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Abstract 32 
 33 

Nonlinear dendritic integration is thought to increase the computational ability of 34 

neurons. Most studies focus on how supralinear summation of excitatory synaptic responses 35 

arising from clustered inputs within single dendrites result in the enhancement of neuronal 36 

firing, enabling simple computations such as feature detection. Recent reports have shown 37 

that sublinear summation is also a prominent dendritic operation, extending the range of 38 

subthreshold input-output transformations conferred by dendrites. Like supralinear operations, 39 

sublinear dendritic operations also increase the repertoire of neuronal computations, but 40 

feature extraction requires different synaptic connectivity strategies for each of these 41 

operations. In this article we will review the experimental and theoretical findings describing 42 

the biophysical determinants of the three primary classes of dendritic operations: linear, 43 

sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified 44 

neuron models, which provides insight into how dendritic operations influence neuronal 45 

computations. We highlight how neuronal computations are critically dependent on the 46 

interplay of dendritic properties (morphology and voltage-gated channel expression), spiking 47 

threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we 48 

describe how global (scattered) and local (clustered) integration strategies permit the 49 

implementation of similar classes of computations, one example being the object feature 50 

binding problem.  51 
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Introduction 52 
 53 

In order to control behavior, the brain relies on the ability of its neuronal networks to 54 

process information arising from external and internal sources. How single neurons decode 55 

combinations of sensory features and transform them into a spiking output is still unknown, 56 

and represents a subject of intense study. The complexity of the single neuronal coding 57 

problem can be illustrated by the paradoxical finding that neurons exhibiting narrowly tuned 58 

receptive fields often appear to be driven by synaptic inputs that themselves are broadly tuned 59 

(Chadderton et al., 2014). One hypothesis is that nonlinear dendritic transformations are 60 

critical for such neuronal computations. Decades of experimental and modeling studies on 61 

dendrites have led to the consensus that active properties of dendrites are primarily 62 

responsible for nonlinear integration, in particular supralinear operations (Johnston and 63 

Narayanan, 2008; Mel, 1994; Spruston and Kath, 2004). Nonetheless other findings indicate 64 

that sublinear integration of synaptic inputs is possible in multiple neuron types, and results 65 

from either active (Cash and Yuste, 1998; Hu et al., 2010) or passive dendritic properties 66 

(Abrahamsson et al., 2012; Vervaeke et al., 2012). 67 

 68 

What is the evidence that nonlinear dendritic properties contribute to neuronal 69 

computations? Numerical simulations suggest that supralinear dendritic operations are 70 

essential for translation-invariant orientation tuning (Mel et al., 1998) and binocular disparity 71 

tuning (Archie and Mel, 2000), while sublinear dendritic operations contribute to coincidence 72 

detection of auditory stimuli (Agmon-Snir et al., 1998). Recently, state-of-the-art in vivo 73 

recordings have shown that dendritic supralinearities are associated with various other 74 

neuronal computations: formation of hippocampal place fields (Lee et al., 2012), detection of 75 

multi-modal sensory stimuli (Xu et al., 2012), angular tuning of barrel cortex pyramidal 76 

neurons (Lavzin et al., 2012), and enhancement of orientation tuning (Smith et al., 2013). 77 

Sublinear operations have also been shown to underlie orientation selectivity of binocular 78 

neurons in visual cortex in vivo (Longordo et al., 2013). 79 

 80 

Nevertheless, a direct link between the dendritic transformations and the associated 81 

neuronal computations is still lacking. Analytical methods implementing mathematical 82 

approximations of measured dendritic operations can be used to make estimates of the 83 

possible number and type of neuronal computations. For example, binary neuron models were 84 

used to quantify what was previously shown with biophysical models (Mel, 1994), namely 85 

that nonlinear dendrites support a larger number of neuronal computations (Cazé et al., 2013; 86 

Poirazi and Mel, 2001). Such simplifications can provide analytical insight and make testable 87 

predictions as to which computations are made possible by dendritic operations. Moreover, 88 

analytical methods show under which conditions the expanded computational capacities are 89 

generic, i.e. not tied to the specific example parameters of the biophysical model. 90 

 91 
Here we review the biophysical determinants of different classes of dendritic 92 

operations (linear, sublinear and supralinear), how they are measured experimentally, and 93 

finally, using a recently published Boolean-based analysis of equivalent dendritic trees (Cazé 94 

et al., 2013; Cazé et al., 2012, 2014), we review how these operations combine with other 95 

cellular properties to determine neuronal computations. 96 

 97 

Dendritic integration  98 
 99 

Neurons integrate synaptic inputs arriving primarily on dendritic trees carrying 100 

information from presynaptic neurons, by transforming them into synaptic potentials using a 101 
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variety of cell-specific synaptic and cellular mechanisms. During synaptic transmission, the 102 

activation of neurotransmitter-gated conductances results in either a transient depolarization 103 

or hyperpolarization of the postsynaptic membrane potential. When the net depolarization 104 

resulting from synaptic integration of multiple synaptic inputs is greater than the spike 105 

threshold potential, the neuron generates an action potential (AP), or spike. Synaptic 106 

integration is a critical determinant of neuronal computations, the process by which a 107 

postsynaptic neuron transforms presynaptic information (coded in input activation patterns) 108 

into an output signal (encoded in a firing pattern) (Chadderton et al., 2014; Häusser and Mel, 109 

2003; Larkum, 2013; London and Häusser, 2005; Silver, 2010). This review will focus 110 

primarily on the integration of excitatory post-synaptic potentials (EPSPs) mediated by 111 

ionotropic glutamate receptors. 112 

 113 

Dendritic integration can be quantified by comparing the observed depolarization 114 

resulting from the simultaneous activation of the same synaptic inputs (Figure 1B), also called 115 

a compound EPSP, and the arithmetic sum of individual EPSPs (expected membrane 116 

depolarization) (Figure 1C). The dendritic subthreshold input-output (sI/O) relationship is 117 

easily described by plotting observed versus expected depolarizations for different numbers of 118 

co-activated synapses (Figure 1). Mathematical functions can be used to describe the 119 

operation performed. The sI/O relationships fall into three categories of dendritic operations: 120 

1) linear, where the observed depolarization equals the expected depolarization, 2) 121 

supralinear, where the observed depolarization exceeds the expected depolarization (thus 122 

above the linear line; Figure 1D, left), and 3) sublinear, where the observed depolarization is 123 

less than the expected depolarization (thus below the linear line; Figure 1D, right). Much of 124 

the experimental evidence of nonlinear integration suggests dendrites perform supralinear 125 

operations, resulting from the contribution of active dendritic conductances (Johnston and 126 

Narayanan, 2008; Mel, 1994; Spruston, 2008). Recent studies suggest that sublinear 127 

operations could be mediated solely by passive properties (Abrahamsson et al., 2012; 128 

Vervaeke et al., 2012), while other studies have shown that activation of potassium channels 129 

can produce sublinear summation (Cash and Yuste, 1999; Hu et al., 2010). The detailed 130 

biophysical mechanisms determining specific dendritic operations are discussed in depth 131 

below.  132 

 133 

The type of dendritic operation strongly contributes to the nature of the resultant 134 

neuronal computation. For example, co-activation of synapses within a single electrical 135 

compartment that exhibits supralinear integration will produce dendritic voltage signals that 136 

are larger than expected due to amplification by activation of voltage-sensitive channels. This 137 

large depolarization is thereby more likely to drive the neuron to spike threshold. The 138 

resulting sI/O will reflect a neuronal computation that is cluster sensitive (Figure 1E-F, left, 139 

