utilities to relevant initial utilities. It is this
operator that will help us recover the endogenous state space of T, VAP,

Proposition 12 (a) B (VAY) = VAP and (b) if 3X C R B(X)=X,
then X C VAP,

This proposition establishes that the set of agent’s expected discounted
utilities supportable by an AP supercontract, VA, is the largest fixed point
of B.

Proposition 13 Let X, compact : VAT c Xy C R™ and B (Xp) C Xo.
Define X; 11 := B(X;), Vi € Zy. Then, X;11 C X;, Vi € Zy and X =
lim X; = VAP,

11— 00

The proposition says that if we start iterating on B taking as an initial
guess some compact set Xy that contains both B (Xy) and VAP we will
ultimately converge to the largest fixed point of the operator, VA . This
is sufficient for obtaining VAP since we can always take X, = {Xo,} :
[ZZ,XA/} C Xo, C R with Xy; compact, VI € L. However, an even more
computationally efficient result exists.
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Let us modify the operator B as follows. For any X = {X;} : X; € R,
Vie Llet B(X) = {El (X)} with

B (X):={V, € X;: 3cg : (7)-(10) and (13) hold at (V;,1)},
where (13) is defined as:

Vi(y) e X Vyey (13)

()

Note that the operator B does not require that the agent should commit
to the contract. Namely, we do not impose a constraint keeping the contin-
uation values for the utility of the agent above the lower bound given by the
reservation utility. From a computational point of view, we are increasing
the efficiency since we are relaxing the set of constraints.

Proposition 14 (a) Take X, := {Xo,l} with Xo; = [Kl,‘//\'}, Vie L and
let X;11 = B (5() Vi € Zy. Then, Xop1 C Xiy Vi € Zy and Xoo =
lim X; = VAP, (b)) B(VAP) = VAP and (c) if 3IX : 0 # X C X and
ZE&) = X, then X C VAP,

This proposition outlines a practical way of obtaining VAF. Namely,
we start with the set {[Kl, V}} and iterate on the set operator B until

convergence in a properly defined sense is attained. Note that we can always
take ‘7 _ I/(max{f[/}ﬁ,min{A}) .
—PA
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4 Conclusion

This paper builds a framework for analyzing dynamic moral hazard problems
characterized by limited commitment and history-dependent reservation util-
ities. This is achieved by constructing an equivalent recursive representation
that is stationary on a properly defined state space. The state space which
contains the expected discounted utilities of the agent on one dimension and
the initial histories on the other is characterized by a generalized Bellman
equation. Given the state space, the optimal AP contract is recursively
characterized by standard dynamic programming routines on bounded usc
functions and in the same time is used as an initial guess for the optimal 2P in
a procedure severely punishing any violation of the principal’s participation
constraint.

This general setting can be used to address multiple dynamic problems
including but not limited to executive compensation, stock option packages,
tenure decisions, optimal insurance, and investment. It would also be inter-
esting to try to endogenize the external options in a model directly providing
the link between fundamentals/beliefs and reservation utilities.
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APPENDIX
Lemma 1 Let (1) and (2) hold after 1 € Y. Then, (3) <

Vo (a,w,l) > Vo (a',w,l) ¥(a' :Vnai(l), a, € A) (14)

Proof. It is trivial to show (3)=(14). Just take 7 = 0. In the other direc-
tion, let (14) hold, but assume that (3) is not satisfied, i.e., there is a node
y" ! s.t. Ja’ admissible Vnai(y™ ') and V; (a/,w,y""1) > V; (a,w,y"1).
Let a” : Vnai(y™ '), af = a}, with a} = a; elsewhere. Given (1) and (2), v
is continuous on a compact set and, therefore bounded. Then, we obtain:

VO (a’/lv w, l) =
t

T—1
YYD v(we(y') e () [ (wirad (v71)) +
t=0 y€Y yo€Y =0

t—1

B4 Z Z V(@ w,y™t) H’/T (yi,a! (y'™1))

Yi—1€Y yo€Y 1=0
> Vo (a,w, 1), (A1)

where the inequality follows from the construction of a” since
V. (a',w,yTﬁl) >V, (a7w,y7’1) and 7w > 0 by Assumption 1. Given that
a” is admissible after | by construction, (A1) contradicts (14). m

This proposition shows that incentive compatibility at an initial node
—%y is equivalent to incentive compatibility at all the nodes following 1.

Proof of Proposition 1. It is trivial that (3) implies (6). In the
other direction, assume (6) holds at every node, but 3 an admissible plan
a Vo (a,w,l) > Vo (a/,w,l). We have:

VO (Cl/, w, l) =
26



ZﬁAZ v a (v ) [ (i i (v'1) +

t=0 y:€Y yo€Y i=0
BRI Ve (dw,y )H (virai (v'71)),
yr€Y yo€Y

where the second term on the right-hand side can be made arbitrarily
small by choosing T' big enough given (1), (2) and the assumptions on (4,
v, A, W. Therefore, 3T € Z4 and an admissible plan a” : af (y'™!) =
at( D, Vy' =t elxY!, vt <T, and af = a; elsewhere, s.t. Vo(a”wl)>
Vo (a,w,1) Then, take 7 € Zy : 7 < T's.t. Fy™ ' a? (y7 1) #ar (y 1)
andﬂT’eZ++:T<T'§T:a’T',(T_l) ;éa/( = )forsomey “le
IxY7 . If we define an admissible plan a”” : a/// (=) =a-(y 1),y e
I x Y™ and @} = a elsewhere, by (6) at V4"~ € [ x Y™, we have that
V- (a'”,w,yT_l) >V, (a”,w,yT_l), from where Vj (o, w,1) > Vo (a”,w,1).
Proceeding in this way we can eliminate all the deviations (note that 7 € Z :
7 < T) to obtain Vj (a,w,l) > Vi (a”,w,1), i.e., a contradiction. Therefore,
we obtain (6)=-(14), which by Lemma 1 results in (6)=-(3). m

For any I € L, let C; := {c: (1) and (2) hold after {}.

