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Abstract

We consider an initial-boundary value problem for a 2D time-dependent Schrödinger equation on a semi-
infinite strip. For the Numerov-Crank-Nicolson finite-difference scheme with discrete transparent boundary
conditions, the Strang-type splitting with respect to the potential is applied. For the resulting method,
the uniqueness of a solution and the uniform in time L2-stability (in particular, L2-conservativeness) are
proved. Due to the splitting, an effective direct algorithm using FFT in the direction perpendicular to the
strip is developed to implement the splitting method for general potential. Numerical results on the tunnel
effect for smooth and rectangular barriers together with the practical error analysis on refining meshes are
included as well.
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1. Introduction

The time-dependent Schrödinger equation with several variables is important in quantum mechanics,
atomic and nuclear physics, wave physics, microelectronics and nanotechnologies, etc. Often it should be
solved in unbounded space domains.

Several approaches were developed and studied to deal with problems of such kind, in particular, see
[1, 2, 3, 6, 18, 20]. One of them exploits the so-called discrete transparent boundary conditions (TBCs)
at artificial boundaries [3, 11]. Its advantages are the complete absence of spurious reflections, reliable
computational stability, clear mathematical background and corresponding rigorous stability theory.

Concerning finite-difference schemes in several space variables with the discrete TBCs, the standard
Crank-Nicolson scheme in the case of an infinite (or semi-infinite) strip was studied in detail in [3, 7, 8]; the
higher order Numerov-Crank-Nicolson scheme was considered in [19], and a general family of schemes was
treated in [23, 24]. But all the schemes are implicit, and solving of specific complex systems of linear algebraic
equations is required at each time level. Efficient methods to solve similar systems are well developed by
the moment in real situation but not the complex one.

The splitting technique is widely used to simplify numerical solving of the time-dependent Schrödinger
and related equations, in particular, see [4, 5], [13]-[17], [21]. The Strang-type splitting with respect to the
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potential (but not to the space directions) has been recently applied to the Crank-Nicolson scheme with the
discrete TBC in [10].

It is well-known that higher order methods are often able to reduce computational costs significantly. In
this paper, we apply the Strang-type splitting in potential to the Numerov-Crank-Nicolson scheme and get a
higher order in space method with the discrete TBC. To study its stability and construct the discrete TBC,
we first consider the splitting Numerov-Crank-Nicolson scheme on an infinite space mesh in the semi-infinite
strip. Its uniform in time L2-stability together with the mass conservation law are proved.

The discrete TBC allows to restrict in a rigorous sense the solution of the latter scheme to a finite space
mesh. Our form of the discrete TBC is different from (though equivalent to) one for the original Numerov-
Crank-Nicolson scheme in [19]. Its presented derivation based on results in [9] is more direct and shorter
(we skip an intermediate step dealing with the computationally unstable form of the discrete TBC). Notice
that the explicit form of the discrete TBC is non-local and involves the discrete convolution in time as well
as the discrete Fourier expansion in direction y perpendicular to the strip. We prove both the uniqueness of
solution exploiting some results from [9, 22] and the uniform in time L2-stability of the resulting method.
In particular, it is L2-conservative. Due to the splitting, an effective direct algorithm using FFT in y is
developed to implement the method (for general potential).

The corresponding numerical results on the tunnel effect for two barriers (smooth and rectangular) are
presented. They are accompanied by the practical error analysis using the numerical solutions on refining
meshes in all space and time directions. In the case of the rectangular barrier, the results improve those
from [10] by taking coarser space mesh and thus reducing computational costs due to higher order in space
of the method. Notice that the average of the discontinuous rectangular barrier is essential.

2. The Schrödinger equation in a semi-infinite strip and its approximations of
higher order in space

We consider the 2D time-dependent Schrödinger equation

i~
∂ψ

∂t
= − ~ 2

2m0
∆ψ + V ψ for (x, y) ∈ Π∞, t > 0, (2.1)

where ∆ is the 2D Laplace operator, Π∞ := (0,∞)× (0, Y ) is a semi-infinite strip and V (x, y) is a given real
potential. Also i is the imaginary unit, ~ > 0 and m0 > 0 are physical constants, and the unknown wave

function ψ = ψ(x, y, t) is complex-valued. Below we use an abbreviation c~ := ~ 2

2m0
.

We impose the following boundary condition, condition at infinity and initial condition

ψ(·, t)|∂Π∞ = 0, ‖ψ(x, ·, t)‖L2(0,Y ) → 0 as x→∞, for any t > 0, (2.2)

ψ|t=0 = ψ0(x, y) in Π∞. (2.3)

We also assume that V (x, y) is constant and ψ0(x, y) vanishes when x is sufficiently large:

V (x, y) = V∞, ψ0(x, y) = 0 for (x, y) ∈ [X0,∞)× (0, Y ), (2.4)

for some X0 > 0.
We introduce a uniform mesh ωhx in x with nodes xj = jhx, j > 0, and the step hx = X

J , where X > X0

and hx 6 X −X0. We introduce a uniform mesh ωhy in y with nodes yk = khy, 0 6 k 6 K, and the step
hy = Y

K . Let ωhy := {yk}K−1
k=1 .

We define the product mesh ωh,∞ := ωhx×ωhy, its internal part ωh,∞ := {(xj , yk); j > 1 , 1 6 k 6 K − 1}
and the boundary Γh,∞ := ωh,∞\ωh,∞. Hereafter h = (hx, hy).

We define the backward, forward and central difference quotients as well as the average in x

∂̄xWj :=
Wj −Wj−1

hx
, ∂xWj :=

Wj+1 −Wj

hx
,
◦
∂xWj :=

Wj+1 −Wj−1

2hx
,

sθxWj := θWj−1 + (1− 2θ)Wj + θWj+1 = (I + θh2
x∂x∂̄x)Wj (2.5)

2



with the parameter θ, where I is the unit operator (it will be often omitted below). The average becomes
the Numerov one for θ = 1

12

sNxWj :=
1

12
Wj−1 +

5

6
Wj +

1

12
Wj+1 =

(
I +

h2
x

12
∂x∂̄x

)
Wj . (2.6)

We also define the corresponding difference quotients and the Numerov average in y

∂̄yUk :=
Uk − Uk−1

hy
, ∂yUk :=

Uk+1 − Uk
hy

,

sNyUk :=
1

12
Uk−1 +

5

6
Uk +

1

12
Uk+1 =

(
I +

h2
y

12
∂y∂̄y

)
Uk.

