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Let M be an irreducible holomorphically symplectic manifold. We show that all faces

of the Kähler cone of M are hyperplanes Hi orthogonal to certain homology classes,

called monodromy birationally minimal (MBM) classes. Moreover, the Kähler cone is

a connected component of a complement of the positive cone to the union of all Hi.

We provide several characterizations of the MBM classes. We show the invariance of

MBM property by deformations, as long as the class in question stays of type (1, 1). For

hyperkähler manifolds with Picard group generated by a negative class z, we prove that

±z is Q-effective if and only if it is an MBM class. We also prove some results toward

the Morrison–Kawamata cone conjecture for hyperkähler manifolds.

1 Introduction

1.1 Kähler cone and MBM classes: an introduction

Let M be a hyperkähler manifold, that is, a compact, holomorphically symplectic Kähler

manifold. We assume that π1(M) = 0 and H2,0(M) = C (the general case reduces to this by

Theorem 1.3). In this paper, we give a description of the Kähler cone of M in terms of a

set of cohomology classes S ⊂ H2(M, Z) called monodromy birationally minimal (MBM)
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classes (Definition 1.13). This set is of topological nature, that is, it depends only on the

deformation type of M.

It is known since [28] that the Kähler cone of a Fano manifold is polyhedral. Each

of its finitely many faces is formed by classes vanishing on a certain rational curve: one

says that the numerical class of such a curve generates an extremal ray of the Mori cone.

The notion of an extremal ray also makes sense for projective manifolds which are not

Fano: the number of extremal rays then does not have to be finite. However, they are

discrete in the half-space where the canonical class restricts negatively.

Huybrechts [17] and Boucksom [7] have studied the Kähler cone of hyperkähler

manifolds (not necessarily algebraic). They have proved that the Kähler classes are

exactly those positive classes (i.e., classes with positive Beauville–Bogomolov–Fujiki

square; see Definition 1.8) which restrict positively to all rational curves (Theorem 1.9).

Our work puts these results in a deformation-invariant setting. Let Pos ⊂
H1,1

R (M) be the positive cone, and S(I ) the set of all MBM classes which are of type (1,1)

on M with its given complex structure I . Then the Kähler cone is a connected component

of Pos\S(I )⊥, where S(I )⊥ is the union of all orthogonal complements to all z∈ S(I ).

We describe the MBM classes in terms of the minimal curves on deformations of

M, birational maps and the monodromy group action (Sections 4 and 5), and formulate a

finiteness conjecture (Conjecture 6.4) claiming that primitive integral MBM classes have

bounded square. We deduce the Morrison–Kawamata cone conjecture from this conjec-

ture. For deformations of the Hilbert scheme of points on a K3 surface, our finiteness

conjecture is known [1, Proposition 2]. This gives a proof of Morrison–Kawamata cone

conjecture for deformations of the Hilbert scheme of K3 (Theorem 1.21). Its proof is inde-

pendently obtained by Markman and Yoshioka using different methods (forthcoming).

1.2 Hyperkähler manifolds

Definition 1.1. A hyperkähler manifold is a compact, Kähler, holomorphically symplec-

tic manifold. �

Definition 1.2. A hyperkähler manifold M is called simple if π1(M) = 0, H2,0(M) = C. �

This definition is motivated by the Theorem 1.3 of Bogomolov.

Theorem 1.3 ([4]). Any hyperkähler manifold admits a finite covering which is a product

of a torus and several simple hyperkähler manifolds. �
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Remark 1.4. Furthermore, we shall assume (sometimes, implicitly) that all hyperkähler

manifolds we consider are simple. �

Remark 1.5. A hyperkähler manifold naturally possesses a whole 2-sphere of complex

structures (see Section 2). We shall use the notation (M, I ) or MI to stress that a particu-

lar complex structure is chosen, and M to discuss the topological properties (or simply

when there is no risk of confusion). �

The Bogomolov–Beauville–Fujiki form was defined in [2, 5], but it is easiest to

describe it using the Fujiki theorem, proved in [14].

Theorem 1.6 (Fujiki). Let M be a simple hyperkähler manifold, η ∈ H2(M), and

n= 1
2 dim M. Then

∫
M η2n = cq(η, η)n, where q is a primitive integer quadratic form on

H2(M, Z), and c > 0 an integer. �

Remark 1.7. Fujiki formula (Theorem 1.6) determines the form q uniquely up to a sign.

For odd n, the sign is also unambiguously determined. For even n, one needs the follow-

ing explicit formula, which is due to Bogomolov and Beauville.

λq(η, η) = 1

2

∫
X

η ∧ η ∧ Ωn−1 ∧ Ω
n−1 − n− 1

n

(∫
X

η ∧ Ωn−1 ∧ Ω
n
) (∫

X
η ∧ Ωn ∧ Ω

n−1
)

(1.1)

where Ω is the holomorphic symplectic form, and λ > 0. �

Definition 1.8. A cohomology class η ∈ H1,1
R (M, I ) is called negative if q(η, η) < 0, and

positive if q(η, η) > 0. Since the signature of q on H1,1
R (M, I ) is (1, b2 − 3), the set of posi-

tive vectors is disconnected. The positive cone Pos(M, I ) is the connected component of

the set {η ∈ H1,1
R (M, I ) | q(η, η) > 0} which contains the classes of the Kähler forms. It is

easy to check that the positive cone is convex. �

Theorem 1.9 is crucial for our work.

Theorem 1.9 (Huybrechts, Boucksom; see [7]). Let (M, I ) be a simple hyperkähler mani-

fold. The Kähler cone Kah(M, I ) can be described as follows

Kah(M, I ) = {α ∈ Pos(M, I )|α · C > 0 ∀C ∈ RC (M, I )}

where RC (M, I ) denotes the set of classes of rational curves on (M, I ). �
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1.3 Main results

Remark 1.10. Let (M, I ) be a hyperkähler manifold, and ϕ : (M, I ) ��� (M, I ′) a bimero-

morphic (also called “birational”) map to another hyperkähler manifold (note that by a

result of Huybrechts [16], birational hyperkähler manifolds are deformation equivalent;

that is why there is the same letter M used for the source and the target of ϕ). Since the

canonical bundle of (M, I ) and (M, I ′) is trivial, ϕ is an isomorphism in codimension 1

(see for example [16], Lemma 2.6). This allows one to identify H2(M, I ) and H2(M, I ′).

Clearly, this identification is compatible with the Hodge structure. Furthermore, we call

(M, I ′) “a birational model” for (M, I ), and identify H2(M) for all birational models. �

Definition 1.11. Let M be a hyperkähler manifold. The monodromy group of M is a

subgroup of GL(H2(M, Z)) generated by monodromy transforms for all Gauss–Manin

local systems. This group can also be characterized in terms of the mapping class group

action (Remark 2.21). �

Definition 1.12. Let (M, I ) be a hyperkähler manifold. A rational homology class

z∈ H1,1(M, I ) is called Q-effective if Nz can be represented as a homology class of a

curve, for some N ∈ Z>0, and extremal if for any Q-effective homology classes z1, z2 ∈
H1,1(M, I ) satisfying z1 + z2 = z, the classes z1, z2 are proportional. �

In the projective case, a negative extremal class is Q-effective and some multiple

of it is represented by a rational curve. Moreover, the negative part of the cone of

Q-effective classes is locally rational polyhedral. This is shown by a version of Mori

theory adapted to the case of hyperkähler manifolds (see [15]).

The Beauville–Bogomolov–Fujiki form allows one to identify H2(M, Q) and

H2(M, Q). More precisely, it provides an embedding H2(M, Z) → H2(M, Z) which is not

an isomorphism (indeed, q is not necessarily unimodular), but becomes an isomorphism

after tensoring with Q. We thus can talk of extremal classes in H1,1(M, Q), meaning that

the corresponding classes in H1,1(M, Q) are extremal. In general, we shall switch from

the second homology to the second cohomology as it suits us and transfer all definitions

from one situation to the other one by means of the Beauville-Bogomolov-Fujiki (BBF)

form, with one important exception, namely the notion of effectiveness. Indeed, an effec-

tive class in H1,1(M, Q) is a class of a curve, whereas an effective class in H1,1(M, Q) is a

class of a hypersurface.

We shall also extend the BBF form to H2(M, Z) as a rational-valued quadratic

form, and to H2(M, Q), without further note.
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The following property, with which we shall work in this paper, looks stronger

than extremality modulo monodromy and birational equivalence, but is equivalent to it

whenever the negative part of the Mori cone is locally rational polyhedral.

Recall that a face of a convex cone in a vector space V is an intersection of its

boundary and a hyperplane which has nonempty interior (Definition 3.1).

Definition 1.13. A nonzero negative rational homology class z∈ H1,1(M, I ) is called

monodromy birationally minimal (MBM) if for some isometry γ ∈ O(H2(M, Z)) belongs

to the monodromy group, γ (z)⊥ ⊂ H1,1(M, I ) contains a face of the Kähler cone of one of

birational models (M, I ′) of (M, I ). �

The definition has an obvious counterpart for homology classes of type (1, 1),

where one replaces the orthogonality with respect to the BBF form by the usual duality

between homology and cohomology, given by integration of forms over cycles.

Remark 1.14. A face of Kah(M, I ′) is, by definition, of maximal dimension h1,1(M, I ′) − 1.

So the definition of z being MBM means that γ (z)⊥ ∩ ∂Kah(M, I ′) contains an open subset

of γ (z)⊥. �

The point of Definition 1.13 is, roughly, as follows. As we shall see, rational

curves have nice local deformation properties when they are minimal (extremal). How-

ever, globally, a deformation of an extremal rational curve on a variety (M, I ) does

not have to remain extremal on a deformation (M, I ′). One can only hope to show the

deformation-invariance of the property of z being extremal (as long, of course, as it

remains of type (1, 1)) modulo monodromy and birational equivalence. In what follows,

we shall solve this problem for MBM classes and apply it to the study of the Kähler cone.