θ1). For a neuron with sublinear dendrites, clustered synaptic activity will be less efficient at 140 

triggering a spike than if the same inputs were distributed in different compartments, thus 141 

promoting computations that are scatter sensitive (Figure 1E-F, right, θ1) (Cazé et al., 2013). 142 

Such neuronal computations enable the discrimination of patterns of synaptic activation with 143 

different levels of spatial and temporal correlations, which could not be otherwise performed 144 

by linear dendrites (Mel, 1992). Nevertheless, it should be noted that the dendritic operation is 145 

insufficient to define the computation, synaptic placement and spike threshold also influence 146 

the final neuronal computation. In Figure 1D-F we show that lowering the spike threshold (θ2) 147 

would restrict the access to only the linear regime of the subthreshold dendritic operation. 148 

Finally, ongoing synaptic activity can occur in the presence of AP firing, and thus constitutes 149 

supra-threshold synaptic integration (Silver, 2010), which we will not address in this review. 150 

 151 
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Biophysical mechanisms influencing synaptic integration  152 
 153 
Effect of passive membrane properties on EPSPs summation 154 

 155 

Because neurons communicate with each other using electrical signals, the analysis of 156 

their signaling properties is generally performed using principles of electrical circuits. A 157 

single compartment equivalent circuit describes well the electrical behavior of a cell without 158 

any dendrite or active properties. Four parameters determine the amplitude and time course of 159 

the EPSP: a transient synaptic conductance (Gsyn), the electromotive force of its ion flux 160 

(driving force), the membrane resistance (specific membrane resistance; Rm), and the specific 161 

membrane capacitance (Cm). The difference between the membrane potential and the reversal 162 

potential for Gsyn sets the driving force (Vm-Erev; Figure 2A, equation (1)), thus as Gsyn 163 

increases, Isyn increases, and Vm becomes more depolarized. For large conductances, Vm 164 

approaches Erev and the driving force is reduced, resulting in decreased current flow for the 165 

same Gsyn (Figure 2A). This results in a sublinear relationship between Gsyn and EPSP size. 166 

Since quantal synaptic conductances are generally small, it is when multiple synapses 167 

activated simultaneously that the driving force decreases sufficiently to produce sublinear 168 

integration (Figure 2C). Therefore, for passive single compartment model cells, synaptic 169 

summation is already essentially sublinear, which was first demonstrated at the 170 

neuromuscular junction (Martin, 1955).  171 

 172 

More complex, but also more realistic, equivalent circuit models take into account 173 

neuronal morphology, such as dendritic arborizations. Wilfrid Rall pioneered the use of such 174 

multi-compartmental equivalent circuit models in order to study synaptic integration in 175 

neurons with passive dendrites. His primary advance was to consider dendrites as electrical 176 

cables (Rall, 1967) that contained an additional parameter, the axial resistance (ra), which 177 

electrically couples multiple elementary single compartment models (Figure 2B). Because 178 

each elementary compartment will allow current to leak across the membrane, the current 179 

injected in the next compartment (across ra) decreases progressively as it travels along the 180 

cable or dendrite, which results in an attenuation of the local EPSP amplitude and a slowing 181 

of its time course. Such dendritic filtering accounts for why local EPSPs in dendrites tend to 182 

be larger and faster than those recorded in the soma. It therefore follows that more distal 183 

synaptic inputs (for a given Gsyn) would result in a progressively smaller somatic 184 

depolarization and thus a smaller influence on the firing output of a neuron (Magee and Cook, 185 

2000; Rinzel and Rall, 1974; Spruston, 2008). Also in dendrites the local input resistance 186 

(RD) or impedance (ZD; to account for the effect of capacitance on fast time-varying inputs) 187 

increases with increasing distance from the soma due to a diminished shunt effect of the soma 188 

and the high resistance of the sealed cable (Rinzel and Rall, 1974). We will henceforth refer 189 

to ZD, since it is the more general form that accounts for the capacitive current dependence on 190 

synaptic conductance time course. It should be noted that at steady state ZD = RD. This 191 

distance-dependent increase in ZD results progressively larger local EPSPs, which in some 192 

morphologies, can combine with an efficient passive propagation of EPSPs to the soma 193 

(transfer impedance), thereby counteracting the distance-dependence reduction in the somatic 194 

EPSP amplitude due to cable filtering (Jaffe and Carnevale, 1999; Nevian et al., 2007; 195 

Schmidt-Hieber et al., 2007). This location independence of EPSP amplitude is also referred 196 

to as passive normalization (Jaffe and Carnevale, 1999). Distance-dependent increases in ZD 197 

are also thought to be important to increase the probability of evoking a local dendritic spike 198 

at distal inputs of basal dendrites of pyramidal neurons, which can then propagate to the soma 199 

(Rudolph and Destexhe, 2003). 200 
 201 
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Rall provided a simple parameter that describes cable filtering: the space constant (λ), 202 

derived from the steady state (λDC) or frequency-dependent (λAC) solution to the cable 203 

equations. It represents the distance along a cable where the membrane potential is 63 % of 204 

the maximal at the site of current injection. Therefore if the dendrite length is longer than λ, 205 

significant cable filtering can be expected; similarly, if the dendritic length is much shorter 206 

than λ then EPSPs propagating to the soma are filtered very little. A critical morphological 207 

parameter determining λ is the dendritic diameter, to which λ is proportional (Figure 2B); 208 

meaning a larger diameter produces a longer λ (Figure 3A, left). For fast synaptic 209 

conductances (rise and decay < 2 ms), the capacitive current acts as a frequency-dependent 210 

shunt and can dramatically alter λ.  In cerebellar molecular layer interneurons, for example, 211 

the frequency-dependent length constant (λAC) can be over a factor of 5 shorter than λDC. 212 

Their thin (~ 0.4 µm diameter), 100 µm long dendrites are electrically compact for steady-213 

state depolarizations (with total length 3 times shorter than λDC, 300 µm). But for rapid 214 

synaptic conductances λAC is 50 µm (half the dendritic length), resulting in significant 215 

dendritic filtering of EPSPs for distances greater than 20 µm (Abrahamsson et al., 2012). 216 

Dendritic branching tends to shorten the space constant, since it effectively decreases the 217 

membrane resistance (acting like a shunt for current flow (Figure 3A, right; Abrahamsson et 218 

al., 2012). It is also worth noting that λ also serves as a rough indicator of the size of effective 219 

dendritic compartments. Synapses located within a distance of λ are more likely to interact 220 

than non-neighboring synapses (Figure 2C; Abrahamsson et al., 2012).  221 

 222 

The influence of passive dendrites on sI/Os 223 

 224 

As described above, sublinear summation of simultaneously occurring EPSPs within 225 

an electrical compartment is a natural consequence of the loss of driving force for synaptic 226 

currents. Dendritic compartments with narrow diameters are particularly sensitive to this due 227 

to a high ZD. Therefore when multiple dendritic synapses are activated simultaneously within 228 

a close proximity (<λ), the local depolarization resulting from the activation of a given 229 

synaptic input will be large, thus decreasing the local driving force, resulting in a sublinear 230 

sI/O (Figure 1D, 2B). As the diameter of the passive dendrite decreases, ZD will increase and 231 

the local EPSPs will be even larger (Abrahamsson et al., 2012). One can use the equation for 232 

