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NONLINEAR HYDRODYNAMICS

Nonlinear Gravitational Waves on the Surface of Viscous Fluid:
Lagrangian Approach
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Abstract—The problems of the asymptotic theory of weakly nonlinear surface waves in viscous fluid
are discussed. For standing waves on deep water, the solutions obtained in the first- and second-order
approximations in a small parameter—wave steepness—are analyzed. The evolution equation for the
amplitude of wave packet envelope is obtained where the inverse Reynolds number is equal to the squared
steepness. It is shown that this is a nonlinear Schrödinger equation with linear dissipation.
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INTRODUCTION

The classical theory of waves on water is based
on the assumption of ideal fluid, whereas the consid-
eration of the effect of viscosity on the wave prop-
agation is a complex mathematical problem. Dis-
sipation is large in a thin surface layer, as a result
of which the boundary condition formulation for the
time-dependent free boundary cannot be applied to
the level of unperturbed fluid surface, as this is done
for waves in ideal fluid [1]. However, this difficulty
of mathematical wave description can be overcome
using Lagrangian variables. The vertical coordinate
corresponding to the free surface is assumed to be
zero in the Lagrangian approach, and the boundary
condition is conventionally formulated [2].

The purpose of this study is to develop an asymp-
totic theory in order to describe the propagation of
nonlinear standing waves and the wave packet of
traveling waves. The features of their mathematical
description are revealed and their solutions for the
lower-order approximations are presented.

1. STANDING WAVES
ON DEEP WATER

Let us consider standing waves on the fluid sur-
face. The two-dimensional hydrodynamics equations
for a viscous fluid can be written in the Lagrangian
form as
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[X, Y ] =
D(X, Y )
D(a, b)

= 1, (1.1)

Xtt = −ρ−1[p, Y ]+ ν
{[

X, [X, Xt]
]
+

[
Y, [Y, Xt]

]}
,

Ytt = −g − ρ−1[X, p]+ ν
{[

X, [X, Yt]
]
+

[
Y, [Y, Yt]

]}
.

Here, X and Y are the coordinates of the fluid par-
ticle trajectory, a and b are the particle Lagrangian
coordinates, t is time, ρ is density, p is pressure, ν
is viscosity, and g is the acceleration of gravity; the
brackets denote operation of taking Jacobian over the
variables a and b. The system of equations (1.1)
must be supplemented with the following boundary
conditions: there are no both bottom flow (Yt = 0 at
b =−∞) and viscous stress on the free surface [2]:

Tiknk = −p0ni, b = 0,

n{nx, ny} = n

{
− Ya√

X2
a + Y 2

a

,
Xa√

X2
a + Y 2

a

}
,

Txx = −p + 2νρ[Xt, Y ], (1.2)
Tyy = −p − 2νρ[Yt, X],

Txy = νρ
(
[Yt, Y ] − [Xt, X]

)
,

where Tik is the viscous stress tensor, p0 is the con-
stant external pressure, and n is the outward normal
to the free surface.

Let us introduce a new independent variable τ = μt
and represent the constant μ and all unknown func-
tions as a series in the small parameter—wave steep-
ness ε = kA (k is the wavenumber and A is the wave
amplitude),
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X = a + εξ1 + ε2ξ2 + O(ε3),

Y = b + εη1 + ε2η2 + O(ε3),
(1.3)

p = p0 + ρgb + εp1 + ε2p2 + O(ε3),

μ = μ0 + ε2μ2 + O(ε3).

The representation of μ is based on the fact that
deep in the water the desired solution must pass into
the solution for potential standing waves [3], where
μ1 = 0. Substitution of relations (1.3) into expres-
sions (1.1) and (1.2) yields an equation for the un-
known functions in the corresponding order of per-
turbation theory.