The deformation equivalence is especially useful because when Pic(M) has rank

one, the somewhat obscure notion of MBM classes becomes much more streamlined.

Theorem 1.15. Let (M, I ) be a hyperkähler manifold, rkPic(M, I ) = 1, and z∈ H1,1(M, I ) a

nonzero negative rational class. Then z is MBM if and only if ±z is Q-effective. �

Proof. See Theorem 5.11. �

Definition 1.16. Let (M, I ) be a hyperkähler manifold. A negative rational class

z∈ H1,1
Q (M, I ) is called divisorial if z= λ[D] for some effective divisor D and λ ∈ Q. �

Our first main results concern the deformational invariance of these notions.
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Theorem 1.17. Let (M, I ) be a hyperkähler manifold, z∈ H1,1(M, I ) an integer homology

class, q(z, z) < 0, and I ′ a deformation of I such that z is of type (1,1) with respect to I ′.

Assume that z is MBM on (M, I ). Then z is MBM on (M, I ′). The property of z∈ H1,1(M, I )

being divisorial is likewise deformation-invariant, provided that one restricts oneself

to the complex structures with Picard number one (i.e., such that the Picard group is

generated by z over Q). �

Proof. See Theorem 4.10, Corollary 4.11, and Theorem 5.13. �

Remark 1.18. We expect that the property of z being divisorial is deformation-invariant

as long as z stays of type (1, 1), and plan to return to this question in a forthcoming

paper. �

The MBM classes can be used to determine the Kähler cone of (M, I ) explicitly.

Theorem 1.19. Let (M, I ) be a hyperkähler manifold, and S ⊂ H1,1(M, I ) the set of all

MBM classes. Consider the corresponding set of hyperplanes S⊥ := {W = z⊥ | z∈ S} in

H1,1
R (M, I ). Then the Kähler cone of (M, I ) is a connected component of Pos(M, I )\ ∪W∈S⊥

W, where Pos(M, I ) is the positive cone of (M, I ). Moreover, for any connected compo-

nent K of Pos(M, I )\ ∪W∈S⊥ W, there exists γ ∈ O(H2(M, Z)) in the monodromy group of

M, and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I ), such that γ (K)

is the Kähler cone of (M, I ′). �

Proof. See Theorem 6.2. �

Remark 1.20. In particular, z⊥ ∩ Pos(M, I ) either has dense intersection with the interior

of the Kähler chambers (if z is not MBM), or is a union of walls of those (if z is MBM);

that is, there are no “barycentric partitions” in the decomposition of the positive cone

into the Kähler chambers.

�
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Finally, we apply this to the Morrison–Kawamata cone conjecture.

Theorem 1.21. Let M be a simple hyperkähler manifold, and q the Bogomolov–

Beauville–Fujiki form. Suppose that there exists C > 0 such that |q(η, η)| < C for all

primitive integral MBM classes (or, alternatively, for all extremal rational curves on

all deformations of M). Then the Morrison–Kawamata cone conjecture holds for M: the

group Aut(M) acts on the set of faces of the Kähler cone with finitely many orbits. �

Proof. See Theorem 6.6. �

The condition of the theorem is satisfied for manifolds which are deformation

equivalent to the Hilbert scheme of points on a K3 surface, see [1]; for such manifolds,

one, therefore, obtains a proof of the Morrison–Kawamata cone conjecture.

2 Global Torelli Theorem, Hyperkähler Structures, and Monodromy Group

In this section, we recall a number of results about hyperkähler manifolds, used further

on in this paper. For more details and references, see [3, 34].

2.1 Hyperkähler structures and twistor spaces

Definition 2.1. Let (M, g) be a Riemannian manifold, and I, J, K endomorphisms of the

tangent bundle T M satisfying the quaternionic relations

I 2 = J2 = K2 = I JK = −IdT M.

The triple (I, J, K) together with the metric g is called a hyperkähler structure if I, J,

and K are integrable and Kähler with respect to g. �

Consider the Kähler forms ωI , ωJ, ωK on M:

ωI (·, ·) := g(·, I ·), ωJ(·, ·) := g(·, J·), ωK(·, ·) := g(·, K·).

An elementary linear-algebraic calculation implies that the 2-form Ω := ωJ + √−1 ωK is

of Hodge type (2, 0) on (M, I ). This form is clearly closed and nondegenerate, hence it is

a holomorphic symplectic form.

In algebraic geometry, the word “hyperkähler” is essentially synonymous with

“holomorphically symplectic”, due to the Theorem 2.2, which is implied by Yau’s solution

of Calabi conjecture [2, 3].
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Theorem 2.2. Let M be a compact, Kähler, holomorphically symplectic manifold, ω its

Kähler form, dimC M = 2n. Denote by Ω the holomorphic symplectic form on M. Suppose

that
∫

M ω2n = ∫
M(Re Ω)2n. Then there exists a unique hyperkähler metric g with the

same Kähler class as ω, and a unique hyperkähler structure (I, J, K, g), with ωJ = Re Ω,

ωK = Im Ω. �

Furthermore, we shall speak of “hyperkähler manifolds” meaning “holomorphic

symplectic manifolds of Kähler type”, and “hyperkähler structures” meaning the quater-

nionic triples together with a metric.

Every hyperkähler structure induces a whole two-dimensional sphere of com-

plex structures on M, as follows. Consider a triple a, b, c ∈ R, a2 + b2 + c2 = 1, and let

L := aI + bJ + cK be the corresponding quaternion. Quaternionic relations imply imme-

diately that L2 = −1, hence L is an almost complex structure. Since I, J, K are Kähler,

they are parallel with respect to the Levi–Civita connection. Therefore, L is also parallel.

Any parallel complex structure is integrable, and Kähler. We call such a complex struc-

ture L = aI + bJ + cK a complex structure induced by a hyperkähler structure. There

is a two-dimensional holomorphic family of induced complex structures, and the total

space of this family is called the twistor space of a hyperkähler manifold.

2.2 Global Torelli theorem and monodromy

Definition 2.3. Let M be a compact complex manifold, and Diff0(M) a connected compo-

nent of its diffeomorphism group (the group of isotopies). By Kodaira–Spencer stability

theorem [21], the space of complex structures of Kähler type on M is an open subset

in the space of all complex structures. Denote by Comp the space of complex struc-

tures of Kähler type on M, equipped with its structure of a Fréchet manifold, and let

Teich := Comp/Diff0(M). We call it the Teichmüller space. �

Remark 2.4. In many important cases, such as for manifolds with trivial canonical class

[11], Teich is a finite-dimensional complex space; usually, it is non-Hausdorff. �

Definition 2.5. The universal family of complex manifolds over Teich is defined as

Univ/Diff0(M), where Univ is the natural universal family over Comp with its Fréchet

manifold structure. Locally, it is isomorphic to the universal family over the Kuranishi

space. We are grateful to Claire Voisin for this observation. �
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Definition 2.6. The mapping class group is Γ = Diff(M)/Diff0(M). It naturally acts on

Teich (the quotient of Teich by Γ may be viewed as the “moduli space” for M, but in

general, it has very bad properties; see below). �

Remark 2.7. Let M be a hyperkähler manifold (as usually, we assume M to be simple).

For any J ∈ Teich, (M, J) is also a simple hyperkähler manifold, because the Hodge num-

bers are constant in families, and therefore, H2,0(M, J) is one-dimensional. �

Definition 2.8. Let

Per : Teich −→ PH2(M, C)

map J to the line H2,0(M, J) ∈ PH2(M, C). The map Per is called the period map. �

Remark 2.9. The period map Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M, C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period domain of M. Indeed, any holomorphic symplectic form l satisfies

the relations q(l, l) = 0, q(l, l) > 0, as follows from (1.1). �

Proposition 2.10. The period domain Per is identified with the quotient SO(b2 − 3, 3)/

SO(2) × SO(b2 − 3, 1), which is the Grassmannian of positive oriented 2-planes in

H2(M, R). �

Proof. This statement is well known, but we shall sketch its proof for the reader’s

convenience.

Step 1: given l ∈ PH2(M, C), the space generated by Im l, Re l is two-dimensional,

because q(l, l) = 0, q(l, l) > 0 implies that l ∩ H2(M, R) = 0.

Step 2: This two-dimensional plane is positive, because q(Re l, Re l) = q(l + l, l +
l) = 2q(l, l) > 0.

Step 3: Conversely, for any two-dimensional positive plane V ∈ H2(M, R), the

quadric {l ∈ V ⊗R C | q(l, l) = 0} consists of two lines; a choice of a line is determined

by the orientation. �

Definition 2.11. Let M be a topological space. We say that x, y∈ M are nonseparable

(denoted by x ∼ y) if for any open sets V � x,U � y, U ∩ V �= ∅. �

Theorem 2.12 (Huybrechts; [16]). If two points I, I ′ ∈ Teich are nonseparable, then there

exists a bimeromorphism (M, I ) ��� (M, I ′). �
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Remark 2.13. The converse is not true since many points in the Teichmüller space

correspond to isomorphic manifolds, and they are not always pairwise nonseparable

(consider orbits of the mapping class group action). But it is true that if two hyperkähler

manifolds are bimeromorphic, then one can find nonseparable points in the Teichmüller

space representing them. �

Definition 2.14. The space Teichb := Teich/∼ is called the birational Teichmüller space

of M. �

Remark 2.15. This terminology is slightly misleading since there are nonseparable

points of the Teichmüller space which correspond to biregular, not just birational, com-

plex structures. Even for K3 surfaces, the Teichmüller space is non-Hausdorff. �

Theorem 2.16 (Global Torelli theorem; [34]). The period map Teichb
Per−→ Per is an isomor-

phism on each connected component of Teichb. �

Remark 2.17. By a result of Huybrechts [18], Teich has only finitely many connected

components. We shall denote by TeichI the component containing the parameter point

for the complex structure I , and by ΓI the subgroup of the mapping class group Γ fixing

this component. Obviously, ΓI is of finite index in Γ . �

Definition 2.18. Let M be a hyperkaehler manifold, Teichb its birational Teichmüller

space, and Γ the mapping class group Diff(M)/Diff0(M). The quotient Teichb/Γ is called

the birational moduli space of M. Its points are in bijective correspondence with the

complex structures of hyperkähler type on M up to a bimeromorphic equivalence. �

Remark 2.19. The word “space”, in this context, is misleading. In fact, the quotient

topology on Teichb/Γ is extremely non-Hausdorff, for example, every two open sets

would intersect [35]. �

The global Torelli theorem can be stated as a result about the birational moduli

space.