We introduce also a non-uniform mesh ω τ in time on [0,∞) with nodes 0 = t0 < t1 < · · · < tm < . . . ,
where tm → ∞ as m → ∞, and steps τm = tm − tm−1. Let ωτ := ω τ\{0} and τmax = supm>1 τm. We
define the backward difference quotient, the symmetric average and the backward shift in time

∂̄tZ
m =

Zm − Zm−1

τm
, stZ

m =
Zm−1 + Zm

2
, Žm = Zm−1.

The Numerov-type discretizations of the Laplace operator and the 2D average are given by

∆hN := sNy∂x∂̄x + sNx∂y∂̄y = ∆h +
h2
x + h2

y

12
∂x∂̄x∂y∂̄y, sN := I +

h2
x

12
∂x∂̄x +

h2
y

12
∂y∂̄y,

where ∆h := ∂x∂̄x + ∂y∂̄y is the simplest approximation of the 2D Laplace operator.
We begin with a known discretization for the Schrödinger equation (2.1) which is of the Numerov type

in space and two-level symmetric in time (i.e. of the Crank-Nicolson type) given by

i~sN ∂̄tΨ = −c~∆hNstΨ + sN (V stΨ) on ωh,∞ × ωτ . (2.7)

The corresponding approximation error

i~sN ∂̄tψ + c~∆hNstψ − sN (V stψ) = O
(
τ2
max + |h|4

)
is the 2nd order in τmax and of higher 4th order in |h|, for ψ smooth enough.

We supplement the discrete equation (2.7) with the boundary and initial conditions

Ψ|Γh,∞×ωτ = 0, Ψ0 = Ψ0
h on ωh,∞. (2.8)

Hereafter the compatibility condition Ψ0
h

∣∣
Γh,∞

= 0 is assumed to be valid.

We further apply the Strang-type splitting in the potential to the scheme (2.7), (2.8) and get the following
three-step scheme

i~
Ψ̆m −Ψm−1

τm/2
= ∆V

Ψ̆m + Ψm−1

2
on ωh,∞, (2.9)

i~sN
Ψ̃m − Ψ̆m

τm
= −c~∆hN

Ψ̃m + Ψ̆m

2
+ sN

(
Ṽ

Ψ̃m + Ψ̆m

2

)
on ωh,∞, (2.10)

i~
Ψm − Ψ̃m

τm/2
= ∆V

Ψm + Ψ̃m

2
on ωh,∞, (2.11)

with the boundary and initial conditions

Ψ̆m|Γh,∞ = 0, Ψ̃m|Γh,∞ = 0, Ψm|Γh,∞ = 0, (2.12)

Ψ0 = Ψ0
h on ωh,∞, (2.13)

3



for any m > 1, where ∆V := V − Ṽ and the auxiliary 1D potential Ṽ = Ṽ (x) satisfies Ṽ (x) = V∞ for
x > X0. In the simplest case, Ṽ (x) = V∞ (but a non-constant Ṽ is required when extending the results to
the case of an infinite strip with different values V±∞ of V (x, y) when x→ ±∞).

The construction of this splitting is similar to the case of the standard scheme without averages [10].
Note that we have omitted operators sN arising in the course of the splitting on both sides of (2.9) and
(2.11). Clearly equations (2.9) and (2.11) are reduced to the explicit formulas

Ψ̆m = EmΨm−1, Ψm = EmΨ̃m, with Em :=
1− i τm

4~
∆V

1 + i
τm
4~

∆V
. (2.14)

The main equation (2.10) is similar to the original one (2.7) on the time level m but it is simplified by

replacing the coefficient V (x, y) by Ṽ (x). The functions Ψ̆ and Ψ̃ are auxiliary unknowns while Ψ is the
main one.

From (2.14) we get immediately

|Ψ̆m| = |Ψm−1|, |Ψm| = |Ψ̃m| on ωh,∞; (2.15)

moreover, since ∆Vj,k = 0 for j > J − 1, we simply have

Ψ̆m
j,k = Ψm−1

j,k , Ψm
j,k = Ψ̃m

j,k for j > J − 1. (2.16)

This splitting modifies the scheme (2.7), (2.8) only in time and is symmetric in time due to steps (2.9)
and (2.11). Thus, concerning the approximation error, it diminishes neither the 4th order in |h| nor the 2nd

order in τmax. This can be checked more formally as follows. Eliminating the auxiliary functions Ψ̆ and Ψ̃
from (2.10) with the help of (2.14) leads to the following equation for Ψ

i~sN
E−1Ψ− EΨ̌

τ
= −c~∆hN

E−1Ψ + EΨ̌

2
+ sN

(
Ṽ
E−1Ψ + EΨ̌

2

)
. (2.17)

Note that E−1 = E∗ and

E∗Ψ− EΨ̌

τ
= (Re E)∂̄tΨ− i

2

τ
(Im E)stΨ,

E∗Ψ + EΨ̌

2
= (Re E)stΨ− i

τ

2
(Im E)∂̄tΨ.

Consequently we can rewrite equation (2.17) as follows

i~sN
[
(Re E)∂̄tΨ

]
= −c~∆hN

[
(Re E)stΨ− i

τ

2
(Im E)∂̄tΨ

]
+sN

[(
(Re E)Ṽ − 2~

τ
Im E

)
stΨ− i

τ

2
(Im E)Ṽ ∂̄tΨ

]
.

After some calculations, this formulation implies that the approximation error of the discrete equation
(2.17) differs from the original one (2.7) by a term of order O

(
τ2
max

)
and thus they are of the same order

O
(
τ2
max + |h|4

)
(in particular, note that Re E → 1 and − 2~

τ Im E → ∆V as τmax → 0). On the other hand,
now checking the same approximation order imposes additional smoothness restrictions on V .

3. Stability of the splitting higher order scheme on an infinite space mesh

Let Hh be a Hilbert space of mesh functions W : ωh,∞ → C such that

W |Γh,∞ = 0 and

∞∑
j=1

K−1∑
k=1

|Wj,k|2 <∞

4



endowed with the following mesh counterpart of the inner product on L2(Π∞)

(U,W )Hh :=

∞∑
j=1

K−1∑
k=1

Uj,kW
∗
j,khxhy.

In order to study the stability in more detail, we treat a non-homogeneous version of (2.10)

i~sN
Ψ̃m − Ψ̆m

τm
= −c~∆hN

Ψ̃m + Ψ̆m

2
+ sN

(
Ṽ

Ψ̃m + Ψ̆m

2

)
+ Fm on ωh,∞. (3.1)

We use only the first assumption (2.4) in the section.