Proof of Proposition 2. (a) Fix ! € L. Take 7,7 € Z, : 7/ < 7"
and arbitrary y™ ! € Y7 x [ and y7 ~! € Y7 x [. Take an arbitrary

V' e ViP (yT/_l). Then, there exists a contract ¢ = (a’,w') € I'jvy :
Vo (c’,yfl’l) = V'. Define ¢/ = (a”,w") such that for any 7' € y7 ! x
YT with ¢ > 77 af () =alyy (yT/’l,ﬂTu, ...,ﬂt_l), wy (§) ==
W (’GyTLI, Yrtry ooy ﬂt). It is straight-forward that V.~ (c/’, yT”’1> =
V' and ¢ € T .1 Therefore, we have that V' € V2 (yT/Ll). The same
argument holds in the other direction, so we have proven that V2¥ ( T _1) =

V2P( T —1). "

T

Fix [ € L. V2P (l) is bounded given (1) and (2). Regarding the com-
pactness of V27 (1), we should also prove that it is closed. Take an ar-
bitrary convergent sequence {V;}io, : V; € V2P (I), Vi € Z, with limit
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Va. We need to show that V., € V2P (I). By the construction of the se-
quence, for any ¢ € Ziy, d¢; € Ty such that V(¢ 1) = Vi Then, for
any ¢ € Zyy, ¢; € C;. Let us endow C; with the product topology. Cj is
compact as a product of compact spaces. Consequently, there exists a con-
vergent subsequence {¢;, }r—, of {¢;};=, such that co := klingo (cip) € Ci,

from where ¢ satisfies (1) and (2) after I. For any T' € Z4 : T > 1, let

VEey ) = LTS w5 ) (yt*))Jljw(yi,ai (W' ).

t=7 Y€Y yr €Y
Notice . that
VT (07 yT_l) _VTT(Cu l/T_l) = 5£+1 Z Z VT+1 (CJ yT) H ™ (yu ; (yl_l))
) yTeY. Y- €Y =T
c [ Z;+1 U(mlnlﬁ/gﬁaxA)’ £+1 U(ma)l(i/Vﬂ,r:lnA)], vT € Z+ . T Z T Ve € Cl7

Vy™ 1 € Ix YT, Vr € Z. Moreover, VI (.,y™!) is continuous on Cj. Then,
V-(.,y™ 1) is continuous on Cj. Analogously, we can show that U, (.,y" 1)
is continuous on Cj. As a result, we have that c., satisfies (4), (5), (6) after
I and Vj (Coos ) = Vo
Following the same logic, we can show that VA" (yTﬁl) is time invariant
and compact and depends only on the last # observations prior to signing.
(b) Analogous to the proof of (a). m

Proof of Proposition 3. Fix [l € L. We have I'; C (;. Let’s endow C;
with a metric inducing the product topology. Then, following the argument
of the proof of Proposition 2, we obtain that I'; is compact and Uy (.,1) is
continuous on C;. m

Proof of Proposition 4. Fix [ € L. By Proposition 3, we have that
Jdec € Ty and Uy (¢, 1) = U}*. Let V** := Vj (¢,1). By Proposition 1, V** €
V2P (1) and U}* € U (V**,1). Therefore, U > U*. Suppose U > U,
Then, IV* € V2P (1) : Up* < U* (V*,1) < Uj. Since U* (V*,1) € U (V*,1),
de* e Ty, Vo (¢*,1) = V* and Uy (¢*,1) = U* (V*,1). Then, by the definition
of U* and Proposition 1 we have that U;* > U* (V*,1), i.e., a contradiction
is reached. Consequently, U;" = U;* and the supremum in the definition of
U;" is achieved. m

For any [ € L and VV € VAP (1), define TP (V) == {c :(1), (2), (4), (6
hold after [ and Vj (c,l) = V} and GAP (V) := {c € TP (V) : Uy (1)
UAP" (V1))

~
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Lemma 2 For any | € L, TP (.) is upper hemi-continuous (uhc) on
VAP (1).

Proof. Fix ! € L and V € VAP (1) and note that I'/A¥ (V) is non-empty and

compact. Take a sequence {V;};2, s.t. V; € VAP (1), Vi € Zyy and V; —

V. Let ¢; € T (Vi), Vi € Zy . Note that TP (V;) C Cy, Vi € Z4 4 with

C; compact . Then, 3 a subsequence {cij };.11 of {ci};ﬁl te;, — ce (.
= PN

Since V; (.,7%y™~!) is continuous on Cj, c satisfies (4) and (6) after [ and
Vo (¢,1) = V. Therefore, c € TAT (V). m

Proof of Proposition 5. Fix ! € L and V € VAP (I). Take a sequence

{Vitie, st. V; e VAP (), Vi € Zyy and V; — V. Let ¢; € GAP (W),

Vi € Zy4. Define UAT" = Z_@UAP* (Vi,1). 3 a subsequence {c;, };il of

{ei}i2y : lim Up (c¢4,,1) = UAT". Since G*F () € TP (.) and TP () is uhe
j—o0

oo o0 .
from Lemma 2, 3 a subsequence {Cia'n}n:1 of {cij }]:1 Py, T C with

c € TAP (V). Then, UAT" = lim U (s, 1) = Up (¢, 1) < UAP™ (V1) where

oo

the first equality comes from the fact that {cijn} is a subsequence of

n=1
{cij };il and JEHCEO Uo (cij , Z) = W, the second follows from the continuity
of Up (.,1) and the third obtains directly from ¢ € I'#" (V) and the definition
of UM (V,1). Therefore, vt (.,1) is usc on VAP (1).