Theorem 2.20 ([34, Theorem 7.2, Remark 7.4, and Theorem 3.5]). Let (M, I ) be a

hyperkähler manifold, and W a connected component of its birational moduli space.

Then W is isomorphic to Per/MonI , where Per = SO(b2 − 3, 3)/SO(2) × SO(b2 − 3, 1) and

MonI is an arithmetic group in O(H2(M, R), q), called the monodromy group of (M, I ).

In fact, MonI is the image of ΓI in O(H2(M, R), q). �
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Remark 2.21. The monodromy group of (M, I ) can be also described as a subgroup

of the group O(H2(M, Z), q) generated by monodromy transform maps for Gauss–

Manin local systems obtained from all deformations of (M, I ) over a complex base

[34, Definition 7.1]. This is how this group was originally defined by Markman [23, 24].

The fact that it is of finite index in O(H2(M, Z), q) is crucial for the Morrison–Kawamata

conjecture, see next section. �

Remark 2.22. A caution: usually, “the global Torelli theorem” is understood as a theorem

about Hodge structures. For K3 surfaces, the Hodge structure on H2(M, Z) determines

the complex structure. For dimC M > 2, it is false. �

3 Morrison–Kawamata Cone Conjecture for Hyperkähler Manifolds

In this section, we introduce the Morrison–Kawamata cone conjecture, and give a brief

survey of what is known, following [24, 32], with some easy generalizations.

Originally, this conjecture was stated in [29] while it has already been known for

K3 surfaces from [31]. A relative version for Calabi–Yau 3-fold admitting a holomorphic

fibration over a positive-dimensional base has been obtained by Kawamata in [19].

3.1 Morrison–Kawamata cone conjecture

Definition 3.1. Let M be a compact, Kähler manifold, Kah ⊂ H1,1(M, R) the Kähler cone,

and Kah its closure in H1,1(M, R), called the nef cone. A face of the Kähler cone is

the intersection of the boundary of Kah and a hyperplane V ⊂ H1,1(M, R), which has

nonempty interior. �

Conjecture 3.2 (Morrison–Kawamata cone conjecture, Kähler version). Let M be a

Calabi–Yau manifold. Then the group Aut(M) of biholomorphic automorphisms of M

acts on the set of faces of Kah with finite number of orbits. �

Remark 3.3. The actual Morrison–Kawamata conjecture is a stronger statement for

projective Calabi–Yau manifolds. Roughly speaking (up to some boundary issues), it

affirms that Aut(M) has a finite polyhedral domain on the ample cone. Such a state-

ment obviously cannot be true for the Kähler rather than the ample cone (for instance,

a very general irreducible hyperkähler manifold has no automorphisms, whereas its

Kähler cone is equal to the positive cone). So our version is as strong as one can expect

in the nonprojective case. �
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13020 E. Amerik and M. Verbitsky

This conjecture has a birational version, which has many important

implications. For projective hyperkähler manifolds, the birational version of Morrison–

Kawamata cone conjecture was proved by Markman in [24].

Definition 3.4. Let M, M′ be compact complex manifolds. Define a pseudo-isomorphism

M ��� M′ as a birational map which is an isomorphism outside of codimension � 2 sub-

sets of M, M′. �

Remark 3.5. For any pseudo-isomorphic manifolds M, M′, the second cohomologies

H2(M) and H2(M′) are naturally identified. �

As we have already remarked, any birational map of hyperkähler varieties is a

pseudo-isomorphism; more generally, this is true for all varieties with nef canonical

class.

Definition 3.6. The movable cone, also known as birational nef cone, is the closure of

the union of Kah(M′) for all M′ pseudo-isomorphic to M. The union of Kah(M′) for all M′

pseudo-isomorphic to M is called birational Kähler cone. �

Conjecture 3.7 (Morrison–Kawamata birational cone conjecture, Kähler version). Let M

be a Calabi–Yau manifold. Then the group Bir(M) of birational automorphisms of M acts

on the set of faces of its movable cone with finite number of orbits. �

3.2 Morrison–Kawamata cone conjecture for K3 surfaces

In this section, we prove the Morrison–Kawamata cone conjecture for K3 surfaces. Orig-

inally, it was proved by Sterk (see [31]). The proof we are giving has two advantages:

it works in the nonalgebraic situation, and to some extent, it generalizes to arbi-

trary dimension. Note that the pseudo-isomorphisms of smooth surfaces are isomor-

phisms, hence for K3 surfaces, both versions of Morrison–Kawamata cone conjecture

are equivalent.

Definition 3.8. A cohomology class η ∈ H2(M, Z) on a K3 surface is called a (−2)-class if∫
M η ∧ η = −2. �

Remark 3.9. Let M be a K3 surface, and η ∈ H1,1(M, Z) a (−2)-class. Then either η or −η

is effective. Indeed, χ(η) = 2 + η2

2 = 1 by Riemann–Roch. �
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Theorem 3.10 is well known.

Theorem 3.10. Let M be a K3 surface, and S the set of all effective (−2)-classes. Then

Kah(M) is the set of all v ∈ Pos(M) such that q(v, s) > 0 for all s ∈ S. �

Proof. By adjunction formula, a curve C on a K3 surface satisfies C 2 = 2g − 2, where

g is its genus; hence the cone of effective curves is generated by positive classes and

effective (−2)-classes. By [12], the Kähler cone is the intersection of the positive cone and

the cone dual to the cone of effective curves, hence it is v ∈ Pos(M) such that q(v, s) > 0

for all effective s. However, for all s, v ∈ Pos(M), the inequality q(v, s) > 0 automatically

follows from the Hodge index formula. �

Definition 3.11. A Weyl chamber, or Kähler chamber, on a K3 surface is a connected

component of Pos(M)\S⊥, where S⊥ is the union of all planes s⊥ for all (−2)-classes

s ∈ S. The reflection group of a K3 surface is the group W generated by reflections with

respect to all s ∈ S. �

Remark 3.12. Clearly, a Weyl chamber is a fundamental domain of W, and W acts

transitively on the set of all Weyl chambers. Moreover, the Kähler cone of M is one of its

Weyl chambers. �

To a certain extent, this is a pattern which is repeated in all dimensions, as we

shall see.

Theorem 3.13 is well known, too, but we want to sketch a proof in some detail

since it is also important for what follows.

Theorem 3.13. Let M be a K3 surface, and Aut(M) the group of all automorphisms of M.

Then Aut(M) is the group of all isometries of H2(M, Z) preserving the Kähler chamber

Kah and the Hodge decomposition. �

Proof. First, let us show that the natural map Aut(M)
ϕ→ O(H2(M, Z)) is injective. Our

argument is similar to Buchdahl’s in [9]. Clearly, Aut(M) acts on H2(M, Z); its kernel is

formed by automorphisms preserving all Kähler classes, hence acting as isometries on

all Calabi–Yau metrics on all deformations of M. Deforming M to a Kummer surface, we

find that this isometry must also induce an isometry on the underlying 2-torus, acting

trivially on cohomology. Therefore, ker ϕ acts as identity on all Kummer surfaces, and

hence also on all K3 surfaces.
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To describe the image of ϕ, we use the Torelli theorem. Let γ ∈ O(H2(M, Z))

preserve the Hodge decomposition on (M, I ) and the Kähler cone. Global Torelli theorem

affirms that the period map Per : Teichb −→ Per for K3 surfaces is an isomorphism. The

mapping class group Γ = Diff(M)/Diff0(M) acting on Teich embeds as the orientation-

preserving subgroup in O(H2(M, Z)) [6]. We deduce that γ comes from an element γ̃ of

the mapping class group. Since γ preserves the Hodge decomposition, the correspond-

ing point in the period space Per(I ) ∈ Per is a fixed point of γ̃ . Therefore, γ̃ exchanges

the nonseparable points in Per−1
(Per(I )). However, as shown by Huybrechts, two man-

ifolds which correspond to distinct nonseparable points in Teich have different Kähler

cones, so that the fibers of the period map parameterize the Kähler (Weyl) chambers [16].

Therefore, γ̃ maps (M, I ) ∈ Per−1
(Per(I )) to itself whenever it fixes the Kähler cone. Hence

γ̃ , considered as a diffeomorphism of M, is an automorphism of the complex manifold

(M, I ), and γ is in the image of ϕ. �

Now we can prove the Morrison–Kawamata cone conjecture for K3 surfaces. Our

argument is based on the following general result about lattices.

Theorem 3.14. Let q be an integer-valued quadratic form on Λ = Zn, n� 2 (not neces-

sarily unimodular) such that its kernel is at most one-dimensional, and O(Λ) the corre-

sponding group of isometries. Fix 0 �= r ∈ Z, and let Sr be the set {v ∈ Λ | q(v, v) = r}. Then

O(Λ) acts on Sr with finite number of orbits. �

Proof. The nondegenerate case is [20, Satz 30.2]. In the case of one-dimensional kernel

L = ker q, we write Λ = L ⊕ Λ0 and the elements of Λ as a0 + kl, where a0 ∈ Λ0, k∈ Z and

l is a fixed generator of L. There are finitely many representatives of Sr ∩ Λ0 under the

action of O(Λ0), say a1
0, . . . , am

0 . For each j, take a system of representatives k1, . . . , ktj of

Z modulo the ideal Hom(Λ0, L) · aj
0. Then representatives of the orbits in Sr are elements

of the form aj
0 + kil. �

We shall apply this to study the Picard lattice H2(M, Z) ∩ H1,1(M). Note that it is

nondegenerate when M is projective, and can have at most one-dimensional kernel when

M is arbitrary.