Proposition 3.1. Let Ψ0
h, F

m ∈ Hh for any m > 1. Then there exists a unique solution to the splitting
scheme (2.9), (3.1), (2.11)-(2.13) such that Ψm ∈ Hh for any m > 0, and the following L2-stability bound
holds

max
06m6M

‖Ψm‖Hh 6 ‖Ψ0
h‖Hh +

6

~

M∑
m=1

‖Fm‖Hh τm for any M > 1. (3.2)

Moreover, in the particular case F = 0, the following mass conservation law holds

‖Ψm‖2Hh = ‖Ψ0
h‖2Hh for any m > 1. (3.3)

Proof. We first rewrite the main equation (3.1) as a suitable operator equation in Hh. We set ΛxW :=
−∂x∂̄xW and ΛyW := −∂y∂̄yW on ωh,∞ and ΛxW := ΛyW := 0 on Γh,∞. Then the operators

Λx, Λy, sNx = I − h2
x

12
Λx, sNy = I −

h2
y

12
Λy, sN = I − h2

x

12
Λx −

h2
y

12
Λy

and −∆hN = sNyΛx + sNxΛy are bounded and self-adjoint in Hh. Moreover, the following inequalities hold

(sNxW,W )Hh >
2

3
‖W‖2Hh , (sNyW,W )Hh >

2

3
‖W‖2Hh for any W ∈ Hh (3.4)

(see [9] in the particular case of a space average with parameter θ = 1
12 ) and

(sNW,W )Hh >
1

3
‖W‖2Hh for any W ∈ Hh

since sN = sNx + sNy − I. Therefore the inverse operator s−1
N exists and is bounded:∥∥s−1

Nx

∥∥
L(Hh)

6 3. (3.5)

Thus we can consider (3.1) as an operator equation in Hh. Following [19], we apply s−1
N to it and obtain

i~
Ψ̃m − Ψ̆m

τm
= Ah

Ψ̃m + Ψ̆m

2
+ s−1

N Fm in Hh, (3.6)

where

Ah := c~

[
Λx + Λy + s−1

N

(
h2
x

12
Λ2
x +

h2
y

12
Λ2
y

)]
+ Ṽ .

Since sN commutes with Λx and Λy, so s−1
N does with Λ2

x and Λ2
y. Consequently, Ah is a bounded self-adjoint

operator in Hh.
We rewrite equation (3.6) in another form(

I + i
τm
2~

Ah

)
Ψ̃m = Bm :=

(
I − i τm

2~
Ah

)
Ψ̆m − i τm

~
s−1
N Fm.

5



Since the operator I + i τm2~ Ah is invertible, the equation has a unique solution Ψ̃m ∈ Hh provided that

Ψ̆m, Fm ∈ Hh. This implies the existence of a unique solution of the splitting scheme such that Ψm ∈ Hh

for any m > 0.
We can now apply a technique from [10]. First note that the pointwise equalities (2.15) imply

‖Ψ̆m‖Hh = ‖Ψm−1‖Hh , ‖Ψm‖Hh = ‖Ψ̃m‖Hh . (3.7)

Multiplying the operator equation (3.6) by Ψ̃m+Ψ̆m

2 , separating the imaginary part of the result and using
the property Ah = A∗h, we get

~
2τm

(
‖Ψ̃m‖2Hh − ‖Ψ̆

m‖2Hh
)

= Im
(
s−1
N Fm,

Ψ̃m + Ψ̆m

2

)
Hh
.

Applying equalities (3.7), multiplying both sides by 2τm
~ and summing up the result over m = 1, . . . ,M , we

obtain

‖ΨM‖2Hh = ‖Ψ0
h‖2Hh +

2

~

M∑
m=1

Im
(
s−1
N Fm,

Ψ̃m + Ψ̆m

2

)
Hh
τm. (3.8)

Due to (3.5) and (3.7) we further have

‖Ψm‖2Hh 6 ‖Ψ0‖2Hh +
2

~

M∑
m=1

‖s−1
N Fm‖Hh

‖Ψ̃m‖Hh + ‖Ψ̆m‖Hh
2

τm

6 ‖Ψ0‖2Hh +
6

~

M∑
m=1

‖Fm‖Hh max
06m6M

‖Ψm‖Hhτm.

This bound directly implies (3.2). The conservation law (3.3) follows from (3.8).

4. The splitting higher order scheme on a finite space mesh

The splitting scheme (2.9)-(2.13) is not practically implementable because of the infinite number of
unknowns on each time level. We intend to restrict its solution to a finite space mesh ωh := {(xj , yk) ∈
ωh,∞; 0 6 j 6 J}. Let ωh := {(xj , yk) ∈ ωh,∞; 1 6 j 6 J − 1, 1 6 k 6 K − 1} be its internal part and
∂ωh = ωh\ωh be its boundary. We also set Γ1h := {(xJ , yk); 1 6 k 6 K − 1} and Γh = ∂ωh\Γ1h.

By definition, the discrete transparent boundary condition (TBC) is a boundary condition on Γ1h which
allows one to accomplish the restriction.

We need the well-known direct and inverse discrete Fourier sine transforms in y

Z(q) = (FyZ)
(q)

:=
2

K

K−1∑
k=1

Zj sin
πqk

K
, 1 6 q 6 K − 1,

Zk =
(
F−1
y Z(·)

)
k

:=

K−1∑
q=1

Z(q) sin
πqk

K
, 1 6 k 6 K − 1.

The corresponding eigenvalues of the operators −∂y∂̄y and sNy are

λq =

(
2

hy
sin

πqhy
2Y

)2

and σq = 1−
h2
y

12
λq = 1− 1

3
sin2 πqhy

2Y
∈
(2

3
, 1
)
, 1 6 q 6 K − 1.

Given a function W : ωh → C, denote by Wj its restriction to {xj} × ωhy; in particular, WJ is its trace
on Γ1h. Let Ψm

J be the vector function Ψm
J = {Ψ0

J , . . . ,Ψ
m
J }. Let also

(R ∗Q)m :=

m∑
p=0

RpQm−p, m > 0,

6



be the discrete convolution product of the mesh functions R,Q: ω τ → C.
Assume that the time mesh be uniform with a step τ > 0 below.

Proposition 4.1. Let Ψ0
h = 0 and Fm = 0 on ωh,∞\ωh for any m > 1 and Ψ0

h

∣∣
j=J−1

= 0.