RD of an infinite cable to appreciate the influence of dendritic diameter (Figure 2B, equation 233 

3). The larger ZD causes a larger depolarization, thus the sublinear summation of synaptic 234 

inputs will be more prominent with fewer active inputs (Figure 3A, left; see also Rinzel and 235 

Rall, 1974). If the distance of the synapse from the soma increases, the current sink of the 236 

soma, the end effect of the dendrite and/or dendritic tapering will contribute to a distance-237 

dependent increase in ZD, together resulting in more pronounced sublinear sI/O curves 238 

particularly for more distal dendritic compartments (Figure 3A, middle). Finally, the number 239 

of dendritic branch points, despite increasing dendritic filtering, tends to decrease the local ZD 240 

by adding a current sink, thus favoring a more linear sI/O (Figure 3A, right). Gap junctions 241 

have also been shown to reduce sublinear summation by providing a shunting conductance 242 

(Vervaeke et al., 2012). 243 

 244 

Although passive membrane properties are sufficient to produce sublinear dendritic 245 

operations, experimental evidence of such a mechanism has only recently been described 246 

(Abrahamsson et al., 2012; Vervaeke et al., 2012). The authors concluded that the 247 

combination of thin dendrites and low levels of expression of voltage-gated channels favors 248 

sublinear dendritic operations. In these neurons, sublinear summation is apparent even for as 249 

few as two active synapses (Abrahamsson et al., 2012). Synapses activated on separate 250 

dendrites summed linearly, supporting a scatter sensitive neuronal computation 251 
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(Abrahamsson et al., 2012), that was confirmed in a realistic active model of the same neuron 252 

type (Cazé et al., 2013).  253 

 254 

The influence of active dendrites on sI/Os  255 

 256 

The large local synaptic depolarizations produced in dendrites can also recruit the 257 

activation of voltage-dependent channels (NMDARs, Na
+
, Ca

2+
, K

+
 and HCN channels, see 258 

Johnston and Narayanan, 2008; Figure 3B). The number of activated synaptic inputs needed 259 

to engage active conductances is determined, in part, by the passive properties of the dendrite, 260 

the amplitude and kinetics of the synaptic conductance, the voltage-dependence of channel 261 

gating, and the channel density and distribution along the somato-dendritic axis. Active 262 

conductances can either enhance (Migliore and Shepherd, 2002; Williams and Stuart, 2000) 263 

or dampen (Cash and Yuste, 1999; Hu et al., 2010) local dendritic depolarizations, depending 264 

on whether the channels mediate inward (depolarizing) or outward (hyperpolarizing) currents, 265 

respectively. Distance-dependent increases in Ih currents have been shown to compensate for 266 

the temporal slowing caused by dendritic filtering (Magee and Cook, 2000; Williams and 267 

Stuart, 2002). Differential HCN channels expression across mitral cells has also been shown 268 

to increase the membrane noise and lower the rheobase, thus facilitating AP generation 269 

(Angelo and Margrie, 2011). Because of the presence of NMDARs at many glutamatergic 270 

synapses, most studies find that NMDARs activate other voltage-dependent channels by 271 

boosting local synaptic depolarization (Branco and Häusser, 2011; Katona et al., 2011; 272 

Krueppel et al., 2011; Losonczy and Magee, 2006; Makara et al., 2009; Nevian et al., 2007; 273 

Schiller et al., 2000). The resulting dendritic operation is determined by the concurrence of a 274 

passively determined sublinear (Chiovini et al., 2014; Krueppel et al., 2011; Losonczy and 275 

Magee, 2006) or linear operation (Branco and Häusser, 2011), and a supralinear operation.  276 

 277 

In some cases, the activation of some conductances results not only in boosting, but in 278 

a threshold-dependent, all-or-none regenerative response, often called a dendritic spike. This 279 

regenerative behavior is characterized by a steep change in the sI/O followed by a plateau 280 

(Figure 1D and 3B, Larkum, 2013; Losonczy and Magee, 2006; Polsky et al., 2004). Locally-281 

generated dendritic spikes can be mediated by either Na
+
 channels, Ca

2+
 channels or NMDA 282 

receptors (NMDARs). Na
+
-spikes are triggered by high-amplitude local depolarization, are 283 

relatively brief, and can be accompanied by entry of Ca
2+ 

through VGCC or NMDARs. In 284 

pyramidal cells, these dendritic Na
+
 spikes can be generated in most regions of the dendritic 285 

tree, propagate throughout the dendritic tree, albeit with some attenuation, but can still trigger 286 

somatic spiking (Golding and Spruston, 1998; Nevian et al., 2007; Rudolph and Destexhe, 287 

2003). Recent findings have also shown Na
+
-channel dependent spikes in dendrites of dentate 288 

gyrus granule cells (Chiovini et al., 2014). On the other hand, Ca
2+

 and NMDA spikes are 289 

longer, plateau-like events, that are thought to be generated in particular regions of the 290 

dendritic tree, and require the synchronous activation of many clustered synapses. The 291 

biophysical mechanisms of the NMDA spikes and their functional consequences have been 292 

described in detail in a recent review (Major et al., 2013). In cortical pyramidal neurons, the 293 

Ca
2+

 spike is likely to propagate actively from the primary apical dendrite to the soma, 294 

thereby representing a more global dendritic operation, whereas NMDA spikes are locally 295 

restricted to dendritic compartments such as tufts or basal dendrites (Larkum, 2013). In 296 

contrast, simulations of in vivo spontaneous synaptic activity allow glutamate-bound 297 

NMDARs to act as global nonlinearities providing an entirely different computation than 298 

those initiated in single dendrites (Farinella et al., 2014). Nevertheless, several recent in vivo 299 

studies have reported the involvement of local NMDA spikes during sensory processing, 300 

across all layers of the cortex (Gambino et al., 2014; Lavzin et al., 2012; Palmer et al., 2014; 301 
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Smith et al., 2013; Xu et al., 2012). It should also be noted that Polsky et al. (Polsky et al., 302 

2004) pointed out that a Ca
2+

-spike exhibits saturation of the voltage response and thus can 303 

also be considered sublinear for very high stimulation strengths.  304 

 305 

In summary, the modus operandi of supralinear dendritic compartments is comprised 306 

of a continuum of voltage-dependent operations from simple boosting of synaptic 307 

depolarization to regenerative spikes, all within single dendritic compartments. Considering 308 

the biophysical underpinnings of this range of operations, it follows that the interplay of the 309 

active and passive properties of dendrites ultimately determines the shape of the sI/O (Figure 310 

3C). For example, sI/Os of thick dendrites, which have a low ZD, do not suffer from driving 311 

force losses, thus sum linearly for low numbers of activated synapses, then transition into 312 

supralinear summation (Makara and Magee, 2013). Thin dendrites on the other hand may 313 

exhibit sublinear sI/O relationships for only a few inputs, but then easily engage NMDAR and 314 

Ca
2+

 channels (Chiovini et al., 2014; Losonczy and Magee, 2006) with fewer synaptic inputs 315 

than in larger dendrites (Figure 3C). Due to tapering of dendritic width, which increases the 316 

ZD along the dendrite with increasing distance to the soma, the dendritic operations can be 317 

altered as a function of distance from the soma (Branco and Hausser, 2010; Branco and 318 

Häusser, 2011). 319 

 320 

The influence of the size, time course and location of the synaptic conductance on sI/Os  321 