Theorem 3.15. Morrison–Kawamata cone conjecture holds for any K3 surface. �

Proof. Step 1: setting a goal. Let MonHdg
(M, I ) be the group of all oriented isometries

of H2(M, Z) preserving the Hodge decomposition (such isometries are known as Hodge
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isometries). We have already remarked that when M is a K3 surface, all these are mon-

odromy operators, hence the notation. Since MonHdg
(M, I ) acts on the Picard lattice Λ

as a subgroup of index at most two in O(Λ) = O(H1,1(M, Z)), Theorem 3.14 implies that

MonHdg
(M, I ) acts with finitely many orbits on the set of (−2)-vectors in Λ.

Our goal in the next steps is to prove that the group MonHdg
(M, I ) acts on the set

of faces of the Weyl chambers with finitely many orbits.

Step 2: describing a face by a flag. Recall that an orientation of a hyperplane in

an oriented real vector space is the choice of a “positive” normal direction. Then a face

F of a Weyl chamber is determined by the following data: a hyperplane Ps−1 it sits on,

with the orientation pointing to the interior of the chamber; a hyperplane Ps−2 in Ps−1

supporting one of the faces F1 of F , together with the orientation pointing to the interior

of the face F ; an oriented hyperplane Ps−3 in Ps−2 supporting some face F2 of F1; and so

forth. Here, s is the dimension of the ambient space H1,1
R (M). In other words, a face is

determined by a full flag of linear subspaces, oriented step-by-step as above.

To prove that MonHdg
(M, I ) acts on the set of faces with finitely many orbits, it

suffices to prove that it acts with finitely many orbits on flags Ps−1 ⊃ Ps−2 ⊃ · · · ⊃ P1 of

the above form, orientation forgotten.

Step 3: bounding squares. Note that the hyperplane Ps−1 is x⊥, where x is a

(−2)-class in H1,1
Z (M, I ), and Ps−2 = x⊥ ∩ y⊥, where y is another (−2)-class in H1,1

Z (M, I ).

We claim that Ps−2 as a hyperplane in Ps−1 is given by (y′)⊥, where y′ ∈ x⊥ is an integral

negative class of square at least −8.

Indeed, write y= 〈x,y〉
〈x,x〉 x + ỹ (orthogonal projection to x⊥). Obviously, Ps−2 as a

hyperplane in Ps−1 is just the orthogonal to ỹ∈ x⊥. The first summand on the right has

nonpositive square since it is proportional to a (−2)-class x. We claim that the second

summand has strictly negative square (this square has then to be at least −2). Indeed,

since the hyperplanes x⊥ and y⊥ define a Kähler chamber, the intersection of x⊥ and

y⊥ is within the positive cone. But then the orthogonal to ỹ in x⊥ intersects the posi-

tive cone in x⊥, so that, since the signature of the intersection form restricted to x⊥ is

(+,−, . . . ,−), ỹ is of strictly negative square. To make ỹ integral, it suffices to replace it

by y′ = 〈x, x〉ỹ= −2ỹ; one has 0 > 〈y′, y′〉 � −8.

Step 4: monodromy action. We have just seen that the intersections of x⊥ with

the other hyperplanes defining the Kähler chambers are given, in x⊥, as orthogonals to

integer vectors of strictly negative bounded square. By Theorem 3.14, the orthogonal

group of H1,1
Z (M, I ) ∩ x⊥ acts with finitely many orbits on such vectors. We deduce that

the orthogonal group of Λ = H1,1
Z (M, I ) acts with finitely many orbits on partial flags

Ps−1 ⊃ Ps−2 arising from the faces of Kähler chambers. Iterating the argument of Step 3,
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we see that O(Λ), and thus also MonHdg
(M, I ), acts with finitely many orbits on full flags

and therefore on the set of faces of Kähler chambers.

Step 5: conclusion. For each pair of faces F, F ′ of a Kähler cone and w ∈
MonHdg

(M, I ) mapping F to F ′, w maps Kah to itself or to an adjoint Weyl chamber K ′.

Then K ′ = r(K), where r is the orthogonal reflection in H2(M, Z) fixing F ′. In the first

case, w ∈ Aut(M). In the second case, rw maps F to F ′ and maps Kah to itself, hence

rw ∈ Aut(M). �

3.3 Finiteness of polyhedral tessellations

The argument used to prove Theorem 3.15 is valid in an abstract setting, which is worth

describing here.

Let VZ is a torsion-free Z-module of rank n+ 1, equipped with an integer-valued

(but not necessarily unimodular) quadratic form of signature (1, n), Γ ⊂ O(VZ) a finite

index subgroup, and V = VZ ⊗Z R. Let S0 ⊂ VZ be a finite set of negative vectors, S := Γ · S0

its orbit, and Z := ⋃
s∈S s⊥ the union of all orthogonal complements to s in V .

We associate with V a hyperbolic space H = PV+ obtained as a projectivization

of the set of positive vectors. Let {Pi} be the set of connected components of PV+\PZ .

This is a polyhedral tessellation of the hyperbolic space.

Definition 3.16. We call such a tessellation a tessellation cut out by the set of hyper-

planes orthogonal to S. �

Definition 3.17. Let Sd be an intersection of n− d transversal hyperplanes s⊥, with s ∈ S.

A d-dimensional face of a tessellation is a connected component of Sd\Sd−1. �

Theorem 3.18. Let {Pi} be a tessellation obtained in Definition 3.16, and Fd the set of all

d-dimensional faces of the tessellation. Then Γ acts on Fd with finitely many orbits. �

Proof. We encode a d-dimensional face S0
d (up to a finite choice of orientations) by a

sequence of hyperplanes s⊥
1 , s⊥

2 , . . . s⊥
n−d such that their intersection supports S0

d, plus

an oriented flag as in Theorem 3.15. Using induction, we may assume that up to the

action of Γ there are only finitely many (d+ 1)-dimensional faces. The same inductive

argument as in Theorem 3.15, Step 3 is used to show that the projection of sn−d to Sd+1 :=⋂n−d−1
i=1 s⊥

i has bounded square after multiplying by the denominator. Therefore, there

are finitely many orbits of the group ΓSd+1 := {γ ∈ Γ | γ (Sd+1) = Sd+1} on the set s⊥
n−d ∩ Sd+1

for all sn−d ∈ S, and the reasoning is the same for the oriented flag. �
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3.4 Morrison–Kawamata cone conjecture: birational version

Definition 3.19. The birational Kähler cone of a hyperkähler manifold M is the union

of pullbacks of the Kähler cones under all birational maps M ��� M′, where M′ is also a

hyperkähler manifold. �

Remark 3.20. These birational maps are actually pseudo-isomorphisms [17, Proposi-

tion 4.7; 8, Proposition 4.4], so that the second cohomologies of M and M′ are naturally

identified. We shall sometimes say that the birational Kähler cone is the union of the

Kähler cones of birational models, omitting to mention pullbacks. �

Remark 3.21. All this is a slight abuse of language: the birational Kähler cone is not

what one would normally call a cone (but its closure, the moving cone, or birational nef

cone, is). �

Definition 3.22. An exceptional prime divisor on a hyperkähler manifold is a prime

divisor with negative square (with respect to the BBF form). �

The birational Kähler (or, rather, nef) cone is characterized in terms of prime

exceptional divisors in the same way as the Kähler cone is characterized in terms of

rational curves.

Theorem 3.23 (Huybrechts, [17, Proposition 4.2]). Let η ∈ Pos(M) be an element of a

positive cone on a hyperkähler manifold. Then η is birationally nef if and only if q(η, E) �
0 for any exceptional divisor E . �

Remark 3.24. In other words, the faces of birational Kähler cone are dual to the classes

of exceptional divisors. �

Theorem 3.25 (Markman). For each prime exceptional divisor E on a hyperkähler man-

ifold, there exists a reflection rE ∈ O(H2(M, Z)) in the monodromy group, fixing E⊥. �

Proof. In the projective case, this is [25, Theorem 1.1]. The nonprojective case reduces to

this by deformation theory. Indeed, as we shall show in the next section (Theorem 4.10),

a prime exceptional divisor deforms locally as long as its cohomology class stays of

type (1, 1) (and its small deformations are obviously prime exceptional again): in fact,

this also has already been remarked by Markman in [25]), but he restricted himself to the

projective case. Any hyperkähler manifold (M, I ) has a small deformation (M, I ′) which

is projective. The divisor E deforms to E ′ on (M, I ′), so one obtains a reflexion r′
E = rE ∈
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O(H2(M, Z)) in the monodromy group (the monodromy being of topological nature, it is

deformation-invariant in a tautological way). �

Definition 3.26. Such a reflection is called a divisorial reflection. �

Definition 3.27. An exceptional chamber, or a Weyl chamber on a hyperkähler manifold

is a connected component of Pos(M)\E⊥, where E⊥ is a union of all planes e⊥ orthogonal

to all prime exceptional divisors e. �

Remark 3.28. An exceptional chamber is a fundamental domain of a group generated

by divisorial reflections. The birational Kähler cone is a dense open subset of one of the

exceptional chambers, which we shall call birational Kähler chamber. �

Theorem 3.29 (Markman). Let (M, I ) be a hyperkähler manifold, and MonHdg
(M, I ) a

subgroup of the monodromy group fixing the Hodge decomposition on (M, I ). Then the

image of Bir(M, I ) in the orthogonal group of the Picard lattice is the group of all γ ∈
MonHdg

(M, I ) preserving the birational Kähler chamber KahB . �

Proof. Please see [24, Lemma 5.11 (6)]. The proof of Theorem 3.29 is similar to the proof

of Theorem 3.13. �

Now we can generalize the birational Morrison–Kawamata cone conjecture

proved by Markman for projective hyperkähler manifolds [24, Theorem 6.25].