The solution to the splitting scheme (2.9), (3.1), (2.11)-(2.13) such that Ψm ∈ Hh for any m > 0 satisfies
the following three-step splitting scheme on the finite space mesh ωh

i~
Ψ̆m −Ψm−1

τ/2
= ∆V

Ψ̆m + Ψm−1

2
on ωh ∪ Γ1h, (4.1)

i~sN
Ψ̃m − Ψ̆m

τ
= −c~∆hN

Ψ̃m + Ψ̆m

2
+ sN

(
Ṽ

Ψ̃m + Ψ̆m

2

)
+ Fm on ωh, (4.2)

i~
Ψm − Ψ̃m

τ/2
= ∆V

Ψm + Ψ̃m

2
on ωh ∪ Γ1h, (4.3)

with the boundary and initial conditions

Ψ̆m|Γh = 0, Ψ̃m|Γh = 0, Ψm|Γh = 0, (4.4)

Ψ0 = Ψ0
h on ωh, (4.5)

as well as the discrete TBC for the Fourier coefficients of the solution[
c~,q∂̄x

Ψ̃m(q) + Ψ̆m(q)

2
− hxs−θqx

(
i~

Ψ̃m(q) − Ψ̆m(q)

τ
− V∞,q

Ψ̆m(q) + Ψ̃m(q)

2

)]∣∣∣
j=J

= c~,q
(
Rq ∗ Ψ̃

(q)
J

)m
(4.6)

for any m > 1 and 1 6 q 6 K − 1, where

c~,q := c~

[
1 +

(hxhyλq
12σq

)2]
, θq :=

1

12σq
∈
( 1

12
,

1

8

)
, V∞,q := V∞ + c~

λq
σq

(4.7)

and s−θxWj := θWj−1 + ( 1
2 − θ)Wj. Hereafter Zm(q) = (Zm)(q).

The discrete convolution kernel in (4.6) can be computed by the recurrent formulas

R0
q = c1q, R1

q = −c1qκqµq, (4.8)

Rmq =
2m− 3

m
κqµqRm−1

q − m− 3

m
κ2
qR

m−2
q for m > 2, (4.9)

with the coefficients defined by

c1q = −|αq|
1/2

2
e−i(argαq)/2, κq = −ei argαq , argαq ∈ (0, 2π), µq =

βq
|αq|

∈ (−1, 1),

αq = 2aq + (1− 4θq)h
2
xa

2
q 6= 0, βq = 2 Re aq + (1− 4θq)h

2
x|aq|2, aq =

V∞,q
2c~,q

+ i
~

τc~,q
.

Proof. Clearly it suffices only to derive the discrete TBC (4.6) for the solution of the splitting scheme
(2.9), (3.1), (2.11)-(2.13) under the above assumptions on Ψ0

h and F .
Due to property (2.8), equations (2.9), (3.1) and (2.11) are reduced on (ωh,∞\ωh)× ωτ to the equation

i~sN ∂̄tΨ = (−c~∆hN + V∞sN ) stΨ. (4.10)

The boundary and initial conditions (4.4) and (4.5) imply that

Ψm|Γh,∞\Γh = 0 for m > 1, Ψ0 = 0 on ωh,∞\(ωh ∪ Γh). (4.11)

7



Following [3, 7, 24], we apply the operator Fy to equation (4.10) and obtain the 1D in space equation
for the Fourier coefficients of Ψ

i~
(
σq +

h2
x

12
∂x∂̄x

)
∂̄tΨ

(q) =
[
−c~(σq∂x∂̄x − λqsNx) + V∞

(
σq +

h2
x

12
∂x∂̄x

)]
stΨ

(q) (4.12)

on {xj}∞j=J × ωτ , with zero initial data

Ψ0(q) = 0 on {xj}∞j=J−1,

see (4.11). Dividing (4.12) by σq, applying formulas (2.6) and

∂x∂̄x −
λq
σq

(
I +

h2
x

12
∂x∂̄x

)
=
(
I +

1− σq
σ2
q

λq
h2
x

12

)
∂x∂̄x −

λq
σq

(
I +

h2
x

12σq
∂x∂̄x

)
together with (2.5), we pass to the equation

i~sθqx∂̄tΨ(q) =
(
−c~,q∂x∂̄x + V∞,qsθqx

)
stΨ

(q) on {xj}∞j=J × ωτ , (4.13)

with the coefficients c~,q and V∞,q and the parameter θq given by (4.7).
The discrete TBC for a 1D Schrödinger finite-difference equation with the average in x like (4.13) and

constant coefficients was constructed in [9]. Taking into account that Ψm ∈ Hh for any m > 0 and the
Parseval equality, according to [9] it can be represented as follows[

c~,q∂̄xstΨ
(q) − hxs−θqx

(
i~ ∂̄tΨ(q) − V∞,qstΨ(q)

)]∣∣∣
j=J

= c~,qRq ∗Ψ
(q)
J on ωτ , (4.14)

with the formulas for the kernel Rq listed in the statement. (Actually the formulas are slightly modified and
refined from misprints; also the recently checked fixed sign in the formula for c1q when 0 6 θq 6 1

4 is taken
into account.)

Since Ψ
(q)
j = Ψ̃

(q)
j = Ψ̆

(q)
j for j = J − 1 and J , the discrete TBC (4.14) can be rewritten in the form (4.6)

as well closely coupling it to the main equation (4.2).

We need also to get an operator form of the derived discrete TBC.

Proposition 4.2. The discrete TBC (4.6) can be written in the operator form

Dxh(Ψ̃m, Ψ̆m)
∣∣
j=J

:=
[
c~sNy∂̄x

Ψ̃m + Ψ̆m

2
− hxs−N

(
i~

Ψ̃m − Ψ̆m

τ

−V∞
Ψ̃m + Ψ̆m

2

)
− hxs−Nxc~∂y∂̄y

Ψ̃m + Ψ̆m

2

]∣∣∣
j=J

= c~SmrefΨ̃
m
J for any m > 1 (4.15)

involving the operators

s−NxWj :=
1

12
Wj−1 +

5

12
Wj , s−N := s−Nx +

h2
y

24
∂y∂̄y,

SmrefΨ
m
J := Fy

(
σN,qRq ∗Ψ

(q)
J

)
, σN,q := σq

[
1 +

(hxhyλq
12σq

)2]
. (4.16)

Proof. We go back to the discrete TBC (4.14) and perform the following transformations

σq
[
c~,q∂̄xstΨ

(q) − hxs−θqx
(
i~ ∂̄tΨ(q) − V∞,qstΨ(q)

)]
= c~

[
σq +

( 1

σq
− 1
)
λq
h2
x

12

]
∂̄xstΨ

(q)

−hx
(
s−Nx −

h2
y

24
λq

)(
i~ ∂̄tΨ(q) − V∞stΨ(q)

)
+ c~λq

(hx
2
− 1

σq

h2
x

12
∂̄x

)
stΨ

(q)

= c~σq∂̄xstΨ
(q) − hx

(
s−Nx −

h2
y

24
λq

)(
i~ ∂̄tΨ(q) − V∞stΨ(q)

)
+ hxs

−
Nxc~λqstΨ

(q)

8



with the help of the formulas

σqs
−
θqx

=
σq
2
− hx

12
∂̄x =

1

2
− hx

12
∂̄x −

h2
y

24
λq,

1

2
− hx

12
∂̄x = s−Nx.