 322 

The strength of synaptic conductance varies from synapse to synapse across neuron 323 

types, but also within neurons. The synaptic strength not only serves to bias the output of a 324 

neuron to particular inputs (Ko et al., 2011), but it can also be tuned to compensate for  325 

dendritic attenuation by passive dendritic properties (Magee, 2000). Synaptic strength 326 

modulates dendritic operations by tuning the gain (slope) and shape of the sI/O by engaging 327 

sub- and supralinear transformations with different numbers of synaptic inputs (Figure  3D). 328 

Larger synaptic conductances will lead to larger dendritic depolarizations, and in turn either a 329 

larger reduction in driving force or increased activation of voltage-gated conductances. 330 

Depending on the intrinsic membrane properties and synaptic conductance amplitude the 331 

“linear regime” may be more or less prominent in the sI/O relationship.  332 

 333 

The temporal window for synaptic interactions depends ultimately on the time course 334 

of local EPSPs, which is itself shaped by the local passive dendritic properties and the time 335 

course of the synaptic conductance (Jonas, 2000). Although the local dendritic EPSPs are 336 

larger than those at the soma, it is important to note that their time course is generally much 337 

faster, due to charge redistribution down the dendrite (Schmidt-Hieber et al., 2007). The 338 

degree to which nonlinear mechanisms are engaged during EPSP summation also depends on 339 

the temporal summation of local EPSPs (Abrahamsson et al., 2012; Losonczy and Magee, 340 

2006; Makara and Magee, 2013). Simultaneous synaptic activation enables the largest degree 341 

of nonlinear summation, which will progressively decrease as the time difference between 342 

synaptic events increases (Figures 2A and 3D). Thus, combined with the synaptic strength, 343 

the temporal coincidence between co-activated synapses within a single dendritic 344 

compartment will determine gain of the dendritic operations (Abrahamsson et al., 2012; 345 

Gomez González et al., 2011; Makara and Magee, 2013). 346 
 347 
The location of synapses carrying similar information (e.g. a single sensory feature) 348 

determines which dendritic mechanism is recruited. For example, if features of an object are 349 

always clustered on a single dendritic compartment, then nonlinear summation will be the 350 

prominent operation influencing their integration. Below we will use a mathematical 351 
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formalism to provide insight into how synaptic placement and dendritic operations influence 352 

neuronal computations. 353 

 354 

Experimental strategies for studying dendritic integration 355 
 356 

How do researchers study the biophysical properties of dendrites and their influence 357 

on excitatory synaptic integration? Classical electrophysiology methods such as sharp 358 

electrode- or patch-clamp-based recordings of somatic membrane potential provided insight 359 

into the intrinsic passive electrical properties of neurons by measuring the input resistance and 360 

the membrane time constant ( = Rm*Cm) (Spruston and Johnston, 1992). When combined 361 

with multi-compartmental dendritic models, with either simplified morphologies (equivalent 362 

cylinder approximation) or full anatomical reconstructions (Clements and Redman, 1989; 363 

Major et al., 1994), the passive electrotonic properties of dendrites can be estimated from 364 

model parameters that predict the membrane potential decay from somatic current injections 365 

(Rall et al., 1992). These constrained models are then used to examine dendritic 366 

transformations of EPSPs as they propagate to the soma.  367 

 368 

Unfortunately, single electrode recordings at the soma do not provide sufficient 369 

information about dendritic properties to constrain complex morphological models. With the 370 

advent of dendritic patch recordings (Stuart et al., 1993), at least for large diameter dendrites 371 

(≥1µm), cable model predictions could be directly verified since this powerful 372 

electrophysiological strategy allows estimations of the critical parameters influencing 373 

dendritic filtering, such as internal resistivity (Ri; Hu et al., 2010; Nevian et al., 2007; Roth 374 

and Hausser, 2001; Schmidt-Hieber et al., 2007; Stuart and Spruston, 1998; Stuart et al., 375 

1993), Rm and voltage-gated channel properties and density along the somato-dendritic axis 376 

(Hu et al., 2010; Magee and Johnston, 1995; Stuart and Spruston, 1998). Dendritic recordings 377 

also enabled the measurement of local EPSPs and EPSCs, which allowed the authors to 378 

conclude that dendritic filtering can be compensated by a distance-dependent increase in 379 

synaptic conductance in certain neuron types (Magee and Cook, 2000).  380 

 381 

More recently, fluorescence imaging techniques have greatly increased the toolkit for 382 

studying dendritic integration, particularly in those dendrites with narrow diameters (<1 µm). 383 

Ca
2+

 indicators are one of the most popular class of fluorescence probes, which are used to 384 

indirectly study dendritic nonlinearities resulting from activation of voltage-dependent ion 385 

channels, provided at least one type of Ca
2+

 conductance was activated (Markram et al., 1995; 386 

Schiller et al., 1995; Schiller et al., 2000; Schiller et al., 1997). Ca
2+

 indicators have also been 387 

used to monitor synaptic activity because of the prevalence of NMDAR activation in single 388 

spines and Ca
2+

-permeable AMPARs at synapses in interneurons (Soler-Llavina and Sabatini, 389 

2006). In vivo two-photon Ca
2+

 imaging experiments provided the first insights into the 390 

spatial and temporal distribution of sensory-evoked synaptic signaling within dendrites (Jia et 391 

al., 2014; Lavzin et al., 2012; Palmer et al., 2014; Smith et al., 2013; Varga et al., 2011). The 392 

contribution of in vivo Ca
2+

 imaging studies to understanding dendritic function has been 393 

recently reviewed by Grienberger et al (Grienberger et al., 2015). However, a limitation of 394 

using Ca
2+

 imaging to study synaptic integration is that it does not report the true dendritic 395 

voltage, a parameter critically influencing dendritic operations. Also, the slow nature of the 396 

whole-cell averaged [Ca
2+

] and the use of high affinity Ca
2+

 indicators limits the temporal 397 

resolution of this method (Farinella et al., 2014; Fernandez-Alfonso et al., 2014). Voltage-398 

sensitive dyes are, in principle, an ideal alternative for direct measurement of dendritic 399 

integration. Whereas voltage-sensitive dye recordings have provided unprecedented optical 400 

reports of the spatial and temporal distribution of APs in axons (Foust et al., 2010; Popovic et 401 
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al., 2011) and dendrites (Acker and Antic, 2009; Casale and McCormick, 2011), their use to 402 

monitor EPSPs in dendrites has been less successful due to poor signal-to-noise ratio, 403 

typically requiring hundreds of trials of averaging (Canepari et al., 2008; Palmer and Stuart, 404 

2009). However inhibitory post-synaptic potentials (IPSPs) have been detected (Canepari et 405 

al., 2008) and a recent study reports good signal-to-noise ratios sufficient to detect spine 406 

EPSPs (Popovic et al., 2014). The advances in genetically-encoded voltage indicators are also 407 

rapidly maturing (Hochbaum et al., 2014; St-Pierre et al., 2014; Zou et al., 2014), and could 408 

eventually provide a powerful tool for studying dendritic integration in vivo. 409 

 410 

Another widely-used in vitro technique to characterize the integration properties of 411 

dendrites is to directly activate postsynaptic neurotransmitter receptors using photolysis of 412 

caged-neurotransmitter (i.e. caged-glutamate) within the diffraction-limited focal volume of 413 

the microscope (Gasparini and Magee, 2006; Losonczy and Magee, 2006). Using 414 

galvanometer-driven mirrors, regularly used in scanning confocal microscopy, the focal 415 

illumination volume can be rapidly moved and positioned at multiple locations, generally 416 

within 0.1-1 ms. The uncaging light pulse is then rapidly gated at each location to focally 417 

release glutamate. This allows for the near simultaneous activation of many postsynaptic sites. 418 