Regarding the boundedness of vt (.,1), note that for any V € VAP (1),
vt (V,1) = Uy (cv, 1) for some ¢y € TP (V) C C; with C; non-empty and
compact. Since Uy (.,1) : C; — R is continuous on a compact set, it is also
bounded. Consequently, vt (.,1) is bounded on VAL (1). m

Lemma 3 Fiz arbitrary | € L and V. € VAL (), and let ¢ € G{AT (V).

Then, U, (c,.,T—l) — g (VT (c*,.,f-l) ,z—l), Vnai(l).

Proof. Note that Vnai(l), V; (c,.;lv*l) e vAP (7’1) and, therefore,
vt (VT (c,.,f_l) ,7_1) is well defined. Since for 7 = 0, the result is
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trivial, take arbitrary 7 € Z,, and y" ! = (yT_e_l,ZN_l) elxYT7, and as-
sume that the lemma does not hold. Then, there exists a supercontract ¢’ €
I‘fl‘f‘ff (VT (c, yT’l)) : Uy (c/,f’l) > U, (c, yT*I). Let us construct a super-
contract ¢’ after I s.t. (af (y' '), w/ (v'"1,u)) = (@b (Y s Y1),

w,_ (17N yry o Ye—1, %)), Vnai(y™ 1), with (af (y'1) , wf (v y)) =
(at (yt_l) , Wy (yt_l, yt)) elsewhere. By the definition of ¢ and the construc-
tion of ¢’ we have that ¢’ satisfies (1), (2), (4), (6) after [ and Vp (¢”,1) =
Vo (e,l) = V. Then, Uy (c",1) € v’ (V,1). However, since U, (¢”,y7" ')
> U, (c, yT_l), we have that Uy (¢”,1) > Uy (¢, 1), which contradicts the fact

AP*

that Uy (c,)) = U™ (V,1). m

The lemma says that at any contingency, the expected discounted utility
of the principal who has signed the AP supercontract maximizing his/her
utility at period 0 while guaranteeing the agent particular initial expected
discounted utility also gives the maximum initial utility the principal can
get by signing a new AP supercontract guaranteeing the agent an initial
utility equal to the utility the agent would receive in that contingency under
the previous contract. In other words, at the optimum the principal can
neither lose nor gain by breaching the original contract and signing a new
one guaranteeing the same utility stream to the agent.

For any | € L and V, € VAP(]), define I'A¥(Vj,1) =
{cr: (7) — (11) hold at (V;,1)}.

Proof of Proposition 6.  Take an arbitrary V = {Vj} € VAP, Fix
| € L. Given the existence of U V,D),3cel;: Vy(el) =V, and

Uy (c,1) = vt (Vi,1). Forany y € Y, let a_ := ag (1), wy (y) == wo (I, y),
and V4 (y) := Vi (¢,1,y). Then, we immediately have that (9) holds. More-
over, (1) = (7), (2) = (8), (6) = (10). As in the proof of Proposition
2 (a), for any y € Y, we can construct ¢, € L'y, ) @ Vo (c;,h_ (l,y)) =
Vi (¢, 1, y), from where (11) also holds. By Lemma 3, for any y € Y, we have

Ur(ely) = U (VileLy).lp (Ly) = U (Vi (1),14 (Iy)). Conse-

ApP*

quently, U Vi, 1) = Uy (¢,1) =
%[U(wo(l,y),y) + BrUi (e, Ly (y,a0 (1)) = g[U(m(y),yH

AP*

BrU " (Vi (y),l+ (L, y)7 (y,a_), where U™ is usc and bounded from
Proposition 5. Then, by the definition of 7' (.), we have that T; (UAP )(V) >
1
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vt (Vi,1). Since V and [ were chosen randomly, the result generalizes to
AP* AP*

(") zu
Fix arbitrary V = {V;} € VAP and | € L. We have demonstrated above
that FAP (Vi,1) # 0. Then, since I'4” (V,1) can be shown to be compact and
U"" is usc and bounded, there exists ch e AP (V1) = T, (UAP )(V) =
1

%[ w(wi (v),y) + BeU"™" (Vi ()15 (L,y)Ix (y,a)}. By (11), for any

)
yeY,Vi(y) e VA (14 (1,y)), from where there exists ¢} € Fl+(l ) (Vi) :
U (cy,l+ 1, y)) v’ (Vi (y),l4 (I,y)). Then, let ¢** be a supercontract
" (

st (ag* (1) ,wg* (Ly) = (a,wi (y) and Ynai (1,y), (ai* (Ly, ), wi* Ly, )
= (ay 1l (Ly) s )swy o1 (1 (1Y), ), Vy € Y. It is immediate that ¢**
satisfies (1), (2), (4), (6) after (I,y), Yy € Y. Moreover, (7)= a§* (I) € A,

(8)= wg* (I,y) € W, Yy € Y. By construction and (10), we have that (6)
holds at I. By (9), we obtain that V; (¢**,1) = Vi € VAL (1), from where (4) is

satisfied at I. Finally, we have that T} (UAP* ) o Ug (c**,1) € UAP (V,1),

1

from where U V,0) > T, (UAP*> . As before, this immediately gen-

Vi)
AP*

eralizes to T’ (U ) > UAP

Proof of Proposition 7. (a) Analogously to the proof of Lemma 2, we
can show that for any [ € L, T47 (.,1) is uhc on VAP (1). Then, following an
argument similar to the proof of Proposition 5, we conclude that T'(U), is
usc on VAP, Tt is trivial to show that T (U),, is also bounded.