The equations of the first-order approximation
have the form

ξ1a + η1b = 0
μ2

0ξ1ττ = −ρ−1p1a − gη1a + νμ0ΔLξ1τ , (1.4)

μ2
0η1ττ = −ρ−1p1b + gξ1a + νμ0ΔLη1τ ,

where the Laplacian is taken over the Lagrangian
variables, with the following boundary conditions on
the free surface:

η1a + ξ1b = 0, −p1 + 2νρμ0η1τb = 0, b = 0. (1.5)

The functions ξ1, η1, and p1 are assumed to be
spatially periodic. It is convenient to search for the
solution to system (1.4) in the form

ξ1 = A(b) eτ sin(ka),
η1 = B(b) eτ cos(ka), (1.6)
p1 = C(b) eτ cos(ka), Re τ < 0,

considering k as real and the functions A, B, C, τ
and constant μ0 as complex. Only the real parts
of expressions (1.6) have a physical meaning. After
substitution of (1.6) into system (1.4) and simple
transformations, we obtain the equation

AIV
bbbb −

(
2k2 +

μ0

ν

)
A′′

bb + k2
(
k2 +

μ0

ν

)
A = 0.

(1.7)

Assuming that A = exp(lb), we have a biquadratic
equation for l with the solution

l21 = k2, l22 = k2 +
μ0

ν
= m2. (1.8)

The wave perturbations should decrease with pen-
etrating the bulk (at b→−∞); therefore, the function
A should be chosen in the form

A = αekb + βemb, k, Re m > 0. (1.9)

The functions B and C are determined by the
equalities

B = −
(

αekb +
k

m
βemb

)
,

(1.10)

C =
ρ

k

[
(μ2

0 + kg)αekb +
k2

m
gβemb

]
.

Substitution of the expressions found for the func-
tions A, B, and C into the boundary condition (1.5)
gives

2kνmα + β(2νk2 + μ0) = 0,
(1.11)

(μ2
0 + 2νk2μ0 + kg)α +

(
k2

m
g + 2νμ0k

2

)
β = 0.

The compatibility condition for Eqs. (1.11) has the
form

(μ0 + 2νk2)2 + kg = 4ν2k3m. (1.12)

Having using the designations ω2 = gk, νk2/ω = θ,
and μ0+2νk2 = sω, where ω is the frequency of
linear gravitational waves, we transform (1.12) as
follows:

(s2 + 1)2 = 16θ3(s − θ). (1.13)

This equation exactly coincides with that arising in
the consideration of linear waves propagating on the
surface of viscous fluid. It has four roots, and only two
of them satisfy the condition Re m> 0 [4]. The real
and imaginary parts of root determine, respectively,
the decrement and frequency of wave oscillations.
One of the two values, α and β, can be chosen ar-
bitrarily. Let, for example, α be specified. Then

β = − 2kνm

μ0 + 2νk2
α. (1.14)

The α value determines the initial wave amplitude.
Within this approximation the wave vorticity is set

by the expression

Ω1 = −Re
[

μ2
0

νm
βemb+τ sin(ka)

]
, (1.15)

it is concentrated in a surface layer of thickness
2π|m|−1.

As an example, we will consider the decay of fairly
long waves with the wavelength λ = 2πk−1 satisfying
the condition θ = 4π2ν/ωλ2 � 1. In this case, one
can neglect the right-hand side in Eq. (1.13), and
the solution will be the values s =± i or, in dimen-
sional units, μ0 =−2νk2 ± iω. Hence, the decre-
ment is −2νk2 and the wave oscillation frequency
is ω (the sign can be arbitrary; we chose plus for
definiteness). As follows from (1.8), the m value is
approximately m = (1+i)Δ, Δ = (ω/2ν)1/2, and rela-
tion (1.14) yields β/α =−(1+i)k/Δ. The modulus of
this ratio is always much smaller than unity. There-
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fore, within our approximation, β can be neglected in
comparison with α. As a result, the free-surface rise
η1 is determined by the formula (see (1.5))

η1 = α0 exp(−2νk2t + kb) cos(ka) sin(ωt). (1.16)