Theorem 3.30. Let (M, I ) be a hyperkähler manifold, and Bir(M, I ) the group of bira-

tional automorphisms of (M, I ). Then Bir(M, I ) acts on the set of faces of the birational

nef cone with finite number of orbits. �

Proof. Step 1: let δ be the discriminant of a lattice H2(M, Z), and E an exceptional

divisor. Then |E2| � 2δ. Indeed, otherwise, the reflection x −→ x − 2 q(x,E)

q(E,E)
E would not be

integral.

Step 2: the group of isometries of a lattice Λ acts with finitely many orbits on

the set {l ∈ Λ | l2 = x} for any given x (Theorem 3.14), and the monodromy group is of

finite index in the isometry group of the lattice H2(M, Z). Therefore, MonHdg
(M, I ) is of

finite index in the isometry group of the Picard lattice and so all classes of exceptional

divisors belong to finitely many orbits of MonHdg
(M, I ).

Step 3: we repeat the argument of Theorem 3.15 to show that MonHdg
(M, I ) acts

with finite number of orbits on the set of faces of all exceptional chambers. It suffices

 at H
igher School of E

conom
ics on M

arch 4, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Rational Curves on Hyperkähler Manifolds 13027

to show that it acts with finitely many orbits on the set of full flags Ps−1 ⊃ Ps−2 ⊃ · · · ⊃
P1 (notations as in the proof of Theorem 3.15) formed by intersections of orthogonal

hyperplanes to the classes of exceptional divisors. Using the fact that the squares of

those classes are bounded in absolute value by C = 2δ, we show that Ps−2 is described

inside Ps−1 as y⊥
1 where y1 is integral and |y2

1 | � C 3, Ps−3 is defined in Ps−2 as y⊥
2 , where

y2 is integral and |y2
1 | � C 9, and so on. We deduce by Theorem 3.14 that O(Λ) acts with

finitely many orbits on the set of such full flags.

Step 4: thus, MonHdg
(M, I ) acts with finite number of orbits on the set of faces

of all exceptional chambers. For each pair of faces F, F ′ of a birational Kähler cone and

w ∈ O(Λ) mapping F to F ′, w maps KahB to itself or to an adjoint Weyl chamber K ′. Then

K ′ = r(K), where r is the reflection fixing F ′. In the first case, w ∈ Aut(M). In the second

case, rw maps F to F ′ and maps KahB to itself, hence rw ∈ Aut(M). Therefore, there are

as many orbits of MonHdg
(M, I ) on the faces of exceptional chambers as there are orbits

of Bir(M, I ). �

4 Deformation Spaces of Rational Curves

By a rational curve on a manifold X, we mean a curve C ⊂ X such that its normalization

is P1; in other words, the image of a generically injective map f : P1 → X. Let Mor(P1, X)

denote the parameter space for such maps. Then by deformation theory (see [22]), one has

dim[ f ](Mor(P1, X)) � χ( f∗(T X)) = −KXC + dim(X),

so that if H denotes the space of deformations of C in X, then

dim(H) � −KXC + dim(X) − 3.

A rational curve on an m-fold with trivial canonical class must, therefore, move in a

family of dimension at least m − 3.

The following observation due to Z. Ran states that on holomorphic symplectic

manifolds, this estimate can be slightly improved.

Theorem 4.1. Let M be a hyperkähler manifold of dimension 2n. Then any rational curve

C ⊂ M deforms in a family of dimension at least 2n− 2. �

Proof. See [30, Corollary 5.2]. Alternatively (we thank Eyal Markman for this argument),

one may note that an extra parameter is due to the existence of the twistor space Tw(M).

This is a complex manifold of dimension n+ 1, fibered over P1 in such a way that M is
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one of the fibers, and the other fibers correspond to the other complex structures coming

from the hyperkähler data on M. The map f , seen as a map from P1 to Tw(M), deforms

in a family of dimension at least n+ 1. But all deformations have image contained in M

since the neighboring fibers contain no curves at all by [33], and the rational curves with

dominant projection to P1 belong to a different cohomology class. �

Before making the following observation, let us recall a few definitions.

Definition 4.2. A complex analytic subvariety Z of a holomorphically symplectic man-

ifold (M,Ω) is called holomorphic Lagrangian if Ω|Z = 0 and dimC Z = 1
2 dimC M, and

isotropic if Ω|Z = 0 (since Ω is nondegenerate, this implies dimC Z � 1
2 dimC M). It is

called coisotropic if Ω has rank 1
2 dimC M − codimC Z on T Z in all smooth points of

Z , which is the minimal possible rank for a (2n− p)-dimensional subspace in a 2n-

dimensional symplectic space.

Let now Z be a compact Kähler manifold covered by rational curves. By [10],

there is an almost holomorphic fibration R : Z ��� Q, called the rational quotient of Z ,

such that its fiber through a sufficiently general point x consists of all y which can be

joined from x by a chain of rational curves. That is, the general fiber of R is rationally

connected. It is well known that rationally connected manifolds do not carry any holo-

morphic forms, and it follows from [10] that they are projective. �

Remark 4.3. By a theorem due to Graber, Harris, and Starr in the projective setting, the

base Q of the rational quotient is not uniruled; this is also true in the compact Kähler

case (the reason being that the total space of a family of rationally connected varieties

over a curve is automatically algebraic, so that the arguments of Graber–Harris–Starr

apply), but we shall not need this. �

Theorem 4.4. Let M be a hyperkähler manifold, C ⊂ M a rational curve, and Z ⊂ M be an

irreducible component of the locus covered by the deformations of C in M. Then Z is a

coisotropic subvariety of M. The fibers of the rational quotient of the desingularization

of Z have dimension equal to the codimension of Z in M. �

Proof. We want to prove that at a general point of Z , the restriction of the symplectic

form Ω to T Z has kernel of dimension equal to k= codim(Z). Recall that this kernel

cannot be of dimension greater than k by nondegeneracy of Ω, and the equality means

that Z is coisotropic.
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Let h : Z ′ → Z be the desingularization. The manifold Z ′ is covered by rational

curves which are lifts of deformations of C . By dimension count, through a general point

p of Z ′, there is a family of such curves of dimension at least k − 1. In fact, any rational

curve through p deforms in a family of dimension at least k − 1, as seen by projecting

it to M and applying Theorem 4.1. Take a minimal rational curve C ′ through p, then its

deformations through p cover a subvariety of dimension at least k. This is because by

bend-and-break, there is only a finite number of minimal rational curves through two

general points (note that bend-and-break applies here since all rational curves through

p are in the fiber of the rational quotient, and this fiber is projective). This means that the

fibers of the rational quotient fibration R : Z ′ ��� Q′ are at least k-dimensional. But any

holomorphic form on Z ′ is a pullback of a holomorphic form on Q′ (since the rationally

connected varieties do not carry any holomorphic m-forms for m > 0). So the tangent

space to the fiber of R through p is in the kernel of h∗(Ω), and thus, the kernel of Ω|T Z

at h(p) is of dimension k, and the same is true for the fiber of R through p. �

In the above argument, we have called a curve C ⊂ Z minimal if it is a ratio-

nal curve of minimal degree (say, with respect to the Kähler form from the hyperkähler

structure) through a general point of Z .

Corollary 4.5. If deformations of a rational curve C in M cover a divisor Z , then C is a

minimal rational curve in this divisor. �

Proof. Indeed by Theorem 4.4, there is no other rational curve through a general point

of Z . �

Corollary 4.6. Minimal rational curves on holomorphic symplectic manifolds deform in

a (2n− 2)-parameter family. �

Proof. This is obvious from the proof of Theorem 4.4. Indeed, if the deformations

of a minimal C cover a subvariety Z of codimension k, then these deformations form

a family of dimension k − 1 + dim(Z) − 1 = k − 1 + 2n− k − 1 = 2n− 2, since there is a

k − 1-parametric family of them through the general point of Z . �

Remark 4.7. These results have well-known analogs (which are consequences of the

work by Wierzba and Kaledin) in the case when Z is contractible, that is, one has a

birational morphism π : M → Y whose exceptional set is Z . The image of Z by π replaces

the base of the rational quotient. In the case when, moreover, Z is a divisor, the fibers
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of π are one-dimensional and therefore are trees of smooth rational curves by Grauert–

Riemenschneider theorem. In general, it is not obvious whether the minimal rational

curves are smooth. In one important case, though, they are smooth: namely when Z is a

negative-square divisor on M. The reason is that one can deform the pair (M, Z) so that

M becomes projective (see below), and then use results by Druel from [13] to reduce to

the contractible case.

In this case, the inverse image of the tangent bundle TM on the normalization of

a minimal rational curve C splits as follows

f∗TM =O(−2) ⊕ O(2) ⊕ O ⊕ · · · ⊕ O.

This is because it should be isomorphic to its dual (by the pullback of the symplectic

form), have at most one negative summand, and contain TP1 as a subbundle. This also

remains true when the normalization map of C is an immersion. In general, there are

problems related to the singularities (for instance, as soon as there are cusps, TP1 is only

a subsheaf and not a subbundle of f∗TM), and it is not obvious how to avoid them in

order to get a similar splitting, which one would like to be f∗TM =O(−2) ⊕ O(2) ⊕ O⊕k ⊕
(O(−1) ⊕ O(1))⊕l . �

Corollary 4.8. If C is minimal, any small deformation Mt of M = M0 such that the dual

class z of C stays of type (1, 1) on Mt, contains a deformation of C . �

Proof. Consider the universal family M→ Def(M) of small deformations of M = M0.

The t ∈ Def(M) such that z is of type (1, 1) on Mt form a smooth hypersurface in Def(M)

(if one identifies the tangent space to Def(M) at 0 with H1(M, TM) ∼= H1(M,Ω1
M), then

the tangent space to this hypersurface is the hyperplane orthogonal to z). Now let C →
Def(M) be the family of deformations of C in M: the image of C in Def(M) is a subvariety

by Grauert’s proper mapping theorem, and it suffices to prove that it is a hypersurface.