(b) The result follows by the argument of Theorem 3.3 in Stokey and
Lucas (1989) since it is trivial that T satisfies the Blackwell’s sufficient con-
ditions. _ )

(c) Assume on the contrary that u (U, v’ ) > 0. We have that

I (17, UAP*> =pu (T (ﬁ) , T (UAP*)) < Bpu ((7, UAP*), where the equal-
ity follows from the fact that both U and UAP* are fixed points of T (the first
- by assumption, the second - by Proposition 6) and the inequality obtains by
(b). However, this contradicts 8p € (0,1). Consequently, u (ﬁ, v’ ) =0.

(d) Since by (a) T maps ({USCB;}, ) into itself, the existence of T™ (U)
is guaranteed for any n € Z,. Using Proposition 6 and successively applying

(b), we obtain 4 (T” (), U‘“’*> < B (U, vt ) Note that 4 (U, U‘“’*) <
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oo since U is bounded by assumption and U " is bounded by Proposition
5. Therefore, given 8p € (0, 1), the result follows. m

Proof of Proposition 8. Take arbitrary U € {USCBA;},l € L, V, €
VAP (1) and {Vi};2, st V; € VAP(), for any i € Zyy
and V; — V,. If limT, (U)(Vi) = —o00, the result is trivial. If
i@zl (U)v,) > —o0, we can always extract a subsequence {Vie ooy of
{Vi}ie, st. I, (U)(Vik) > —oo, Vk € Zi4 and klim T, (U)(Vik)

i@zl (U)(w)~ Since Ag (V;,,U,1) # 0, Vk € Z,, we can apply the argu-

ment used in the proof of Proposition 5 to obtain lim T, (D, <
TyU)y,.) m

Proof of Proposition 9. (a) Notice that UAP" € {USCB;} c {USCBA,}.
Then, directly from the definition of T and T, we have T (U AP ) <
T (UAP *) = UAP" | where the equality follows from Proposition 6. Since
T, is monotonic for any [ € L, {D;},;c z, isa weakly decreasing sequence of
bounded from above usc functions, therefore there exists Do, € {USCBA;} :
D;i (Vi,1) .= Doo (Viy1), VWi € VAP (1), Vi € L.

(b) First we are going to prove T (Do) > Ds. Fix 1l € L and V| €
VAP (1). Let us assume that D (V;,1) > —oo because otherwise the result
is trivial. Since D, (V},1) is a limit of a weakly decreasing sequence, we have
that D; (Vj,1) > —oo, Vi € Zy. Consequently, D; (V;,1) > U,;, Vi € Z since
D; (Vi,l) < U, = Ar(Vi,Di,1) = @ = Diy1 (Vi,1) = —co. This immedi-
ately implies that D, (V},1) > U,. Moreover, I'r (V;, D;_1,1) 0, Vi € Z4 1
since if T'g (V}, D;—1,1) = 0, we would have D; (V;,1) = —oco. Then, for any
i € Zyy,since D;_q isusc and T'g (V}, D;_1,1) is compact (trivial given D;_;
is usc), 3er,i € Tr (Vi, Di—1,1) such that D; (Vi,1) = > [u(ws, (v),y)+

yey
BpDi1 (Vi (y), 1+ (Ly)lw (y,a—;) = U,. SinceVi € Zy 4, I'r (Vi, Di—1,1) C
AP (V;,1) and T4 (14, 1) is compact, 3 a convergent subsequence of {criticy
{er,ip}reys 86 CRoc == kli—{gocR’i" € AP (V;,1). Fix an arbitrary y € Y.

Then, we have:

Do (Voo (y) 14 (Ly)) =
jli}I&Dij,1 (VJr,OO (y) ) l+ (lv y)) >
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lim m Dij—l (V-hik (y) 7l+ (l7y)) >

j—ook—o00

hm m Dik,1 (VJr,ik (y) ) lJr (lv y)) =

j—o0k—o0

k@oDik—l Vi ()14 (Ly)),

where the first equality follows from {Dirl};il being a subsequence
of a sequence converging to D, by (a), the first inequality results from
the upper semicontinuity of D;, 1, the second inequality derives from the
fact that {D;};°, is weakly decreasing, hence D;, 1 (Vi (v),1+ (1, y)) <
Di; -1 (Vi (y),1 (I,y)), Yk > j, and the last equality is trivial. Notice
that Di,—1 (Vi (), 14+ (1Y) = Uy, (1), Yk € Z4 since by construction
Cr,i, € 'R (‘/17 Diy -1, l) # 0. Then, Do (V+,OO (y) . (l7 y)) = QlJr(l,y)’ from
where ¢g o (Vi) € T'r (V}, Doo, ). Finally,

Ty (Do) vy =

max Y [u(wi (1)) + BpDoo (Vie (0) s (Ly))]7 (y,0-) >
rr(V),Doc 1) YEY

Dl (wr oo (9)y) + BpDos (Voo (9) 1 (L iy (y, a—00) =

yey

Tim [u (w-hik (y) ’y) + /BPDik_l (V"F;ik (y) 7l+ <l7 y))]ﬂ' (y7 a_;ik) =

k—oo
yey

k—oo

Do (V1,1),

where the first equality follows from the fact that Dy (Vi,1) > U;, Do
is usc, I'r (V}, D, 1) is non-empty and compact, the first inequality - from
cr,00 (Vi) € Tr(Vi, Do, 1), the second inequality - by using the result ob-
tained earlier by developing for Do (Vi o0 (¥), 1+ (1, ¥)), the following equal-
ity - by construction, and the last equality - by construction and (a).