Thus applying Fy to (4.14) multiplied by σq, we obtain[
c~sNy∂̄xstΨ− hx

(
s−Nx +

h2
y

24
∂y∂̄y

)(
i~ ∂̄tΨ− V∞stΨ

)
− hxs−Nxc~∂y∂̄ystΨ

]∣∣∣
j=J

= c~SrefΨJ

on ωτ , where SrefΨJ is given by (4.16). As in the previous proof, this equation can be rewritten as (4.15).

The last form of the discrete TBC is in the spirit of [7]-[10], [23, 24] allowing to ensure both stability of
schemes and the stable numerical implementation of the discrete TBCs.

Notice that the following important identity coupling the operators in the main equation (4.2) and the
discrete TBC (4.15) holds(

i~sN
Ψ̃m − Ψ̆m

τ
+ c~∆hN

Ψ̃m + Ψ̆m

2
− sN

(
Ṽ

Ψ̃m + Ψ̆m

2

)
,W
)
ωh

−
(
Dxh(Ψ̃m, Ψ̆m)

∣∣
j=J

,WJ

)
ωhy

= i~
( Ψ̃m − Ψ̆m

τ
− Ṽ Ψ̃m + Ψ̆m

2
,W
)
ω̃h, sN

+c~

(
sNy∂̄x

Ψ̃m + Ψ̆m

2
, ∂̄xW

)
ω̃h

+ c~

(
−∂y∂̄y

Ψ̃m + Ψ̆m

2
,W
)
ω̃h, sNx

, (4.17)

for any W : ωh → C such that W |j=0 = 0. Here we have used the collection of L2-mesh inner products

(U,W )ωh :=

J−1∑
j=1

K−1∑
k=1

Uj,kW
∗
j,khxhy, (U,W )ω̃h :=

J∑
j=1

K−1∑
k=1

Uj,kW
∗
j,khxhy,

(Z, Z̃)ωhy :=

K−1∑
k=1

ZkZ̃
∗
khy, (U,W )ω̃h, s := (sU,W )ωh +

(
s−UJ ,WJ

)
ωhy

hx, (4.18)

with s = sN or sNx; notice that from [9] it follows that the second sesquilinear form in (4.18) is Hermitian
and positive definite on functions U,W : ωh → C such that U |Γh = W |Γh = 0. We define the norms ‖ · ‖ωh ,
‖ · ‖ω̃h and ‖ · ‖ωhy associated to the first, second and third of these inner products.

Identity (4.17) appears after rearranging terms on the left-hand side and summing by parts with respect
to x in the term c~sNy∂x∂̄x.

Lemma 4.1. The operator Smref satisfies the inequality [7]

Im

M∑
m=1

(SmrefΦ
m, stΦ

m)ωhy τ > 0 for any M > 1, (4.19)

for any function Φ: ωhy × ω τ → C such that Φ0 = 0 and Φ|k=0,K = 0.

Proof. Following [7] and using the left formula (4.16) and standard properties of Fy, we obtain

(SmrefΦ
m, stΦ

m)ωhy =
Y

2

K−1∑
q=1

σN,q

(
Rq ∗ Φ(q)

)m
(stΦ

m)
∗
.

Consequently

Im

M∑
m=1

(SmrefΦ
m, stΦ

m)ωhy τ =
Y

2

K−1∑
q=1

σN,q Im

M∑
m=1

(
Rq ∗ Φ(q)

)m
(stΦ

m)
∗
τ. (4.20)

The result follows from the corresponding 1D inequality proved in [9] (for any θq 6 1
4 ).
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By construction, the splitting scheme (4.1)-(4.6) on the finite space mesh has a solution. We need to prove
its uniqueness. To this end, we assume that the auxiliary potential Ṽ satisfies the condition

|Ṽ (x′)− Ṽ (x)| 6 L|x′ − x|α for any 0 6 x 6 x′ 6 X, (4.21)

for some α ∈ [0, 1]. It is simply the condition on the boundedness of spread in function values for α = 0,
the Hölder one for α ∈ (0, 1) and the Lipschitz one for α = 1, on [0, X]. Note that L = 0 for Ṽ = const.

Proposition 4.3. Let Lτhαx < 8~. Then the solution to the splitting scheme (4.1)-(4.6) on the finite space
mesh is unique. In addition, it satisfies the following L2-stability bound

max
06m6M

‖Ψm‖ω̃h 6 ‖Ψ0
h‖ω̃h +

6

~

M∑
m=1

‖Fm‖ωhτ for m > 1 (4.22)

provided that Ψ0
h = 0 on Γ1h and Ψ0

h

∣∣
j=J−1

= 0.

Proof. Assume that there exist two solutions of the scheme (4.1)-(4.6) and denote by W their difference.
Obviously W satisfies the homogeneous scheme (4.1)-(4.6), with F = 0 and Ψ0

h = 0.
In order to establish uniqueness, it suffices to prove that if W 0 = 0, . . . ,Wm−1 = 0, then Wm = 0.

Under this assumption Wm satisfies a homogeneous equation

i
~
τ
sNW

m = −c~
2

∆hNW
m +

1

2
sN (Ṽ Wm) on ωh (4.23)

supplemented with the homogeneous boundary conditions

Wm|Γh = 0, Dxh (Wm, 0) = c~SmrefW
m
J on Γ1h, (4.24)

where Wm = {0, . . . , 0,Wm}, with 0 appearing m times.

Applying the summation identity (4.17) in the case Ψ̃m = Wm, Ψ̆m = 0 and W = Wm as well as using
(4.23) and (4.24), we get(

i
~
τ
Wm − 1

2
Ṽ Wm,Wm

)
ω̃h, sN

+
c~
2

(
sNy ∂̄xW

m, ∂̄xW
m
)
ω̃h

+
c~
2

(
−∂y∂̄yWm,Wm

)
ω̃h, sNx

+ c~ (SmrefW
m
J ,W

m
J )ωhy = 0. (4.25)

Let Hhy be the space of functions U : ωhy → C such that U |k=0,K = 0 endowed with the inner product
(·, ·)ωhy . Setting (AP )|k=0,K = 0 for A = sNy and −∂y∂̄y, we see that these operators are self-adjoint and

positive definite in Hhy. Therefore taking the imaginary part on the right of (4.25), we have

~
τ

(Wm,Wm)ω̃h, sN −
1

2
Im
(
Ṽ Wm,Wm

)
ω̃h, sN

+ c~ Im (SmrefW
m
J ,W

m
J )ωhy = 0.