The somatic depolarization is then recorded using standard whole-cell patch-clamp methods. 419 

The observed response to uncaging at multiple synaptic locations (typically within 1 ms) is 420 

compared to the arithmetic sum of the uncaging-evoked responses at individual sites. The 421 

resulting plot is identical to the sI/O plots described in Figure 1 and 3, provided that the 422 

uncaging responses are similar to synaptic activation. Using light, rather than presynaptic 423 

vesicular release, to activate neurotransmitter receptors provides a more flexible strategy to 424 

systematically vary the number, pattern, and timing of synapse activation. Electrical 425 

stimulation does not permit a precise identification of the synapses being activated, nor 426 

precise control of the number of synapses activated. Holographic illumination provides an 427 

alternative strategy for true simultaneous glutamate uncaging at multiple sites within the 428 

dendrites and is more amenable to multibranch activation (Lutz et al., 2008; Yang et al., 2014; 429 

Yang et al., 2011). The only potential drawback of uncaging is the difficulty in some 430 

preparations to accurately reproduce very fast synaptic conductances due to the large volume 431 

of diffraction-limited focal spots relative to the point source nature of neurotransmitter release 432 

from synaptic vesicles (DiGregorio et al., 2007), as well as a tendency to partially block 433 

GABARs (Fino et al., 2009). Nevertheless, neurotransmitter uncaging is an essential tool for 434 

quantifying the biophysical properties underlying dendritic operations.  435 

 436 

Linking dendritic operations to neuronal computations using models 437 
 438 

Because experimental evidence of a direct link between the dendritic operations and 439 

the associated neuronal computations is still lacking, a parallel strategy is to use analytical 440 

models to make testable predictions (Cazé et al., 2013; Legenstein and Maass, 2011; Poirazi 441 

and Mel, 2001). These methods take advantage of mathematical approximations of measured 442 

dendritic operations to make estimates of the possible number and type of neuronal 443 

computations. Biophysical models, in contrast, although explicit, do not easily provide insight 444 

into the classes of possible computations because of the large parameter space. There is no 445 

doubt that such models have provided deep insights into neuronal computations that involve 446 

nonlinear dendritic operations. They have been used to show that neurons with supralinear 447 

dendrites are cluster-sensitive (Mel, 1993) whereas neurons with sublinear dendrites are 448 

scatter-sensitive (Cazé et al., 2013; Koch et al., 1983). Yet it was not clear whether either 449 

type of nonlinearity provides similar computational advantages. To examine the difference 450 

between supralinear and sublinear operations of binary neuron models Cazé et al. (2013) used 451 
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a Boolean-based analysis. Here, we review how this Boolean framework can be used to argue 452 

that either supralinear or sublinear summation is sufficient to endow neurons with a new class 453 

of computations. 454 

 455 

Within this analytical framework, neurons are modeled as having binary inputs (xi), 456 

which can be weighted and integrated, resulting in binary outputs (y). In this context the 457 

input-output relation is described by a unique truth table, corresponding to a Boolean 458 

function. In Figure 4A, the truth table describes three simple Boolean functions: OR, AND 459 

and XOR. This well-known mathematical framework (Crama and Hammer, 2011; Wegener, 460 

1987), which deals with binary classifications of binary words, allows us to analytically 461 

determine what type of classifications are possible with nonlinear dendrites and which are 462 

otherwise impossible.  463 

 464 

The simplest binary neuron model is called the threshold linear unit, also known as the 465 

point neuron model as described first by McCulloch and Pitts (Figure 4B; McCulloch and 466 

Pitts, 1943). Synapses are assigned a binary value of 0 or 1 for inactive or active states 467 

respectively, which is then multiplied by a positive synaptic weight for excitatory synapses. 468 

The sum of the active weighted inputs is then compared to a somatic spike threshold Θ. If this 469 

weighted sum is greater than the threshold, the output is assigned a value of 1, and otherwise 470 

zero. If one considers a neuron with linearly summing excitatory inputs, adjustment of the 471 

threshold allows it to either perform a Boolean AND or OR (Figure 4B). However, it is not 472 

possible to find a threshold value and positive synaptic weight to allow the computation of the 473 

XOR, the function corresponding to a binary neuron that would fire only when one synapse is 474 

active, but not when none or two synapses are active. This illustrates well the fact that the 475 

threshold linear unit can only perform functions that are linearly separable, i.e. there is a set of 476 

weights and a spike threshold that categorizes the inputs into two distinct groups, which differ 477 

by their output values (Figure 4A). The XOR does not meet this criterion and is therefore a 478 

part of the class of functions that are linearly non-separable. To solve this problem we must 479 

either invoke a non-monotone function to combine synaptic values (Zador et al., 1992) or 480 

consider synaptic inhibition by using negative weights (Cazé et al., 2014; Mel, 1994). 481 

Because the former has not been described experimentally, and the latter requires specific 482 

wiring within the network, we will focus here on linearly non-separable functions that can be 483 

implemented with only excitatory synapses and monotone dendritic operations. These 484 

functions are known as positive Boolean functions (Cazé et al., 2013). 485 

 486 

Linearly–separable functions represent only a small fraction of all the possible 487 

computations (Cazé et al., 2013). However, a neuron with nonlinear dendritic compartments 488 

can implement the set of linearly non-separable functions, which encompasses a much larger 489 

fraction of all computations (Cazé et al., 2013). Thus both supralinear and sublinear 490 

compartments unlock the access to all the possible computations (Mel, 1991; Mel and Koch, 491 

1990). This formal result is true for an infinite number of dendritic compartments (Poirazi and 492 

Mel 2001). This is clearly impossible in practice. So what can a neuron compute with a finite 493 

number of dendritic compartments?   494 

 495 

To address this question we can construct a two-layer binary model with nonlinear 496 

dendritic compartments. We first approximated the dendritic sI/O with functions each having 497 

a characteristic dendritic threshold θ, which represents the threshold of the dendritic 498 

nonlinearity, and h, which represents the maximal value of the dendritic nonlinearity. To 499 

approximate supralinear compartments we used a Heaviside function, and for sublinear 500 

functions we used a piecewise linear saturating function (Figure 4C). The output of the 501 
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dendritic compartments is then linearly summed and compared with spike threshold (Figure 502 

4D). If we vary synaptic weights, the thresholds, and the nonlinear dendritic operations, we 503 

can use Boolean analysis to examine the different functions this model can implement. A 504 

functionally salient neuronal computation that requires dendritic nonlinearities is the 505 

association (or binding) of two features of an object (for example, their shape and color). This 506 

is known as the feature binding problem (the FBP). If we suppose that that different features 507 

of objects are encoded by different groups of pre-synaptic neurons impinging on the same 508 

post-synaptic neuron, then it is obvious that by allowing the features of an object to target the 509 

same supralinear dendrite, the coincidence of those features can be easily detected when co-510 

active (i.e. “red” + “apple shape”; Figure 4E). Importantly, the number of required subunits to 511 

implement object detection is linearly proportional to the number of objects (Cazé et al., 512 