To conclude the proof, we need to show that T (D) < Doo. Fixl € L
and V; € VAP (). If T, (Doo)(v;) = —00, the result is trivial, so assume
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T, (DOO)(VZ) > —00 = AR (V,Dwo,l) # 0. From (a), we have that for any
i € Zy, Do < Dy, from where Ag (V}, Doo,l) C Ag (V},D;,1), ¥Vi € Z.
Then, for any i € Z:

Ly (Do) vy =

max Y [u(ws (y),y) + BpDoc (Vi (9) 1 (L)) (y,0-) <
AR(Vy,Doo )YEY

max Y [u(wy (y),9) + FrD; (Vi () Ly (L)) (y,0-) =
Ar(Vy, Dy )YEY

Di1 (Vi,1)

Consequently, T (Doo) (v;y < lim Dy (V1) = Doo (Vi, 1).

(¢) Let D' € {USCBA;} : T(D') = D'. Note that 3D €
{USCB;} : D > D'. Consequently, T (D) > T(D') > D’, where the
first inequality follows from the monotonicity of T', while the second comes
from T > T and the fact that T (D’) = D’. Repeating the argument,
we obtain T" (ﬁ) > D’ for any n € Z;. Then, by Proposition 7 (d) we
have that UAY" = lim 17 (5) > D', where the convergence is in terms

n—oo

of . Fixl € L and V; € VAP (1). By the monotonicity of T, we have
D; =T"(UAP") > T*(D') = D', Vi € Z,. Therefore, Dog > D'. m

Lemma 4 I(ﬁ*) > U*.

Proof. [Adapted from the first part of the proof of Proposition 6] Fix an
arbitrary | € L. If V; € VAP (1)\V2P (1), U*(V},]) = —oco and the re-
sult is trivial. Therefore, take V; € V2P (I). Then, U* (V;,1) = U* (V;,1).
Given the existence of U* (V;,1), we have that 3¢ € T} : Vp (¢,1) = V; and
Uo (c,l) = U*(V},1). For any y € Y, let a_ := ao (1), wt (y) := wo (I, y),
Vi (y) := Vi(e,(l,y)). Then we immediately have that (9) holds. More-
over, (1) = (7), (2) = (8), (6) = (10). For any y € Y, we can con-
struct ¢ € Ty ) : Vo (¢, 14 (I,y)) = Vi (¢ 1,y), from where we have that
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Vi (y) € V2P (I (I,y)) C VAP (1. (I,y)), ie., (11) holds. From (5), we
have U* (V},1) > U,. Furthermore, by slightly modifying the argument of
Lemma 37 for any y € Ya U (V+ (y) 7l+ (lvy)) =U" (Vl (C7l7y) 7l+ (lvy)) =
Ui (¢, l,y). Then, from (5) we obtain that U™ (V4 (y), 1+ (I,y)) > Uy, (1,4
Vy € Y. Finally, U* is usc (by the argument used in the proof of Proposition
5 given the qualifications stated in the proof of Proposition 8) and bounded

from above. Then, by the definition of I', we have that T} ((7 *) >

V)

~

U*(V,l). m
Lemma 5 I(ﬁ*) < U*.

Proof. [Adapted from the second part of the proof of Proposition 6] Take [ €
Land V; € VAP (). If T} ([7*) o = —00, the result is trivial; therefore, as-
1

sume that T (17*) . > —oo. This implies that U* (Vi,1) > U, , from where
l
we immediately have that V; € V2P (1) and U* (V;,1) = U* (V;,1). Since we

would trivially obtain T, (ﬁ*)(v) < U* (Vi,0) if T, (ﬁ*)(v) < U, assume
1

l

T, (ﬁ*)(vl) > U,. Also note that T <ﬁ*)(v = max Y [u(ws (y),y)+

1 CRE
) FR(VZ=[7*’Z)yEY

BpU* (Vi (), 14 (I,y)]7 (y,a_) with T (W,ﬁ*,l) # (). Given that U* is

usc and I'g (Vl, [7*, l) is compact, there exists a contract ¢}, such that (7) —

(11) hold at (Vi 1), 0 (Vz () 1y (1:9) 2 U1y, ¥ € Y and 7, (07) =
1

%[u (wi (),y) + BpU* (Vi (y), 14 (Ly)l7 (y.a). By (11), Vi(y) €

VAP (1, (1,y)), which together with U (Vi(y) .l (Ly) = Uy, () implies

Vi (y) € V2P (L (Ly)). Since U (VI (y). 14 (L) = U™ (Vi (9). 1+ (Ly)),
ey € Tiay Vo (CZ,Z+ (l,y)) = Vi(y) and Up (CZ,Z+ (l,y)) =
U (ij (y),ly (l,y)). Note that this is true for any y € Y. Then, let ¢**
be defined as follows: (ag* (1), wi* (I,y)) = (a*,w} (y)) and (a;*(l,y,.),
w:*(lvy’ )) = (a;:/,tfl(l+ (lay) ’ '))7w;,t71(l+ (lvy) ’ ))7 Vnai(hy), Vy €Y. It
is immediate that ¢** € T';,, Yy € Y. Moreover, (7) = a§* (I) € 4, (8) =
wg* (l,y) € W, Yy € Y. By construction and (10), we have that (6) holds at

35



I. By (9), we obtain that V; (¢**,1) = V; € V2P (1), from where (4) is satisfied
at . Furthermore, we have that Uy (¢**,1) = T; (ﬁ*)(v) > U,;. Therefore,

1

7 2P U* =U* > T (U*
T (U )(Vl) € U?P (V;,1), from where U* (V;,1) = U* (V;,1) > T, (U )(Vz)’ .