This is a simple dimension count. Indeed, one obtains from Riemann–Roch theorem,

as in the proof of Theorem 4.1, that C deforms in a family of dimension at least 2n−
3 + dim(Def(M)). Since the deformations of C inside any Mt form a family of dimension

2n− 2 (when nonempty), the conclusion follows. �

Corollary 4.9. If C is minimal, any deformation of M = M0 such that the corresponding

homology class remains of type (1, 1), has a birational model containing a rational curve

in that homology class. �

 at H
igher School of E

conom
ics on M

arch 4, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Rational Curves on Hyperkähler Manifolds 13031

Proof. This is the same argument as in the previous corollary, but we have to consider

the universal family over Teichz(M)0, where Teich(M)0 is the connected component of

Teich(M) containing the parameter point for our complex manifold M0, and Teichz(M)0 is

the part of it where z remains of type (1, 1). Birational models appear since Teichz(M) is

not Hausdorff, so that a subvariety of Teichz(M)0 of maximal dimension is not necessar-

ily equal to Teichz(M)0; on the other hand, it is known by the work of Huybrechts that

unseparable points of Teichz(M) correspond to birational complex manifolds. �

The deformations of a minimal C as above are obviously minimal on the neigh-

boring fibers (indeed, new effective classes only appear on closed subsets of the param-

eter space). However, globally, a limit of minimal curves does not have to be minimal, at

least a priori; it can also become reducible (and in fact does so in many examples). The

deformation theory of nonminimal curves is not as nice as described in Corollary 4.8. For

instance, in an example from [1], credited by the authors to Claire Voisin, there is a holo-

morphic symplectic 4-fold X containing a lagrangian quadric Q, and rational curves of

type (1, 1) on Q deform only together with Q, that is over a codimension-two subspace of

the base space, as follows from [36]. However, this problem disappears, at least locally,

in the case when the dual class z is negative divisorial, that is, when q(z, z) < 0 and z is

Q-effective.

Theorem 4.10 is due to Markman in the projective case.

Theorem 4.10. Let z be a negative (1, 1)-class on M which is represented by an irre-

ducible divisor D. Then z is effective on any deformation Mt where it stays of type (1, 1),

and represented by an irreducible divisor on an open part of this parameter space. �

Proof. By [8], D is uniruled. By Theorem 4.4, there is only one dominating family of

rational curves on D. Take a general member C in this family. We have seen that it

deforms on all neighboring Mt, yielding rational curves Ct. In particular, its dual class is

proportional (with some positive coefficient) to that of D, since both stay of type (1, 1) on

the same small deformations of M; therefore, C D < 0 and all deformations of C in M stay

inside D. We claim that the deformations of Ct on Mt also cover divisors on Mt, which

have then to be deformations of D. Indeed, let Zt be the subvariety of Mt covered by the

curves Ct. Suppose it is not a divisor for all t. Since the dimension jumps over closed

subsets of the parameter space, one has an open subset U of such t. By Theorem 4.4,

through a general point of Zt, t ∈ U, there is a positive-dimensional family of curves Ct.

Now consider a parameter space for the following triples over T : {(Ct, x, C ′
t) : x ∈ Ct ∩ C ′

t}.
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The dimension of its fibers over t ∈ U is strictly greater than the dimension of the central

fiber, and this is a contradiction.

Therefore, D deforms everywhere locally. Now consider the universal family M
over Teichz, and the “universal divisor” D in this family. The image of D is a subvariety

in Teichz, of the same dimension as Teichz. This means that any deformation of M pre-

serving the type (1, 1) of z has a birational model such that z is effective. As birational

hyperkähler manifolds differ only in codimension two, the theorem follows. �

Corollary 4.11. A negative class z∈ H2(M, Z) is effective (or not effective) simultane-

ously in all complex structures where it is of type (1, 1) and generates the Picard group

over Q. �

Proof. If the only integral (1, 1)-classes are rational multiples of z, one cannot have

more than one effective divisor on M: indeed, if D and D′ are prime effective divisors

and q(D, D′) < 0, then D = D′ (if not, remark that by definition q(D, D′) is obtained by

integration of a positive form over D ∩ D′). In particular, every effective divisor is irre-

ducible. Now apply the previous theorem. �

When one wants to deform curves rather than divisors, the notion of a minimal

curve that we have used above is not quite natural since it depends, a priori, on the

subvariety Z ⊂ M covered by deformations of the curve, and not only on the complex

manifold M itself. In the projective setting, one typically considers rational curves gen-

erating an extremal ray of the Mori cone: the class of such a curve is extremal in the

sense of the Introduction. In the nonprojective setting, the following notion of extremal-

ity looks better behaved.

Definition 4.12. Let X be a Kähler manifold and z an integral homology class of type

(1, 1). We say that z is minimal if the intersection of z⊥ with the boundary of the Kähler

cone contains an open subset of z⊥. �

An example, due to Markman, [25], shows that a limit of minimal (or extremal)

curves does not have to be minimal (extremal).

Example 4.13 ([25, Example 5.3]). Let X0 be an intersection of a quadric and a cubic in P4

with one double point. The resolution p : X0 → X0 is a K3 surface, and p∗H + 2E , where

H is a hyperplane section and E is the exceptional curve, is not minimal (or extremal).

Now deform X0 to a smooth nonprojective K3 surface Xt in such a way that only the
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multiples of p∗H + 2E survive in H1,1. Since p∗H + 2E is a (−2)-class, it is easy to show

that those are effective. They are obviously extremal (and minimal, too). �

In what follows (Definition 5.10), we shall define the MBM classes as integral

homology classes which are minimal modulo monodromy and birational equivalence.

We shall show that this notion is deformation-invariant, and that if a class is MBM, then

the intersection of its orthogonal hyperplane and the positive cone is a union of faces

of Kähler–Weyl chambers (Theorems 6.2 and 5.13). It is an interesting question whether

the notions of minimality and extremality are equivalent for hyperkähler manifolds.

Minimal classes are extremal, and it follows from our proofs that minimal classes are

effective up to a rational multiple and represented by rational curves, as it is the case

of extremal rays in the Mori theory. But extremal classes do not, a priori, have to be

minimal, since extremal rays of the cone of curves could accumulate. One can conjecture

that in real life it never happens (as this is true in the projective case by [15]).

5 Twistor Lines in the Teichmüller Space

5.1 Twistor lines and three-dimensional planes in H2(M, R)

Recall that any hyperkähler structure (M, I, J, K, g) defines a triple of Kähler forms

ωI , ωJ, ωK ∈ Λ2(M) (Section 2.1). A hyperkähler structure on a simple hyperkähler mani-

fold is determined by a complex structure and a Kähler class (Theorem 2.2).

Definition 5.1. Each hyperkähler structure induces a family S ⊂ Teich of deformations of

complex structures parameterized by CP 1 (Section 2.1). The curve S is called the twistor

line associated with the hyperkähler structure (M, I, J, K, g). �

We identify the period space Per with the Grassmannian of positive oriented

2-planes in H2(M, R) (Proposition 2.10). For any point l ∈ S on the twistor line, the corre-

sponding two-dimensional space Per(l) ∈ Per is a 2-plane in the three-dimensional space

〈ωI , ωJ, ωK〉. Therefore, 〈ωI , ωJ, ωK〉 is determined by the twistor line S uniquely, as the

linear span of the planes in Per(S).

We call two hyperkähler structures equivalent if one can be obtained from the

other by a homothety and a quaternionic reparameterization:

(M, I, J, K, g) ∼ (M, hIh−1, hJh−1, hKh−1, λg)

for h∈ H∗, λ ∈ R>0. Clearly, equivalent hyperkähler structures produce the same twistor

lines in Teich. However, a hyperkähler structure is determined by a complex structure,
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which yields a two-dimensional subspace Per(I ) = 〈ωJ, ωK〉 in H2(M, R), and a Kähler

structure ωI , as in Theorem 2.2. The form ωI can be reconstructed up to a constant from

the three-dimensional space 〈ωI , ωJ, ωK〉 and the plane Per(I ). This proves the following

result, which is essentially a form of Calabi–Yau theorem.

Claim 5.2. Let (M, I, J, K, g) be a hyperkähler structure on a compact manifold, and S ⊂
Teich the corresponding twistor line. Then S is sufficient to recover the equivalence class

of (M, I, J, K, g). �

Proposition 5.3. Let S ⊂ Teich be a twistor line, W ⊂ H2(M, R) be the corresponding

three-dimensional plane W := 〈ωI , ωJ, ωK〉, and z∈ H2(M, R) a nonzero real cohomology

class. Then S lies in Teichz if and only if W⊥z. �

Proof. By definition, Teichz is the set of all I ∈ Teich such that the 2-plane Per(I ) is

orthogonal to z. However, any point of Per(S) lies in W, hence all points in S belong to

Teichz whenever W⊥z. Conversely, the planes corresponding to points in Per(S) generate

W, so that W is orthogonal to z if all those planes are. �

5.2 Twistor lines in Teichz

Remark 5.4. Let z∈ H1,1(M, I ) be a nonzero cohomology class on a hyperkähler mani-

fold (M, I ), TeichI the connected component of the Teichmüller space containing I , and

Teichz the set of all J ∈ TeichI such that z is of type (1, 1) on (M, J). Given a Kähler

form ω on (M, I ) such that q(ω, z) = 0, consider the corresponding hyperkähler struc-

ture (M, I, J, K), and let S ⊂ Teich be the corresponding twistor line. By Proposition 5.3,

S lies in Teichz. �

In other words, there is a twistor line on Teichz through the point I if and only if

z is orthogonal to a Kähler form on (M, I ).