2012), meaning that binding features of more than two objects will require a model with extra 513 

nonlinear compartments. It can also be shown that a sublinear operation can bind features if 514 

the inputs that encode object features are distributed onto different dendritic subunits (and the 515 

spiking threshold increased). From these simple binary models it is again clear that 516 

supralinear operations favor cluster sensitivity and sublinear operations favor scatter 517 

sensitivity. However, a keen eye may notice that the sublinear model will also produce a spike 518 

if the apple shape and banana shape are both activated. This of course should not be the case 519 

if we only want to bind exclusively red-apples and yellow-bananas as objects. This therefore 520 

constitutes a partial feature binding problem. Below we will describe a neuron model with 521 

equivalent dendrites that can implement the complete feature binding problem.  522 

 523 

Because neurons are known to have both linear and nonlinear compartments, we 524 

considered how more realistic dendritic trees could be represented using our simple binary 525 

model, by creating a neuron model with equivalent dendrites (Figure 5A, B). All linear 526 

regions of the dendritic tree (typically, the perisomatic compartment or the large diameter 527 

primary dendrites) were collapsed to a single equivalent “linear” compartment (black regions 528 

of schematic neuron and left branch of the model neuron). The nonlinear dendritic 529 

compartments receiving more than one synaptic input were represented as a second equivalent 530 

dendritic branch. This then generalizes to an equivalent dendritic branch for each nonlinear 531 

electrical compartment (Figure 4D). The presence of a linear compartment is important, since 532 

inputs synapsing on two separate nonlinear dendrites will sum linearly (Figure 5A). Indeed, 533 

even inputs synapsing on the same nonlinear dendrite, provided they not in the same electrical 534 

compartment, will sum linearly.  535 

 536 

Legenstein and colleagues demonstrated that a model neuron with supralinear 537 

dendritic integration is capable of learning and computing the FBP (Legenstein and Maass, 538 

2011). This function detects any correct combination of features for an object, but not 539 

incorrect combinations. In the Boolean framework this would be the truth table corresponding 540 

to (“red” + “apple shape”) or (“yellow” + “banana shape”). In Figure 4 we showed that two 541 

supralinear dendrites are sufficient to solve the FBP for two objects made of two features 542 

each. In Figure 5, a neuron displaying at least one supralinear compartment and a linear 543 

compartment can also solve the FBP for four inputs. In this case, inputs encoding the features 544 

of one object are clustered on a supralinear compartment, and the features corresponding to 545 

the other object are clustered on the linear compartment (Figure 5C). Because the features of 546 

the object must cluster on the same compartment we refer to this model as having a local 547 

strategy of computation. Interestingly, it is also possible to implement the same computation 548 

using a global strategy, meaning that the features corresponding to one object need to be 549 

scattered onto both the nonlinear and the linear compartment (Figure 5D), provided that 550 

appropriate changes in the synaptic weights and threshold values are also implemented. As 551 
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shown by Cazé et al. (2013), a model with a linear and sublinear compartment requires the 552 

global strategy to perform the FBP. The synaptic weights and threshold will also be different 553 

than in the case of a model neuron with a supralinear compartment (Figure 5E). The fact that 554 

the FBP can be implemented using a global strategy contrasts with the notion that recognition 555 

of an object required the clustering of the inputs carrying its features onto a same dendritic 556 

branch (Legenstein and Maass, 2011), and the assumption that two-layer integration models 557 

require independent branch-specific operations (Behabadi and Mel, 2013). Using a 558 

biophysical model with a model stellate cell morphology, Cazé and colleagues showed the 559 

predictions are robust, since only passive thin dendrites were necessary to convey a scatter 560 

sensitivity of output firing, even in the presence of synaptic noise (Cazé et al., 2013).  561 

How might simplified Boolean models be modified for more features and/or more 562 

objects? For objects represented by more than two features, clustered strategies would simply 563 

require more synaptic inputs, such that the number of the number of inputs per subunit 564 

(dendritic compartment) equals the number features. A change in threshold would also be 565 

required. The requirements for neuronal computations using sublinear dendrites, however, 566 

depend on the type of computation and are less straightforward to determine explicitly. The 567 

necessary number of nonlinear subunits also varies given the implementation strategy, the 568 

number of objects, the type of nonlinear subunits and the number of features. To solve the 569 

FBP with more objects using supralinear operations, each object will require at least one 570 

subunit (Cazé et al., 2012). For computations with sublinear operations, Cazé and colleagues 571 

showed that using binary weights, the FBP requires a maximum of 2
n
 subunits (Cazé et al., 572 

2012). Considering non-binary weights then reduces the number of subunits needed, but this 573 

number is still higher than the number of necessary supralinear subunits (nsubunits=nobjects). 574 

 575 

 576 

In summary, neurons with sublinear dendrites are capable of solving linearly non-577 

separable functions, but require using a distributed strategy regarding the placement of 578 

synaptic inputs (Figure 5E). These neurons will be scatter sensitive. On the other hand, 579 

neurons with supralinear dendrites can also access the same class of computations either by 580 

using this strategy (Figure 5C) or by clustering functionally relevant inputs onto the same 581 

compartment (Figure 5C). Hence they can be either scatter or cluster sensitive. Thus, the final 582 

neuronal computations depend not only on the type of dendritic operation and the dendritic 583 

and spike thresholds, but also the global mapping of input features throughout the dendritic 584 

tree. 585 

 586 

Open questions 587 
 588 

To understand how a neuron integrates its synaptic input we need precise knowledge 589 

of the morphology, ion channel distribution along the tree, strength and time course of 590 

synaptic conductances carrying particular information features, the threshold and the spatio-591 

temporal pattern of activation of the synapses carrying these features. Although we can 592 

determine most of these parameters, as we reviewed above, the most challenging experiments 593 

are those designed to estimate the spatio-temporal distribution of all synapses carrying 594 

relevant sensory features (i.e. a functional connectivity map). Strategies using injection of 595 

viral-based retrograde tracers (Marshel et al., 2010) are powerful for the identification of 596 

connected presynaptic cells, but these methods lack functional information about the precise 597 

information or features encoded in afferents. Using in vivo Ca
2+

 imaging, researchers have 598 

begun the herculean task of estimating how sensory features are mapped onto dendritic trees 599 

by examining how single synapses and dendrites respond to behavioral stimuli. It is not clear 600 

whether such feature mapping can be performed on the entire dendritic tree, but initial results 601 
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provide hints as to whether there may be general mapping rules. Some studies argue that 602 

features are clustered in single dendrites within the somato-sensory cortex (Takahashi et al., 603 

2012), consistent with a local computation strategy, while other studies have shown that 604 

neighboring synapses onto layer 2/3 pyramidal neurons of the visual and auditory cortex 605 

respond maximally for activation of inputs carrying different sensory features (Chen et al., 606 

2011; Jia et al., 2010), consistent with a global strategy. In light of the conclusions described 607 

here, both neurons could still be capable of performing similar linearly non-separable 608 

computations, provided the dendrites exhibit nonlinear operations.  609 

 610 

Why might neurons use different dendritic operations and wiring strategies? It is 611 

conceivable that differences in timing of sensory development or optimal local circuit wiring 612 

may constrain wiring strategies for particular neurons. Thus to perform the same computation, 613 

different wiring and dendritic strategies are used. Global wiring strategies are more amenable 614 

to “random wiring,” in contrast to the specific connectivity required for engaging local 615 

strategies. We speculate that different dendritic operations may be implemented by neurons 616 

given certain biological constraints, such as limitations in the number and location of 617 

synapses carrying a particular feature, or spike threshold. For example when both principal 618 

neurons and interneurons receive a common set of input features along relatively fixed axonal 619 

projections, but are required to perform different computations, they may engage different 620 

dendritic operations. In the cerebellum interneurons have been shown to exhibit sublinear 621 

dendritic operations (Abrahamsson et al., 2012; Vervaeke et al., 2012) on their parallel fiber 622 

inputs, while Purkinje cells are thought to receive the same or similar features from the same 623 

set of input fibers, yet display supralinear dendritic operations (Rancz and Hausser, 2006). 624 