Proof of Proposition 10. From Lemmas 4 and 5. m

Proof of Proposition 11. Since U* € {USCBA,;}, by Propositions 9 (c)
and 10 we obtain U* < Dy . What remains to be shown is that U* > Dyo.
Fix [ € L and V; € VAP ()}, If Dy (Vi,1) = —oo, the result is trivial;
therefore, assume Do (V;,1) > —oco. Then, Do (Vi,1) = T (Doo)(ysy =

max > [u(ws (Vi,y), y)+8pDoo (Vi (Viyy) , 11 (Ly)]7 (y,a— (V1)) with
C}(a,z(Vz)E )yGY
r'r(V; Doosl

T'r (Vi, Do, 1) nonempty and D (V},1) > U, since otherwise we would have

Dy (V},1) = —00. Since D, is usc and T'r (V}, Do, 1) is compact, we have

that 3k, (Vi) € T (Vi Docy 1) st Ty (Do) = 30 [ (w5 (Vi) ) +
yey

BpDoo (Vi (Vioy) 14 (Ly)]7 (y,a* (V). Since Do (Vi (V1,y), 14 (Ly)) =
Ui, 4 Yy €Y, we have:

D (V+* Visy) 14 (1 y)) = Il+(l,y) (DOO)V;(‘/L)y) =

max [u(ws (VE(Viow),y') . y') +
cr(Vi(Viw)ds (Ly))€ Jze; (v (V7 ):v)
CR(VT(Viw) Dooly (Lv)

5PD00 (V+ (erk (‘/lvy) ) y/) al+ (l+ (lvy) ayl))]ﬂ— (y/a a— (VJ); (Vza y)))

with Tz (Vi (Vi,9) , Doo, I+ (1, y)) nonempty, so the previous analysis ap-
plies. Proceeding in this way, we can construct a supercontract ¢ such that

vnai(l), a¢(y"') = o (ViT(Viy'Y),yY), we (v hy) =
’lUi (Vjt (‘/lvytil)aytilvyt)7 where V:t(‘/laluy()v"'aytfl) =
Vi oV oy (V1) for any t € Ziy and Vi (Vj,1) := V, with
V_;_k (y+) (‘/a yTil) = ‘/.|->’< (V, nyl,yT% vy‘r S Ya Ve VAP (l (yT—G; ---,%-1))7

Yyl €l xYT, 7€ Z,. Weimmediately have (7) = (1) and (8) = (2).
Moreover, by construction and successively applying (9), we obtain that
Vnai(l):
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Vi(ey ™) = Vit (V™) =

lim B4t Z Z [Vier (c, yH'T_l) —

T—o0
YyirT-1€Y Yy €Y

t+T—1 .
VE ST Vi) T s ()

i=t

Consequently, Vnai(l), Vi (c,y'™') = Vi*(V;,y'"!) since by (11)
Vit (Vi,y'™t) € VAP (I(yr—6,....,y-—1)) and is therefore bounded, while
Vi (c,y*~1) is bounded given (7) and (8). In particular, Vg (¢,y™ ') = V..
Then (10) = (6). Furthermore, V; (c,y*™') € VA (I (y-—g, ..., yr-1)), im-
plies that (4) holds after I. Since U, (¢,y’~!) is bounded given (7) and (8)
and Do (V' (Vi,y*™") 1 (y7—0, ..., yr—1)) is bounded from above by Propo-
sition 9 (a).and from below by Tlréi]{lg ; (well defined given L finite), we also

have that Uy (¢,y"™!) = Do (Vi (Vi,4"™Y) 1 (yr—05 s yr—1)), Vnai(l). In
particular, Uy (¢,l) = Do (V1,1). Then, (5) is satisfied at any node. There-
fore, V; € V2P (1) and Do (V1) € UP (V;,1). Then, U* (Vi,1) = U* (V1) >
Do (Vi,0). m

Lemma 6 VAP ¢ B (VAP).

Proof. Let V € VAP and fix an arbitrary I € L. From V; € VAP (1),
Je € TP (Vi). By construction, V; € [KZ,‘A/}. For any y € Y, let a_ =

ag (1), wy (y) == wo (I,y), and Vi (y) := Vi (¢, l,y). Given these choices,
we immediately have that (9) holds. Moreover, (1) = (7), (2) = (8),

(6) = (10). Note that for any y € Y, VAL (I (I,y)) N [Kbr(z:y),—i—oo) =
VAP (1, (1,y)). Since for any y € Y we can construct a supercontract cy €

rﬁlzl,y)(vl (¢, (1,y)), we have that (12) is satisfied. Therefore, V; € B, (VAF).