Definition 5.5. In the assumptions of Remark 5.4, let WS := 〈ωI , ωJ, ωK〉 be a three-

dimensional plane associated with the hyperkähler structure (M, I, J, K), and S ⊂ Teichz

the corresponding twistor line. The twistor line S is called z-GHK (z-general hyperkähler)

if W⊥ ∩ H2(M, Q) = 〈z〉. �

The utility of z-GHK lines is that they can be lifted from the period space to Teichz

uniquely, if Teichz contains a twistor line (Proposition 5.12). For other twistor lines, such

a lift, even if it exists, is not necessarily unique because of nonseparable points, but a

z-GHK line has to pass through a Hausdorff point of Teichz.
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Claim 5.6. Let z∈ H1,1(M, I ) be a nonzero cohomology class on a hyperkähler mani-

fold (M, I ). Assume that (M, I ) admits a Kähler form ω such that q(ω, z) = 0. Then (M, I )

admits a z-GHK line. �

Proof. Let z⊥ ⊂ H1,1
I (M, R) be the orthogonal complement of z. The set of Kähler classes

is nonempty and open in z⊥. For each integer vector z1 ∈ H2(M, Z), noncollinear with z,

the orthogonal complement z⊥
1 intersects with z⊥ transversally. Removing all the hyper-

planes z⊥ ∩ z⊥
1 from z⊥, we obtain a dense set which contains a Kähler form ω1, such that

ω⊥
1 contains none of the integer vectors z1. The hyperkähler structure associated with I

and ω1 satisfies W⊥ ∩ H2(M, Q) = 〈z〉, because W � ω1, and ω⊥
1 ∩ H2(M, Q) = 〈z〉. �

The following result is easy to prove, however, we give a reference to [34], where

the proof is spelled out in a situation which is almost the same as ours.

Claim 5.7. Let S ⊂ Teichz be a twistor line, associated with a three-dimensional sub-

space W ⊂ H2(M, R). Then the following assumptions are equivalent.

(i) S is a z-GHK line.

(ii) For all l ∈ S, except a countable number, the space H1,1(Ml, Q) is generated

by z, where Ml is the manifold corresponding to l.

(iii) For some w ∈ W, the space of rational classes in the orthogonal complement

w⊥ ⊂ H2(M, R) is generated by z. �

Proof. [34, Claim 5.4] �

Given a z-GHK line S, we may chose a point l ∈ S where H1,1(Ml, Q) = 〈z〉. For

this point, the Kähler cone coincides with the positive cone by Theorem 1.9. Indeed, Ml

contains no curves, as the class z, being orthogonal to a Kähler form, cannot be effective.

Choosing a different Kähler form in Pos(Ml) ∩ z⊥, we obtain a different twistor line in

Teichz, intersecting S. It was shown that such a procedure can be used to connect any

two points of Teichz, up to nonseparatedness issues (in [34], it was proved for the whole

Teich, but for Teichz the argument is literally the same).

Proposition 5.8. Let x, y∈ Teichz. Suppose that Teichz contains a twistor line. Then a

point x̃ nonseparable from x can be connected to a point ỹ nonseparable from y by a

sequence of at most five sequentially intersecting z-GHK lines. �
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Proof. From [34, Proposition 5.8], it follows that any two points a= Per(x), b = Per(y)

in the period domain Per(Teichz) can be connected by at most five sequentially inter-

secting z-GHK lines. Moreover, the intersection points can be chosen generic, in par-

ticular, separable. Lifting these z-GHK lines to Teichz, we connect a point x̃ in Per−1
(x)

to a point ỹ in Per−1
(y) by a sequence of at most five sequentially intersecting z-GHK

lines. However, these preimages are nonseparable from x, y by the global Torelli theorem

(Theorem 2.16). �

Remark 5.9. Clearly, if our twistor line already passes through x, we can connect x itself

to a ỹ nonseparable from y. �

5.3 Twistor lines and MBM classes

As we have already mentioned in the Introduction, the Bogomolov–Beauville–Fujiki form

identifies the rational cohomology and homology of a hyperkähler manifold M, induc-

ing an injective map q : H2(M, Z) → H2(M, Z). Since q is not necessarily unimodular, this

map is not an isomorphism over Z. However, it is an isomorphism over Q, and we shall

identify H2(M, Q) with H2(M, Q) without further comment (in particular, we shall often

view the classes in H2(M, Z) as rational classes in H2). The only exception to this rule is

the notion of effectiveness: an effective homology class is a class of a curve, whereas an

effective cohomology class is a class of an effective divisor.

Definition 5.10. A negative integral homology class η ∈ H2(M, Z) is called an MBM class

if some image of η under monodromy contains in its orthogonal a face of the Kähler cone

of some birational hyperkähler model M′. �

To study the MBM classes, it is convenient to work with hyperkähler manifolds

which satisfy rkPic(M) = 1, with Pic(M) ⊂ H2(M, Z) generated over Q by η. Here, η is

considered as an element of H2(M, Q), identified with H2(M, Q) as above. In this case, M

is clearly nonalgebraic since η is negative.

Theorem 5.11. Let (M, I ) be a hyperkähler manifold, such that Pic(M, I ) = 〈z〉, where z∈
H1,1(M, I ) is a nonzero negative class. Then the following statements are equivalent.

(i) The class ±z is Q-effective.

(ii) The class ±z is extremal.

(iii) The Kähler cone of (M, I ) is not equal to its positive cone.
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(iv) The class z is minimal, in the sense of Definition 4.12.

(v) The class z is MBM. �

Proof. First, the equivalence of (i) and (ii) is clear since the cone of curves on M consists

of multiples of ±z if it is Q-effective and is empty otherwise.

The equivalence of (i) and (iii) is proved as follows: first, for signature reasons

one can find a positive class α with q(α, z) = 0, and if ±z is Q-effective then α cannot be

Kähler. The converse follows by Huybrechts–Boucksom’s description of the Kähler cone,

see Theorem 1.9 (if ±z is not Q-effective, then there are no curves at all, in particular, no

rational curves, and thus any positive class is Kähler).

Finally, let us show the equivalence of (iii)–(v).

If Kah(M, I ) �= Pos(M, I ), then by Huybrechts–Boucksom the Kähler cone has

faces supported on hyperplanes of the form x⊥, where x is a class of a rational curve.

However, the only integral (1, 1)-classes on (M, I ) are multiples of z, so such a face can

only be z⊥. In this case, z must be minimal; this proves (iii) ⇒ (iv). The implication (iv)

⇒ (v) is a tautology. Finally, if Kah(M, I ) = Pos(M, I ), there are no minimal classes and

no nontrivial birational models of M, so there cannot be any MBM classes either, which

proves (v) ⇒ (iii). �

In general, the notion of an MBM class is much more complicated, but one can

hope to study them by deforming to the case we have just described. This is, indeed, what

we are going to do, using Proposition 5.8 as a key tool. The following useful proposition,

which allows one to identify generic positive three-dimensional subspaces of H2(M, R)

and twistor lines, is an illustration of our method.

Proposition 5.12. Let z∈ H2(M, Q) be a nonzero vector, such that Teichz contains a

twistor line, and W ⊂ z⊥ a three-dimensional positive subspace of H2(M, R) which sat-

isfies W⊥ ∩ H2(M, Q) ⊂ 〈z〉. Then there exists a z-GHK twistor line S such that the corre-

sponding three-dimensional space WS ⊂ H2(M, R) is equal to W. �

Proof. Let V ⊂ W be a two-dimensional plane which satisfies

V⊥ ∩ H2(M, Q) ⊂ 〈z〉

(by Claim 5.7(ii), this is true for all planes except at most a countable set). Then V =
Per(I ), where I ∈ Teichz, because the period map is surjective. The space H1,1

Q (M, I ) =
V⊥ ∩ H2(M, Q) is generated by z. Since Teichz contains a twistor line, by Proposition 5.8,

there must be a twistor line through the point I ′ ∈ Teichz which is inseparable from I .
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Now on I ′, z cannot be effective since it is orthogonal to a Kähler form. But this

means that there are no curves on (M, I ′), so the Kähler cone of (M, I ′) is equal to the

positive cone, Teichz is separated at I ′, and I = I ′. Therefore, the Kähler cone of (M, I )

coincides with its positive cone, hence there exists a Kähler form ω on (M, I ) such that

〈V, ω〉 = W. The corresponding hyperkähler structure gives a 3-plane WS = 〈V, ω〉 = W. �

Our strategy in proving the deformation invariance of MBM property is as fol-

lows: we first show that the property of being orthogonal to a Kähler form, modulo

monodromy and birational transformations, is deformation-invariant, and then show

that the MBM classes are exactly those which do not have this property.

Theorem 5.13. Let M be a simple hyperkähler manifold, and z∈ H2(M, Q) a cohomology

class. Suppose that z is orthogonal to a Kähler form on (M, I0), where I0 ∈ Teichz. Then:

(i) for any I ∈ Teichz, there is some I ′ nonseparable from I such that z is orthog-

onal to a Kähler form on (M, I ′).

(ii) on the manifold (M, I ), the class z is orthogonal to an element of a Kähler–

Weyl chamber (i.e., z is orthogonal to γ (α) for some γ in the monodromy

group and α lying in the birational Kähler cone, i.e., Kähler on a birational

model, see Definition 6.1).

(iii) the elements of Kähler–Weyl chambers are dense in the intersection of z⊥ and

the positive cone. �

Proof. (i) By Claim 5.7, there is a z-GHK line through I0. By Proposition 5.8 , I0 is con-

nected to I ′ by a sequence of z-GHK lines. Therefore, on (M, I ′), z is orthogonal to a

Kähler form ω′.

(ii) The group MonHdg
(M, I ) acts transitively on the set of the Weyl chambers (see

[24]; in fact, this easily follows from Theorem 3.25). Let W(I ) denote the fundamental

Weyl chamber, that is, the interior of the birational nef cone. Then there is an element

γ ∈ MonHdg
(M, I ) such that W(I ) = γ W(I ′).

Consider γ̃ which is a lift of γ in the mapping class group ΓI , and the complex

structure γ̃ (I ′). This is again nonseparable from I and I ′ and it carries a Kähler form

γ̃ (ω′), orthogonal to γ (z). Its cohomology class is an element of the birational Kähler

cone of I . The inverse image of this class by γ is orthogonal to z, q.e.d.