Here, α = iα0 (α0 is real). Then (1.16) is similar to
the solution for potential waves [3]. These expressions
coincide at zero viscosity. For sufficiently long waves,
the effect of viscosity is reduced to an exponential
decrease in the oscillation amplitude with time. Note
that the flow in the surface layer is vortex, and its
vorticity changes according to the law

Ω1 = 2lωα0 exp(−2νk2t+Δb) sin(ka) sin(Δb+ωt).
(1.17)

Standing waves are a rare example of analytical
representation of a flow with a time-dependent vor-
ticity distribution.

The solution in the second-order approximation
is very cumbersome. Therefore, we will restrict our-
selves to the qualitative analysis of its most important
properties. In the second-order approximation, the
expressions for the displacements of fluid particles in
potential standing waves have the form [3]

ξ2pot = 0, η2pot =
k3

4ω2
e2kb

[
1 − cos(2ωt)

]
. (1.18)

There is no the horizontal displacement of fluid
particles, and the vertical ones are independent of the
horizontal Lagrangian coordinate a; i.e., within this
approximation the surface b = const oscillates as a
whole. The solution for the waves in a viscous fluid
can be written as

ξ2 = Re Φ1(b) e2τ sin(2ka),
(1.19)

η2 = η2pot + Re Φ2(b) e2τ + Re Φ3(b) e2τ cos(2ka).

Here, the functions Φ1, Φ2, and Φ3 depend only on
the variable b. They exponentially decrease with pen-
etrating the fluid bulk. Thus, the motion of fluid parti-
cles in a viscous wave is obviously complicated. First,
horizontal displacements arise, which are zero only
in the wave nodes, where ka = πn (n is an integer).
Second, the vertical particle displacements depend
on the horizontal coordinate and are inhomogeneous
with respect to x. Finally, since the functions Φ1, Φ2,
Φ3, and τ are complex, along with the conventional
amplitude decay with time, the oscillation phase of
separate particles depends on depth.

The asymptotic theory for standing waves in
viscous fluid can also be constructed for higher-order
approximations. There are no fundamental difficulties
because midflows are absent in this case. However,
they always exist for progressive waves. Hence,
secular terms arise when constructing the pertur-
bation theory in the higher-order approximations.
Within the Lagrangian approach for potential waves
this problem can be solved by introducing modified
Lagrangian coordinates [2]. For waves in viscous
fluid the situation is much more difficult [5−9] and
requires new concepts.

2. PACKET OF PROGRESSIVE WAVES

To study the dynamics of a wave packet traveling
along the viscous fluid surface, we will transform the
system of hydrodynamic equations (1.1) and (1.2). To
this end, we will introduce a complex coordinate of
the fluid particle trajectory W = X+iY (W = X−iY )
and a new traveling coordinate q = a+σt, where σ is a
constant velocity. In the new variables the equations
of viscous fluid motion in the Lagrangian form can be
written as

[W, W ] =
D(W, W )
D(q, b)

= 2i, (2.1)

Wtt + 2σWqt + σ2Wqq = −ig +
i

ρ
[p, W ] +

ν

2

{[
W, [W, Wt + σWq]

]
+

[
W, [W, Wt + σWq]

]}
.

Here, the brackets indicate taking Jacobian over the variables q and b. Let us make system (2.1) dimensionless
by introducing the new variables

W = LWn, q = Lqn, t =
L

σ
tn, p = ρσ2pn, (2.2)

where L is some distance scale (the indices are omitted below). The equation of motion and the boundary
conditions on the free surface take the form
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Wtt + 2σWtq + σ2Wqq = −ig
L

σ2
+ i[p, W ] +

1
2Re

{[
W, [W, Wt + σWq]

]
+

[
W, [W, Wt + σWq]

]}
,

Tiknk = −p0ni, n{nx, ny} = n

⎧⎨
⎩− Yq√

X2
q + Y 2

q

,
Xq√

X2
q + Y 2

q

⎫⎬
⎭, b = 0,

(2.3)
Txx = −p +

1
2i Re

(
[Wt + σWq, W − W ] − c.c.