Since | € L was chosen randomly, this generalizes to V € B (VAP ) [ ]

The lemma establishes that VAP is self-generating in the terminology of
Abreu, Pearce and Stacchetti (1990).
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Lemma 7 Assume X = {X;} : 0 # X; C B;(X), Vi € L. Then, B(X) C
VAP,

Proof. Let the condition of the lemma hold and take V' € B (X). Fix an
arbitrary [ € L. Since V; € B, (X), 3er, (V1) : (7)-(10) and (12) hold at .
By (12) and X aw CBiaw (X), we obtain that V4 ; (V},y) € B . (X).
Then, Yy € Y, Jeg @ (7)-(10) and (12) hold at (Vi ; (Vi,y) .1+ (I,y)). Pro-
ceeding this way, as in the proof of Proposition 11, we can consecutively
construct a supercontract c after [ s.t. ¢ € /A7 (V}). Here, it deserves noting

that while (12) implies (4) on every node but the first, V; € B; (X) C [Kl, 17} ,

from where (4) is also satisfied at I. Therefore, V; € VAP (1), which general-
izes to Ve VA m

The lemma says that the image of every nonempty, self-generating set is
a subset of VAP,

Proof of Proposition 12. (a) By Assumption 3 and Lemma 6, VA?
satisfies the condition of Lemma 7. Therefore, B (VAP ) C VAP which
together with Lemma 6 implies the result.

(b) It follows by Lemma 7. m

Lemma 8 Assume X' = {X|} and X" = {X]'} : X] C X' CR, Vl € L.
Then, B; (X') # 0= B, (X') C B (X"), Vil € L.

Proof. Trivial. m

Lemma 9 Assume X = {X;} : X; C R compact, ¥l € L. Then, B; (X) #
0 = B;(X) compact, VI € L.

Proof. Let the condition of the lemma hold and assume B; (X) # 0 for
some | € L. Note that B; (X) C [Kl, ‘7} C R is bounded by definition. We

should also show that it is closed. Take an arbitrary convergent sequence
{Vi}i2, : Vi € Bi(X), Vi € Zyy with V; — V.. We need to prove that

11— 00

Voo € B; (X). By construction, we have that for any i € Z, 4, V; € {Kl, IA/]
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and Jeg,; :(7)-(10), (12) hold at (V;,1). By V; € [zl,ﬂ Vi € Tyy, we
obtain V, € [Kl,f/] By (7), (8), (12), Assumption 2, L finite, and X; C

R compact for any [ € L, we have that {cg;};—, is uniformly bounded,

therefore 3 a subsequence {cr, }pey Of {CRi}tioq : CRix — CRoo- It s
i S o S i ik T CR

immediate that cg o satisfies (7)-(10), (12) at (Vao,!). m

Proof of Proposition 13. Forany! € L andi € Z,, denote by X, ; the el-
ement of X; corresponding to initial history {. By the condition of the Propo-
sition and Assumption 3, we have that ) # VAP () ¢ X,; C R, VI € L.
Since by Proposition 12 (a) B; (VAP) = VAP (1), we can apply Lemma 8
to obtain () # VAP (1) ¢ X;; C R, VI € L. Using X; C X, and repeating
the argument, we reach VAY ¢ X;,, C X;, Vi € Z, Then, {Xi}og is a
sequence of non-empty, compact (by Lemma 9 since Xy compact), monoton-
ically decreasing (nested) sets; therefore it converges to Xo = ,OI’?OXi D VAP
=

with X, compact.

What remains to be shown is that X,, ¢ VAP, By Lemma 7, it is
enough to show that X, C B(Xs). Let V € X.. This implies that
V € X;, Vi € Zy. Fix an arbitrary | € L. We have that Jeg,; : (7)-
(10), (12) hold at (V;,i). By (7), (8), (12), Assumption 2, L finite, and
X, c Xy C R" compact, Vi € Z,, we have that {Cin}z‘eZJr

bounded; therefore, 3 a subsequence {cr., }re; of {CRri}tioq © CRx L
— 00

CR00- It is immediate that cp oo satisfies (7)-(10) at (V;,1). Moreover,
Vi () = Vi (4, Yy €Y. We also need to show that for any y € Y,
Vioo (¥) € Xoo, (1,y)- Fix an arbitrary y € Y and assume, on the contrary,

is uniformly

that Vi oo () & Xoo i) Since Xoop ) = 0 Xitr ) = 0 Xints )

we have that 3" € Zy = Vi oo (y) ¢ Xi,, 1,1,y Furthermore, {Xik’}io:()

was shown to be a monotonically decreasing (nested) sequence, from where

V+’ik (y) S Xik7l+(l1y) C Xik./,l+(l,y)7 Vk € Z+ : k Z k/. Since Xik./,l+(l,y) is

closed and V4 ;, (y) T Vi oo (y), we obtain that Vi o (y) € Xi 1 (L)
— 00

i.e., a contradiction is reached. This proves Vi o (y) € Xoo,i, (1), Yy € Y.
Consequently, (12) holds for cg . Finally, note that V; € [Kl, ‘7} follows

immediately from V; € X ;. Therefore, V; € B; (X ), which generalizes to
VeEB(Xx) m

For any X = {X;} : X; € R, VI € L let B/ (X) := {B] (X)} with

39



Bl (X):={V € {L,ﬂ :3er : (7) — (10) and (13) hold at (Vi,1)}.

Note that the only difference between this operator and operator B de-
fined in Section 3 is that Bj (X)) C [Kl , ‘7}, while B (X) C X,.