One could speculate that the different nonlinearities and synaptic placement strategies of 625 

Purkinje neurons and interneurons may enable them to implement complementary (i.e. 626 

opposing) computations, which ultimately could result in a microcircuit that is highly 627 

selective for specific input patterns. 628 

 629 

What are the wiring rules? Three possible wiring strategies are 1) predetermined 630 

connectivity (genetically encoded), 2) random connectivity, and 3) activity dependent pruning 631 

and stabilization of connections. Although the exact contribution of each mechanism is yet to 632 

be determined, synaptic plasticity has been shown to modify and ultimately determine the 633 

functional connectivity. For example computational modelling showed that a local wiring 634 

strategy in which synapses carrying features of objects are clustered can be learned using 635 

simple plasticity rules (Legenstein and Maass, 2011). Experimental evidence supports this 636 

theoretical work, suggesting that activity-dependent, branch-specific plasticity strengthens 637 

clustered synaptic inputs and their compartmentalization (Makara et al., 2009; Makino and 638 

Malinow, 2011; Takahashi et al., 2012). On the other hand, synaptic plasticity could also 639 

reinforce global computational strategies. In cerebellar stellate cells, high-frequency firing of 640 

clustered inputs has been described to induce profound presynaptic short- and long-term 641 

synaptic depression (Beierlein and Regehr, 2006; Soler-Llavina and Sabatini, 2006). Such 642 

plasticity mechanisms would reinforce the neuron’s scatter sensitivity, and thus tends to 643 

optimize the output firing for specific spatially and temporally sparse synaptic activity 644 

patterns (Abrahamsson et al., 2012; Cazé et al., 2013). 645 

 646 

Synchronized neuronal activity is known to cause oscillations of the dendritic voltage, 647 

which would inevitably reinforce electrical interactions between dendrites and thus alter the 648 

effective number of isolated dendritic subunits that contribute to the neuronal computation. 649 

For example, Remme et al. (Remme et al., 2009) showed theoretically that input-dependent 650 

synchronization of intrinsic dendritic voltage oscillations can facilitate a global voltage 651 
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propagation, even throughout highly distributed dendritic trees. It will be important to 652 

examine how local and global dendritic integration strategies might be influenced by brain 653 

oscillations, thus ultimately altering neuronal and even circuit computations. 654 

 655 

Since many types of interneurons are known to contact specific locations within the 656 

dendritic tree, inhibition will undoubtedly influence integration properties and information 657 

processing by neuronal circuits (as reviewed by (Palmer et al., 2012)). Nevertheless the 658 

experimental challenge is to determine not only the timing and location of inhibition within 659 

the dendrite, in order to determine their alteration of dendritic operations, but also whether 660 

particular features are conveyed similarly or differently by excitatory and inhibitory inputs. 661 

Although complex, the problem is critical to understanding brain function as the balance of 662 

excitation and inhibition is well known to be tightly regulated, with alterations being 663 

implicated in disease (Yizhar et al., 2011). Using the Boolean analysis of equivalent dendrites, 664 

one can deduce that negative weight associated with inhibition is capable of performing the 665 

Boolean NOT function. Such a function would enable a simple implementation of XOR 666 

computations, further expanding the number of computable linearly non-separable functions. 667 

 668 

Summary  669 
 670 

In this review we described categories of biophysical and cellular mechanisms that 671 

influence dendritic operations: passive and active membrane properties of the dendritic tree, 672 

the time course and amplitude of synaptic activation, and finally the location and pattern of 673 

the activation of synaptic inputs. We showed how each of these parameters shapes and tunes 674 

the sI/O. We briefly discussed techniques for the characterization of dendritic operations, 675 

including electrode-based methods to stimulate and/or record from dendrites, optical 676 

techniques to image dendritic activity or uncage neurotransmitter, and biophysical modeling. 677 

In order to link the major classes of dendritic operations (linear, sublinear and supralinear) to 678 

neuronal computations, we reviewed the use of binary models associated with Boolean 679 

analysis. This analysis provides insight into the types of computable neuronal functions, such 680 

as the object feature binding problem. We also reviewed how such functions can be 681 

implemented with either supralinear or sublinear dendrites depending on the spatial mapping 682 

of those features within the dendritic tree. Because the synaptic activity pattern ultimately 683 

determines the neuronal computations, we propose that the elemental computational unit is 684 

the neuron rather than the dendrite (Cazé et al., 2014). Although there are cases (local 685 

strategies) where dendritic operations can dictate the neuronal computation, dendritic 686 

operations must be studied and understood in the context of the knowledge of the wiring of 687 

specific features onto the dendritic tree. 688 

  689 
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Figure legends 966 

 967 

Figure 1. Dendritic operations and their influence on neuronal firing  968 
(A) Schematic diagram of a subthreshold synaptic input-output experiment in a neuron with 969 

supralinear dendritic compartments (left, supralinear compartments in green, linear 970 

compartments in black) or in a neuron with sublinear dendritic compartments (right, sublinear 971 

compartments in blue). The red spots are sites of synaptic activation or sites of glutamate 972 

uncaging.  973 

(B) Arithmetic sum of individual responses to synaptic activation or uncaging.  974 

(C) Somatic voltage responses evoked by simultaneous synaptic activation or uncaging. 975 

Green curves are responses evoked with increasing number of synapses activated within a 976 

supralinear dendrites. Blue curves are similarly obtained within a sublinear dendrite. 977 

(D) Subthreshold input/output relationships (sI/O) used to quantify dendritic operations. The 978 

dashed line represents a linear releationship. Two horizontal dotted lines indicate two example 979 

somatic spike thresholds (θ1 and θ2). 980 

(E, F) Example of synaptic integration of three synaptic inputs distributed across the dendritic 981 

tree (E) or clustered on a single dendritic branch (F) of a neuron with supralinear dendritic 982 

compartments (left) or sublinear compartments (right). The output spike train, and hence 983 

neuronal computation, differs depending on the threshold. The more depolarized threshold 984 

value (θ1) allows the neuron with supralinear dendrites to exhibit a cluster-sensitive neuronal 985 

computation (fires only when three inputs are activated in the same compartment). The θ1 986 

threshold also allows a neuron with sublinear dendrites to exhibit scatter-sensitive neuronal 987 

computations. The lower threshold (θ2) imparts a different neuronal computation based on 988 

simple linear summation and is not sensitive to activated synapse location.  989 

 990 

Figure 2. Theoretical basis for sublinear summation within passive dendrites 991 
(A) Equation (1) describes the different current components underlying an EPSP in a single 992 

electrical compartment. Integration of this equation describes the variation of the membrane 993 

voltage over time. The transient local dendritic EPSP (Vm, bottom trace) sets the amplitude 994 

and time window over which the driving force (ΔV = Vm-Esyn) is altered. At the peak of the 995 