Due to independence of Ṽ on y and Lemma 4.1 we further derive

~
τ

(Wm,Wm)ω̃h, sN −
1

2
Im
(
Ṽ Wm,Wm

)
ω̃h, sNx

6 0.

From [9] it follows that

1

3
‖Wm‖2ω̄h :=

1

3

(
‖Wm‖2ωh +

hx
2
‖Wm

J ‖2ωhy
)
6 (Wm,Wm)ω̃h, sN

(compare with (3.4)) whereas according to Lemma 2.2 in [22] under condition (4.21) we have∣∣Im(Ṽ Wm,Wm
)
ω̃h, sNx

∣∣ 6 L

12
hαx‖Wm‖2ω̄h .

Consequently, Wm = 0 provided that Lτhαx < 8~, and the uniqueness is proved.
Next, bound (4.22) clearly follows from the previous L2-stability bound (4.2) in the case of the infinite

space mesh since now Ψ0
h = 0 and Fm = 0 on ωh,∞\ωh for any m > 1.
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Notice that, in the last proof, actually we have based upon a very particular case of inequality (4.19),
namely

0 6 Im
(
F−1
y

[
σN,qR

0
qU

(q)
]
, U
)
ωhy

=
Y

2

K−1∑
q=1

σN,q ImR0
q

∣∣U (q)
∣∣2,

for any U ∈ Hhy (see (4.20)), which is clearly equivalent to

Im R0
q > 0 for any 1 6 q 6 K − 1.

The splitting scheme on the finite space mesh (4.1)-(4.6) can be effectively implemented (compare with
[10]). Applying the operator σ−1

q Fy to the main equation (4.2), similarly to the derivation of equation (4.13)
we get a set of independent 1D finite-difference Schrödinger equations in x, for 1 6 q 6 K − 1

i~sθqx
Ψ̃m(q) − Ψ̆m(q)

τ
= −c~,q∂x∂̄x

Ψ̃m(q) + Ψ̆m(q)

2
+ sθqx

(
Ṽq

Ψ̃m(q) + Ψ̆m(q)

2

)
+
Fm(q)

σq
(4.26)

on {xj}J−1
j=1 , where Ṽq := Ṽ + c~

λq
σq

. This equation is supplemented with the boundary condition

Ψ̃m(q)|j=0 = 0 (4.27)

and the discrete TBC (4.6).
Given Ψm−1, the direct algorithm for computing Ψm comprises five steps.

1. To compute explicitly Ψ̆m = EmΨm−1 on ωh ∪ Γ1h (see (2.14)).

2. To compute Ψ̆m(q) =
(
FyΨ̆m

)(q)
and Fm(q) = (FyFm)

(q)
, for 1 6 q 6 K − 1.

3. To compute Ψ̃m(q) by solving the 1D problems (4.26), (4.27) and (4.6) for 1 6 q 6 K−1; this includes

the computation of the discrete convolutions on the right of (4.6) so that Ψ̃
1(q)
J , . . . , Ψ̃

m−1 (q)
J have to

be stored.

4. To compute Ψ̃m = F−1
y Ψ̃m(q).

5. To compute explicitly Ψm = EmΨ̃m on ωh ∪ Γ1h (see (2.14)).

Steps 1 and 5 require O (JK) arithmetic operations while Steps 2 and 4 need O (JK log2K) operations
by using the fast Fourier transform (FFT) provided that K = 2p, where p is integer. Step 3 requires
O((J +m)K) operations.

The total amount of arithmetic operations equals O ((J log2K +m)K) for computing the solution Ψm

at time level m and O((J log2K +M)KM) for computing one at all time levels m = 1, . . . ,M . These
amounts are the same as in [10].

Notice that the given analysis is easily extended to the case of the problem in an infinite strip, with
setting the following discrete TBC at the left boundary x = 0 as well[

−c~,q∂x
Ψ̃m(q) + Ψ̆m(q)

2
− hxs+

θqx

(
i~

Ψ̃m(q) − Ψ̆m(q)

τ
− V∞,q

Ψ̆m(q) + Ψ̃m(q)

2

)]∣∣∣
j=0

= c~,q
(
Rq ∗ Ψ̃

(q)
0

)m
(4.28)

for any m > 1 and 1 6 q 6 K − 1, where s+
θxWj := (1

2 − θ)Wj + θWj+1 (for simplicity, we suppose that
V (x, y) = V∞ for x 6 hx though clearly V±∞ could be different).

5. Numerical experiments

The above described direct algorithm has been implemented. For numerical experiments, we take ~ =
1 and c~ = 1. We solve the initial-boundary value problem in the infinite strip R × (0, Y ) taking the
computational domain Ω̄X,Y × [0, T ], where ΩX,Y = (0, X)× (0, Y ).
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Let the initial function be the standard Gaussian wave package

ψ0(x, y) = ψG(x, y) := exp

{
ik(x− x(0))− (x− x(0))2 + (y − y(0))2

4α

}
on R2.

We take its parameters k = 30
√

2 (the wave number), α = 1
120 and (x(0), y(0)) = (1, Y2 ) (the position of the

modulus’ maximum) like in [10].
We respectively modify the splitting in potential scheme (4.1)-(4.6) enlarging ωh ∪ Γ1h by {(0, yk); 1 6

k 6 K − 1} in (4.1) and (4.3) and replacing the boundary conditions (4.4) by

Ψ̆m|k=0,K = 0, Ψ̃m|k=0,K = 0, Ψm|k=0,K = 0

together with the left discrete TBC (4.28). Recall that we use the uniform meshes in x, y and t with the
steps correspondingly hx = X

J , hy = Y
K and τ = T

M .

Example A. We first take a modified Pöschl-Teller [12] potential (a barrier)

V (x) =
α2

0c1

cosh2 α0(x− x∗)

depending only on x. We set α0 = 6, c1 = 47 and x∗ = 2. Then maxR V (x) = V (x∗) = α2
0c1 = 1692, and

though the potential is smooth, its derivatives in x are rather large.
We choose (X,Y ) = (4, 4.2), then both V and ψG are small enough, namely, |V (x)| < 2.6 · 10−7 and

|ψG(x, y)| < 9.4 · 10−14 outside Ω̄X,Y . Let also T = tM = 0.05.
The modulus and the real part of ψG together with the normalized barrier (when α2

0c1 = 1) are shown
on the computational domain on Figure 1, for m = 0.