Lemma 10 Take Xj = {Xp,} with X}, == [V, V], vi € L and let
Xlyy =B/ (X)), Vi € Zy. Then, X/, C X[, Vi € Zy and X}, := lim X/ =
VAP,

Proof. We have that X/ is compact and VAP ¢ X} ¢ R"". Note that for
any X C R" : B;(X) # 0, we have B, (X) C Bj (X). Then, by Lemma
8 and Proposition 12 (a), we obtain VA C B (X{) c B’ (X{). Using the
same arguments plus the monotonicity of B’ (trivial), we have VAY c X/,
Vi € Zy. Moreover, by construction B’ (X() C X{. Then, the condition

B (X{) C Xj is satisfied. Observe that for any [ € L, X7, ={V, € [KZ, f}} :

Jer st. (7) — (10), (13) hold at (Vi,))} = {V, € [L,ﬂ - 3ep st (7)
— (10), (12) hold at (V;,1)} = By (X]) since, by construction, we have that
X 0 [zw,y), +oo) = X}, (1 Yy € Y. Furthermore, by X{ C X}
and the monotonicity of B’, we obtain Xj,, C Xj, Vi € Z,. Then, it is
trivial that X/, , = B(X]), Vi € Z; Therefore, Proposition 13 applies to
{(X{}2, =

Lemma 11 Let {X/};°, be defined as in Lemma 10. Take Xo := X}, and
let X;o1 = B (X') Vi€ Zy. Then, X; = X!, Vi € Z.,.

Proof. Assume X,;_; = X/, for some i € Z;,. By Lemma 10, § #
X; C X/ Fixl € Landlet V € X/, Then, we have V € X; 1,
which together with V € Bl' ()?Z-,1> implies that V € El ()Z'i,l). Since

I and V were chosen randomly, this generalizes to X! C X;. Then, X, is
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non-empty. Note that X;_; = X/, € X by Lemma 10. Consequently,
] 7é El ()’Ziil) - Bl/ ()?1;1), i.e., )’(v,z C le
We have that X, = X{, by definition and have just shown that X, 1=

X!_; would imply X, = X/; therefore, by induction we obtain that X, = X!
forany i€ Z,.. m

Proof of Proposition 14. (a) From Lemmas 10 and 11.

(b) Similarly to the proof of Lemma 6, we can show that VA
B (VAP ) Since B (VAP ) is nonempty, it can easily be obtained that
B (VAP) c VAP,

(¢) Since § # X C X;, we can use the monotonicity of B and B (X) = X
to obtain X C X;, Vi € Z.. Then, by (a), we have X C Xoo =VA m
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Mopdos, C. AuHamuyeckasi MOJIEIb MOPATLHOTO PUCKA C OTPAHUUYCHUSIMU YUaCTHsI, 3aBU-
cSIMMHM OT TipenbicTopun: penpuat WP9/2010/02 [Tekcer] / C. Mopdos ; Toc. yH-T — Bbic-
1ast KoJjJa 3KOHOMUKU. — M.: M3n. mom Toc. yH-Ta — Beiciieit mikosnbl 3koHomMuku, 2010, —
44 ¢. — 150 oK3. (Ha aHII. 53.)

JlaHHoe uccienoBaHue paccMaTpUBaeT MpobieMy MOPaJIbHOTO PUCKa B 0ECKOHEYHO MOBTO-
PSIIOIIEICST MOJIENIM IPUHIIATIANIA-aTeHTa. B 3TOl Moze/u M IPpUHIMTIAN, U areHT He CITOCOOHBI
MPUIEPKUBATHCS 3aKJIIOUEHHOTO KOHTPAKTa B JOJTOCPOUYHONM MEPCIEKTUBE, U UX FapaHTUPO-
BaHHbBIE MOJIE3HOCTH MOTEHIIMATBHO 3aBUCST OT KOHEYHOTO OTCEUEHUS TPEBICTOPUYN HAOIIO-
JaeMbIX nepeMeHHbIX. [locie Toro Kak cyuiecTBoBaHHe I0Ka3aHO, OPUTMHAIbHON Mpobieme
TTOJTyYEeHUSI OTITUMATIBHOTO CAMOTIOIEPKMBAIOIIETO KOHTPAKTA TAHO SKBUBAJICHTHOE TPEICTaB-
JIeHUE, KOTOPOE SIBJISIETCS] PEKYPCUBHBIM B MOAXOASILEM MPOCTPAHCTBE COCTOSIHUIA. 115t aTOrO
ObLIa CO3/]aHa BCIIOMOTaTeIbHast BepCHsl TPO0IeMbl, B KOTOPOIi y4acTre MPUHITUIAIA He TapaH-
TUPOBaHO. Jl0Ka3aHO, YTO IHIOTEHHOE MPOCTPAHCTBO COCTOSIHUI, KOTOPOE BKJIIOYAET B ce0s1 Kak
JIMCKOHTUPOBAHHbBIE OXMIAEMbIE ITOJIC3HOCTH areHTa, TaK U Habop MepBOHAYATBHBIX UCTOPHIA,
YTOOBI YUECTh MX BIUSIHUE HA rapaHTUPOBAaHHBIE MOJIE3HOCTH, SIBJISIETCS KpyMHenIei hpuxkcu-
POBaHHOI TOUKOU orepatopa HaJ MHOXeCcTBOM. [1poieMOHCTPUPOBAHO, YTO MOXKHO BBIBECTU
CaMOIOAIEPKUBAIOLIMIACS KOHTPAKT PEKYPCMBHO M3 PELEHMSI BCIOMOTraTebHON MpoOJeMbl,
CTPOTO HaKa3bIBast JII0O0E HAPYIIEHNE OrPaHUIECHUI yIaCTUsI TIPUHIIUTIANA.
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