)
,

Txy = − 1
2i Re

(
[Wt + σWq, W ] + c.c.

)
,

Tyy = −p − 1
2i Re

(
[Wt + σWq, W + W ] − c.c.

)
.

The equation of motion contains two dimensionless parameters: the Reynolds number Re = σL/ν and gL/σ2.
Let us investigate the behavior of a weakly nonlinear train of waves with slowly varying parameters

(amplitude, frequency, and wavenumber). To this end, we will use the derivative-expansion (or multiscale
[10]) method. We assume that the function W depends on the spatial (q0 = q, q1 = εq, q2 = ε2q, b) and temporal
(t1 = εt, t2 = ε2t) variables (ε is a small parameter—steepness of the wave) and can be expanded as

W (q0, q1, q2, b, t1, t2) = q0 + ib + εw1 + ε2w2 + ε3w3 + O(ε4) (2.4)

and that the fluid pressure is determined by the rela-
tion

p == p0 − b + εp1 + ε2p2 + ε3p3 + O(ε4). (2.5)

Substitution of the first two terms from (2.5)
(which determine the hydrostatic pressure) into the
first equation from (2.3) gives the second dimen-
sionless parameter: gL/σ2 = 1. On the assumption
that L = k−1 and σ = ω/k is the wave phase velocity,
this relation coincides with the dispersion relation for
waves on deep water.

Generally, the problem of describing the wave
packet evolution in viscous fluid is extremely difficult.
To simplify it, we assume that the Reynolds number
is fairly large: Re−1 = ε2. This means that viscosity
effects manifest themselves only in the third-order
approximation.

The equations in the linear approximation have the
form

w1b + iw1q0 − c.c. = 0,
(2.6)

w1q0q0 = i(w1q0 + ip1q0 − p1b).

The solution to (2.6), which decays into the fluid
bulk and satisfies the condition of constant pressure
on the free surface, has the form

w1 = A(q1, q2, t1, t2) eb+iq0 + ψ1(q1, q2, b, t1, t2).
(2.7)

The first term in (2.7) describes the oscillatory mo-
tion of fluid particles, while the second term describes

the drift flow. The wave amplitude A is a function of
slow variables.

In the second-order approximation the equation
for this parameter is exactly the same as for a wave
in ideal fluid

At1 +
1
2

Aq1 = 0. (2.8)

The packet envelope is transported with a group
velocity σ/2, which is a half of the phase velocity.

In the third-order approximation one must take
into account the viscosity. However, now the viscous
term in the equation of motion is proportional to the
Laplacian ΔLw1 over the fast variables which is zero.
Hence, the solution coincides again with that solution
for potential waves. However, this potential solution
must satisfy the viscous boundary condition

−p3 + (−iw1q0b − c.c.) = 0, b = 0. (2.9)

If the expression in the parentheses is neglected,
this condition will lead to a nonlinear Schrödinger
equation [11], while the consideration of this term will
supplement the nonlinear Schrödinger equation with
a dissipative term

iAτ +
1
2
|A|2A +

1
8

Aζζ + iA = 0, (2.10)

τ = t2, ζ = q1 −
1
2

t1,

or, in the dimensional variables,

iAτ +
1
2

ωk2|A|2A +
1
8

ω

k2
Aζζ + iωA = 0. (2.11)
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The most important feature of this equation is that
it does not contain the drift flow ψ1. This is due to
the fact that we considered fairly large Reynolds num-
bers. If the inverse Reynolds number is of the same
order of magnitude or larger than the wave steepness,
the evolution equation will contain the midflow. It is
noteworthy that the wave frequency plays the role of
amplitude decrement.

One must apply numerical methods to study the
properties of Eq. (2.11).
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