(iii) We claim that any positive (1, 1)-class ω which is orthogonal to z but not

to any other rational cohomology class is Kähler modulo monodromy and birational

transforms. Indeed, consider the twistor line L ⊂ Per corresponding to the 3-subspace
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generated by the period of I0 and ω. By Proposition 5.12, it lifts to Teichz as a z-GHK line.

This line does not have to pass through I0, but it passes through some I ′
0 nonseparable

from I0. On this I ′
0, ω is Kähler, and we conclude in the same way as in (ii) that on I0 itself

it is Kähler modulo monodromy and birational equivalence. �

Note that by definition, the property obtained in (iii) expresses exactly the fact

that z is not MBM. We thus obtain the deformation-invariance of MBM classes.

Corollary 5.14. A negative class z is MBM or not simultaneously in all complex struc-

tures where it is of type (1, 1). �

Corollary 5.15. An MBM class is ±Q-effective and represented by a rational curve (up

to a scalar) on a birational model of (M, I ). �

Proof. We have seen that such is the case (even on (M, I ) itself) when z generates the

Picard group over Q. The rest follows by deformation invariance of MBM property and

the results on deformations of minimal rational curves in Section 4. �

Putting all we have done in this section together, we arrive at the following.

Theorem 5.16. Let M be a simple hyperkähler manifold, and z∈ H2(M, Q) a homology

class. Then the following statements are equivalent.

(i) The space Teichz (the subset of all I ∈ Teich such that z lies in H1,1(M, I )) con-

tains a twistor line.

(ii) For each I ∈ Teichz, there exists I ′ ∈ Teichz nonseparable from I which is con-

tained in a twistor line.

(iii) For each I ∈ Teichz with Picard number one, ±z is not effective;

(iv) For some I ∈ Teichz with Picard number one, ±z is not effective;

(v) z is not MBM.

Moreover, in the items (iii) and (iv), one can replace “±z is not effective” by “(M, I ) con-

tains no rational curves”. �

Proof. The implication (i) ⇒ (ii) follows from Proposition 5.8. If (ii) holds, then there

is I ′ nonseparable from I such that z is orthogonal to a Kähler form on I ′, but as we

have already seen, one then has Kah(I ′) = Pos(I ′) and I = I ′, so z cannot be effective on I ′,

hence (iii). (iii) ⇒ (iv) is obvious. To get (i) from (iv), note that Kah(I ) = Pos(I ), so there are

Kähler classes orthogonal to z on (M, I ). This implies existence of twistor lines in Teichz.
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The property (v) is equivalent to (iv) since these properties are deformation-invariant,

and the equivalence for complex structures with Picard number one has already been

verified. Finally, if z is effective on (M, I ) with Picard number one, it is automatically

represented by a rational curve. Indeed, otherwise, there are no rational curves at all,

so the Kähler cone should be equal to the positive cone, but one easily finds a positive

(1, 1)-form orthogonal to z. �

6 Monodromy Group and the Kähler Cone

In this section, we prove the results on the Kähler cone stated in the Introduction.

6.1 Geometry of Kähler–Weyl chambers

Definition 6.1. Let (M, I ) be a hyperkähler manifold, and MonHdg
(M, I ) the group of

all monodromy elements preserving the Hodge decomposition on (M, I ). A Kähler–Weyl

chamber of a hyperkähler manifold is the image of the Kähler cone of M′ under some

γ ∈ MonHdg
(M, I ), where M′ runs through the set of all birational models of M. �

Theorem 6.2. Let (M, I ) be a hyperkähler manifold, and S ⊂ H1,1(M, I ) the set of all

MBM classes in H1,1(M, I ). Consider the corresponding set of hyperplanes S⊥ := {W =
z⊥ | z∈ S} in H1,1(M, I ). Then the Kähler cone of (M, I ) is a connected component of

Pos(M, I )\S⊥, where Pos(M, I ) is a positive cone of (M, I ). Moreover, the connected com-

ponents of Pos(M, I )\S⊥ are Kähler–Weyl chambers of (M, I ). �

Proof. First, none of the classes v ∈ W, W ∈ S⊥ belong to interior of any of the Kähler–

Weyl chambers: indeed, it follows from Theorem 5.13 that if v ∈ W is in the interior

of a Kähler–Weyl chamber, then the classes belonging to the interior of Kähler–Weyl

chambers are dense in W so W �∈ S⊥.

It remains to show that any connected component of Pos\S⊥ is a Kähler–Weyl

chamber.

Consider now a cohomology class v /∈ S⊥, and let W = 〈Re Ω, Im Ω, v〉 be the

corresponding three-dimensional plane in H2(M, R). We say that v is KW-generic if

W⊥ ∩ H1,1(M, Q) is at most one-dimensional. Denote by W the set of nongeneric (1, 1)-

classes. Clearly, W is a union of codimension two hyperplanes, hence removing W from

Pos\S⊥ does not affect the set of connected components.
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We are going to show that any v ∈ Pos(M, I )\(W ∩ S⊥) belongs to the interior of a

Kähler–Weyl chamber. This would imply that the connected components of Pos(M, I )\S⊥

are Kähler–Weyl chambers, finishing the proof of Theorem 6.2.

Since v is KW-generic, and not in S⊥, the space W⊥ ∩ H1,1(M, Q) contains no MBM

classes. This implies that Teichz is covered by twistor lines, where z is a generator of

W⊥ ∩ H1,1(M, Q). By Proposition 5.12, there exists a hyperkähler structure (I ′, J, K) such

that W is the corresponding three-dimensional plane 〈ωI ′ , ωJ, ωK〉 and Per(I ′) = Per(I ).

Therefore, v is Kähler on (M, I ′). As we have already seen in the proof of Theorem 5.13,

this implies that v belongs to the interior of a Kähler–Weyl chamber on (M, I ). �

6.2 Morrison–Kawamata cone conjecture and minimal curves

Recall the Theorem 6.3 which follows from the global Torelli theorem.

Theorem 6.3. Let (M, I ) be a hyperkähler manifold, and

Mon(M, I ) ⊂ O(H2(M, Z))

its monodromy group. Let G the image of Aut(M) in O(H2(M, Z)). Then G is the set of all

γ ∈ MonHdg
(M, I ) fixing the Kähler chamber. �

Proof. Similar to the proof of Theorem 3.13 (second part); see [24]. �

Recall also that the image of the mapping class group is a finite index subgroup

in O(H2(M, Z)), and, accordingly, MonHdg
(M, I ) is of finite index in the group of isome-

tries of the Picard lattice.

Let M be a hyperkähler manifold, and s ∈ H2(M, Z) a homology class. The BBF

form defines an injection H2(M, Z)
j

↪→ H2(M, Q), hence q(s, s) can be rational. However,

the denominators of im j are divisors of the discriminant δ of q, hence δ j(s) is always

integer, and δ2q(s, s) ∈ Z.

Conjecture 6.4. Let M be a hyperkähler manifold. Then there exists a constant C > 0,

depending only on the deformation type of M, such that for any primitive MBM class s

in H2(M, Z) one has |q(s, s)| < C . �

Remark 6.5. This conjecture is slightly weaker than its following, more algebraic–

geometric version, implicitly appearing in [1]: let M be a hyperkähler manifold. Then

there exists a constant C > 0 such that for any extremal rational curve (of minimal

degree) R on any deformation (M, I ), I ∈ Teich, one has |q(R, R)| < C .
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Indeed, for any primitive integral MBM class s, some integral multiple Ns is rep-

resented by an extremal rational curve R on such a deformation (M, I ) that s generates

its Picard group, by Theorem 5.11. So the boundedness of |q(R, R)| means the bounded-

ness of N plus the boundedness of |q(s, s)|. �

Theorem 6.6. Let M be a hyperkähler manifold. Then Conjecture 6.4 implies the Kähler

version of the Morrison–Kawamata cone conjecture for all deformations of M. �

Proof. Fix a complex structure I on M, and let S(I ) be the set of MBM classes which are

of type (1, 1) on (M, I ). The faces of the Kähler–Weyl chambers are pieces of s⊥, where

s⊥ runs through S(I ). If Conjecture 6.4 is true, the monodromy group MonHdg
(M, I ) acts

on S(I ) with finitely many orbits (Theorem 3.14). Then the argument as in Theorem 3.15

proves that MonHdg
(M, I ) acts on the set of faces of Kähler–Weyl chambers with finitely

many orbits.

Let F be the set of all pairs (F, ν), where F is a face of a Kähler–Weyl chamber,

and ν is orientation on a normal bundle NF . Then the monodromy acts on F with finitely

many orbits, as we have already indicated. Each face of a Kähler cone Kah gives an

element of F: we pick orientation determined by the side of a face adjoint to the cone.

Denote by F0 ⊂ F the set of all faces of the Kähler cone with their orienta-

tions. There are finitely many orbits of MonHdg
(M, I ) acting on F0. However, each γ ∈

MonHdg
(M, I ) which maps an element f ∈ F0 to an element γ ( f) ∈ F0 maps the Kähler

chamber to itself. Indeed, there are two Kähler–Weyl chambers adjoint to each face,

and γ (Kah) is one of the two chambers adjoint to γ ( f). But since the orientation is pre-

served, γ (Kah) = Kah and not the other one. Therefore, γ is induced by an automorphism

of (M, I ). �

For hyperkähler manifolds which are deformation equivalent to the Hilbert

scheme of length n subschemes on a K3 surface, Conjecture 6.4 is easily deduced from

[1, Proposition 2]. Indeed, it is shown there that for M as above and projective, any

extremal ray of the Mori cone contains an effective curve class R with q(R, R) � −n+3
2 .

But if we want to bound the “length” (that is, the square of a minimal representative

curve) of an MBM class on (M, I ), we can look at the extremal rays on projective defor-

mations, because MBM classes are deformation equivalent and the monodromy acts by

isometries. We thus obtain the following.

Corollary 6.7. The Kähler version of Morrison–Kawamata cone conjecture holds for

deformations of the Hilbert scheme of length n subschemes on a K3 surface. �
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