We put Ṽ = 0 and ∆V = V and compute the numerical solution Ψm for (J,K,M) = (400, 64, 1000) so
that hx = 10−2, hy ≈ 6.56 · 10−2 and τ = 5 · 10−5. Its modulus and real part are presented on Figures 1
and 2, for the time moments tm = mτ , m = 360, 440, 520, 780 and 960. The wave package is separated by
the barrier into two comparable reflected and transmitted parts moving in opposite x-directions and leaving
the computational domain. Notice the oscillating behavior of the real part of the wave.

To justify the choice of the mesh with not so large J and K, on Figure 3 we give the absolute and relative
differences in C and L2 space mesh norms for the numerical solutions for (J,K,M) = (400, 64, 1000) and
(1600, 256, 4000) that all three are 4 times larger, in dependence with time. The level of differences is enough
to represent the correct graphs of the exact solution.

We intend to study the error behavior in more detail. Given (J,K,M), denote by ΨJ,K,M the corre-
sponding numerical solution. Let the following error representation

ψ −ΨJ,K,M = ahαx + bhβy + cτγ + δ(hx, hy, τ)

with the first main error term and the residual δ such that

‖δ(hx, hy, τ)‖ = o(hαx + hβy + τγ) as hx + hy + τ → 0

be valid, for some positive exponents α, β and γ, where the functions a, b and c are non-zero and mesh
independent as well as ‖·‖ is a space-time mesh norm. Given (J̄ , K̄, M̄) and corresponding h̄x = X

J̄
, h̄y = Y

K̄

and τ̄ = T
M̄

together with integer ` > 1, derive

ρx,J̄,K̄,M̄,2` := ‖ΨJ̄,K̄,M̄ −ΨJ̄/2`,K̄,M̄‖ = ‖a‖(2` − 1)h̄αx + o(h̄αx + h̄βy + τ̄γ).

Let J̄ , K̄, M̄ be sufficiently large. Therefore we get

Rx,J̄,K̄,M̄,2` :=
ρx,J̄,K̄,M̄,2`+1

ρx,J̄,K̄,M̄,2`
∼ rα,` :=

2(`+1)α − 1

2`α − 1
(5.1)
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m = 0 m = 360

m = 440 m = 520

Figure 1: Example A. The modulus and the real part of the numerical solution Ψm, m = 0, 360, 440, and 520, for
(J,K,M) = (400, 64, 1000)

provided that h̄βy = O(h̄αx) and τ̄γ = O(h̄αx). Similarly

ρy,J̄,K̄,M̄,2` := ‖ΨJ̄,K̄,M̄ −ΨJ̄,K̄/2`,M̄‖ = ‖b‖(2` − 1)h̄βy + o(h̄αx + h̄βy + τ̄γ)

and
Ry,J̄,K̄,M̄,2` :=

ρy,J̄,K̄,M̄,2`+1

ρy,J̄,K̄,M̄,2`
∼ rβ,` (5.2)

provided that h̄αx = O(h̄βy ) and τ̄γ = O(h̄βy ) as well as

ρt,J̄,K̄,M̄,2` := ‖ΨJ̄,K̄,M̄ −ΨJ̄,K̄,M̄/2`‖ = ‖c‖(2` − 1)τ̄γ + o(h̄αx + h̄βy + τ̄γ)

and
Rt,J̄,K̄,M̄,2` :=

ρt,J̄,K̄,M̄,2`+1

ρt,J̄,K̄,M̄,2`
∼ rγ,` (5.3)

provided that h̄αx = O(τ̄γ) and h̄βy = O(τ̄γ). The quantities Rx,J̄,K̄,M̄,2` , Ry,J̄,K̄,M̄,2` and Rt,J̄,K̄,M̄,2` are
computable, and by analyzing their behavior one can try to judge on the practical values of the exponents
α, β and γ when the exact solution is unknown (that is quite standard).
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m = 780 m = 960

Figure 2: Example A. The modulus and the real part of the numerical solution Ψm, m = 780 and 960, for (J,K,M) =
(400, 64, 1000)
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Figure 3: Example A. The absolute and relative differences in C and L2 norms between the numerical solutions for
(J,K,M) = (400, 64, 1000) and (1600, 256, 4000), in dependence with time

In this respect, notice that

rα,4 ≈ 4.01, rα,3 ≈ 4.05, rα,2 = 4.2, rα,1 = 5 for α = 2, (5.4)

rα,4 ≈ 8.00, rα,3 ≈ 8.01, rα,2 ≈ 8.11 rα,1 = 9 for α = 3, (5.5)

rα,4 ≈ 16.00, rα,3 ≈ 16.00, rα,2 = 16.06, rα,1 = 17 for α = 4. (5.6)

We implement this approach. In Table 1, the quantities

ρx,J̄,K̄,M̄,2` , Rx,J̄,K̄,M̄,2` for (J̄ , K̄, M̄) = (3200, 256, 4444) and ` = 4, 3, 2, 1,

ρy,J̄,K̄,M̄,2` , Ry,J̄,K̄,M̄,2` for (J̄ , K̄, M̄) = (1600, 512, 4444) and ` = 4, 3, 2, 1,

ρt,J̄,K̄,M̄,2` , Rt,J̄,K̄,M̄,2` for (J̄ , K̄, M̄) = (1600, 256, 4000) and ` = 4, 3, 2, 1

are sequentially presented both for the mesh norm ‖ · ‖ = EC uniform in time and space and ‖ · ‖ = EL2

uniform in time and L2 in space. Comparing the data with (5.4)-(5.6), we conclude on α ≈ 4, 3 < β . 4
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J EC EL2 RC RL2

200 0.411E−1 0.208E−1 - -
400 0.240E−2 0.120E−2 17.13 17.33
800 0.147E−3 0.664E−4 16.32 18.07

1600 0.897E−5 0.564E−5 16.39 11.77

K EC EL2 RC RL2

32 0.227E−1 0.191E−1 - -
64 0.220E−2 0.150E−2 10.32 12.73

128 0.129E−3 0.785E−4 17.05 19.11
256 0.993E−5 0.789E−5 12.99 9.95

M EC EL2 RC RL2

250 0.206 0.141 - -
500 0.508E−1 0.371E−1 4.05 3.80

1000 0.121E−1 0.880E−2 4.21 4.22
2000 0.240E−2 0.180E−2 5.04 4.89

Table 1: Example A. The change in numerical solution in maximum in time C and L2 space norms for redoubling J (and
the reference (J̄ , K̄, M̄) = (3200, 256, 4444)), or K (and the reference (J̄ , K̄, M̄) = (1600, 512, 4444)), or M (and the reference
(J̄ , K̄, M̄) = (1600, 256, 4000))

and γ ≈ 2 that is in agreement with their expected theoretical values. On the other hand, this is not so
clear a priori since the derivatives of both the oscillating exact solution and the potential are rather large.
Notice also the low error values in J and K for ` = 2, 1, and the most close correspondence between RC for
M and (5.4).

In addition, Figures 4 and 5 present the typical behavior of ΨJ̄,K̄,M̄−ΨJ̄/2`,K̄,M̄ and ΨJ̄,K̄,M̄−ΨJ̄,K̄/2`,M̄

both in C and L2 space norms, in absolute and relative forms, in dependence with time, for above (J̄ , K̄, M̄)
and ` = 2.

Example B. Next we consider example B from [10] and take the rectangular potential (the barrier)

V (x, y) =

{
Q for (x, y) ∈ (a, b)× (c, d)

0 otherwise
, Q > 0

depending both on x and y. Specifically, we take (a, b) × (c, d) = (1.6, 1.7) × (0.7, 2.1) and the barrier
height Q = 1500. This barrier is discontinuous and thus more complicated than the previous one from the
numerical point of view due to non-smoothness of the corresponding exact solution.

We choose (X,Y ) = (3, 2.8), then (a, b)× (c, d) ⊂ ΩX,Y and ψG is small enough outside Ω̄X,Y . Let also
T = tM = 0.027.

Notice carefully that we take J and K so that the points a, b, c and d belong to the corresponding
meshes in x and y and exploit the averaged mesh potential

Vhjk =


V (xj , yk) for xj 6= a, b and yk 6= c, d

Q/2 for xj = a, b but yk 6= c, d, or for yk = c, d but xj 6= a, b

Q/4 for (xj , yk) = (a, c), (a, d), (b, c), (b, d)

(5.7)

for any j and k. We put Ṽ = 0 and ∆V = Vh.
The numerical solution Ψm is computed for (J,K,M) = (300, 64, 600) so that hx = 10−2, hy = 4.375·10−2

and τ = 4.5 · 10−5. Its modulus and real part are shown on Figure 6, for the time moments tm = mτ ,
m = 204, 264, 360 and 510. Once again the wave package is separated by the barrier (but now more

15



0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10
−4

 

 

C−norm
L

2
−norm

0 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

6

x 10
−4

 

 

C−norm
L

2
−norm

Figure 4: Example A. The absolute and relative differ-
ences in C and L2 norms between the numerical solu-
tions for J = 800 and 3200, while (K,M) = (256, 4444),
in dependence with time
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Figure 5: Example A. The absolute and relative differ-
ences in C and L2 norms between the numerical solu-
tions for K = 128 and 512, while (J,M) = (1600, 4444),
in dependence with time

abruptly) into two comparable reflected and transmitted parts moving in opposite x-directions and leaving
the computational domain.

To justify the choice of the mesh with not so large J (that is 4 time less than in [10]) and K, on Figure 7
we give the absolute and relative differences in C and L2 space mesh norms between the numerical solutions
for (J,K,M) = (300, 64, 600) and (4800, 256, 2400) that are 16 or 4 times larger, in dependence with time.
Once again the level of differences is rather low.

To study the error behavior in more detail, we once again apply the approach described above. In Table
2, the quantities

ρx,J̄,K̄,M̄,2` , Rx,J̄,K̄,M̄,2` for (J̄ , K̄, M̄) = (4800, 256, 2400) and ` = 5, 4, 3, 2, 1, (5.8)

ρy,J̄,K̄,M̄,2` , Ry,J̄,K̄,M̄,2` for (J̄ , K̄, M̄) = (4800, 512, 2400) and ` = 5, 4, 3, 2, 1,

ρt,J̄,K̄,M̄,2` , Rt,J̄,K̄,M̄,2` for (J̄ , K̄, M̄) = (4800, 256, 4800) and ` = 5, 4, 3, 2, 1

(see (5.1)-(5.3)) are sequentially presented for the uniform in time and both C and L2 in space mesh norms.
We have also checked that quantities (5.8) remain almost unchanged for less M̄ = 1200.

Comparing the data with (5.4)-(5.6), we conclude that now α ≈ 2 and 2 < β . 3 are less than in
Example A whereas once again γ ≈ 2. Note that the behavior of the approximations to β is more chaotic
than to α and γ in both examples.

In addition, Figures 8 and 9 present the typical behavior of ΨJ̄,K̄,M̄−ΨJ̄/2`,K̄,M̄ and ΨJ̄,K̄,M̄−ΨJ̄,K̄/2`,M̄

both in C and L2 space norms, in absolute and relative forms, in dependence with time, for above (J̄ , K̄, M̄)
and ` = 3 and 2 respectively.

We also computed the differences between the numerical solutions using the averaged potential (5.7)
and the non-averaged one: EC = 0.724E−1 and EL2 = 0.330E−1 for (J,M,K) = (600, 64, 600) (compare
with Figure 7) and only twice (not four times) less EC = 0.367E−1 and EL2 = 0.166E−1 for double
(J,M,K) = (1200, 128, 1200). Thus exploiting of the non-averaged potential reduces the orders of conver-
gence significantly (we omit more details).

Comparing the above error analysis with somewhat different one given in [10], we see the advantages
of the present higher order in space splitting method allowing to exploit coarser space meshes even for
discontinuous potentials and oscillating in space and time solutions that is not so obvious a priori.

We also notice that Figures 2 and 6 for the numerical solutions together with Figures 3 and 7 for the
corresponding relative errors (which decrease while the waves cross the artificial boundaries) exhibit the
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m = 204 m = 264

m = 360 m = 510

Figure 6: Example B. The modulus and the real part of the numerical solution Ψm, m = 204, 264, 360 and 510, for
(J,K,M) = (300, 64, 600)

absence of the spurious reflections from the artificial left and right boundaries; this is due to setting the
discrete TBCs there.

Acknowledgments

This work is supported by the National Research University Higher School of Economics’ Academic
Fund Program, project No. 13-09-0124 and by the Russian Foundation for Basic Research, project No.
12-01-90008-Bel.

References
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