EPSP (solid blue arrow) the driving force is maximally reduced, and then recovers back to 996 

that at resting membrane potentials during the EPSP decay (dotted blue arrow). The reduced 997 

driving force decreases the synaptic current, and hence the net depolarization, creating a 998 

sublinear relationship between EPSP and its underlying conductance.  999 

(B) Equivalent circuit for dendritic cables, where gm and cm are the membrane conductance 1000 

and capacitance, respectively, and ra is the axial resistance of a unit of cable. A synapse is 1001 

represented in the circuit (Gsyn and Esyn). For an infinite cable, the spatio-temporal distribution 1002 

of voltage is described by the relation (2), where  is the membrane time constant, and λ  is 1003 

the length constant. The length constant relationships are derived from solving the cable 1004 

equation (2) for step changes in membrane voltage (λDC) or for a sinusoidal membrane 1005 

potential change (λAC). The latter is helpful to understand the dendritic filtering of transient 1006 

EPSPs. Equation (3) expresses the input resistance RD for an infinite cable. 1007 

 (C) Top, ball-and-stick model of a neuron with colored arrows indicating the location of three 1008 

synapses. The graph above the diagram represents the peak amplitude of a dendritic EPSP as 1009 

a function of distance. Bottom, the two graphs describe respectively the dendritic and somatic 1010 

depolarizations in response to individual (colored lines) or combined synaptic inputs (black 1011 

lines). Concomitant activation of two neighboring synaptic inputs (within ~ λAC) will 1012 

therefore mutually reduce their driving force and sum sublinearly (for example synapses 1 and 1013 

2, solid black trace for the EPSP observed in response to their simultaneous activation, dashed 1014 
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black trace for the arithmetic sum of the individual EPSPs). Distant synapses will, however, 1015 

sum more linearly (synapses 1 and 3, gray trace). 1016 
 1017 

Figure 3. Contribution of dendritic and synaptic properties to EPSP summation 1018 
(A) Influence of morphological parameters dendritic diameter (left) location along the 1019 

dendrite (middle) and dendritic branching (right) on the dendritic sI/O. The inserts illustrate 1020 

the effect of morphology on somatic EPSPs under the different conditions. Synapse location 1021 

and traces are color coded. Dashed line shows a linear I/O for reference. 1022 

(B) The role of ion channels on the shape of the sI/O, illustrated by adding to a passive 1023 

dendrites (blue curve) either K
+
 channels, (orange  curve), Na

+
 channels (green curve), 1024 

VGCC (pink curve), or NMDA receptors (sky blue curve).  1025 

(C) Example of sI/O in three realistic combinations: thick (>2µm) dendrites with active 1026 

conductances (blue curve, as in Branco et al., 2011), thinner dendrites with active 1027 

conductances (brown curve, <1µm, (Losonczy and Magee, 2006)), or thin dendrites with only 1028 

passive properties (green curve, (Abrahamsson et al., 2012)).  1029 

(D) Influence of synaptic properties on the sI/O. An increase in synaptic strength makes the 1030 

sI/O steeper (left), whereas increasing the interval or the distance between synaptic inputs 1031 

tends to linearize the curve (right). 1032 
 1033 
Figure 4. Using Boolean algebra to analyze binary neuron models with dendritic 1034 

nonlinearities 1035 
(A) Truth tables for the Boolean functions AND, OR and XOR for two synaptic inputs (x1 and 1036 

x2). The two colored horizontal lines illustrate how the AND and OR functions are linearly 1037 

separable, i.e. a single line divides all inputs between two groups, one group having an output 1038 

of 0 and the other group having an output of 1. Neuron output binary value is denoted as y. 1039 

(B) Threshold linear unit model neuron with two inputs. The weight of each input is 1040 

represented by the area of the black disc drawn between the input and the model neuron. Here 1041 

all weights are equal to 1. A spiking threshold (θ) of 2 allows the model neuron to compute 1042 

the AND function (left), whereas if θ =1 the neuron computes the OR function (right).  1043 

 (C) Top, Simplified representations of a supralinear sI/O (left) and its mathematical 1044 

approximation by a Heaviside function (right) with a height h and a threshold θ. Bottom, 1045 

simplified representation of a sublinear sI/O and its mathematical approximation by a 1046 

piecewise linear then saturating function. 1047 

 (D) Generalized diagram representing a two-layer integration model neuron with several 1048 

compartments and n inputs. Each branch represents a dendritic compartment, and the 1049 

integration operation performed by this compartment is represented by the box on the branch. 1050 

This box contains the values of θ and h if the operation is nonlinear. The result from the 1051 

integration from each branch is then linearly summed and compared to the somatic spike 1052 

threshold Θ.   1053 

(E) Implementation of the (partial) feature binding problem (pFBP) by binary neurons with 1054 

two compartments D1 and D2, either supralinear or sublinear. Top, truth table describing 1055 

various input feature combinations, the response of each dendritic compartment, D 1056 

(0:inactive/1:active), and the final neuronal output, y. Columns with green shading are the 1057 

outputs of dendrites exhibiting supralinear operations, while columns shaded in blue contain 1058 

outputs of dendrites that exhibit sublinear operations. Bottom, Model neuron with equivalent 1059 

dendrite representation that can implement the pFBP using supralinear (left) or sublinear 1060 

dendritic compartments (right). The threshold and the height of the nonlinearity are indicated 1061 

within the box. If dendritic integration is supralinear, two groups of inputs are needed to 1062 

activate a compartment, and a single compartment can trigger a spike. If dendritic integration 1063 
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is sublinear, a single input can activate the dendritic compartment and the two compartments 1064 

must be active to trigger a spike.  1065 
 1066 
Figure 5. Computing a linearly non-separable function (full FBP) with supralinear and 1067 

sublinear dendrites and using local vs. global synaptic wiring strategies 1068 
 (A)   Left, model neuron with equivalent dendrite representation of two compartments, linear 1069 

(black) and supralinear (green), and a clustered distribution of object features (local strategy). 1070 

Right, schematic representations of synaptic placements equivalent to the model on the left. 1071 

(B) Left, model neuron with equivalent dendrite representation of two compartments, linear 1072 

(black) and sublinear (blue), and a distributed placement of inputs carrying object features. 1073 

(C-E) Implementation of the full FBP (y=1; “apple shape and red” or “banana shape and 1074 

yellow”).  1075 

(C), implementation of the full FBP using a model with a supralinear compartment and a local 1076 

wiring strategy. Inactive inputs are represented in light gray and the corresponding feature in 1077 

lighter color.  1078 

(D) Implementation of the full FBP (y=1) using a model with a supralinear compartment and 1079 

a global wiring strategy. The area of the disc adjacent to a compartment next to each object 1080 

feature represents the relative weight of this feature. Here the relative weights used are of 1 1081 

and 2.  1082 

(E) Implementation of the full FBP (y=1) using a model with sublinear compartment and a 1083 

global wiring strategy. 1084 

 1085 

 1086 

 1087 

 1088 

Cazé, R.D., Humphries, M., and Gutkin, B. (2013). Passive dendrites enable single neurons to 1089 

compute linearly non-separable functions. PLoS Computational Biology 9, e1002867. 1090 

Cazé, R.D., Humphries, M.D., and Gutkin, B.S. (2012). Spiking and saturating dendrites 1091 

differentially expand single neuron computation capacity. Advances in Neural Information 1092 

Processing Systems 25, 1-9. 1093 

Cazé, R.D., Humphries, M.D., and Gutkin, B.S. (2014). Dendrites enhance both single neuron 1094 

and network computation. In The Computing Dendrite: From Structure to Function, C.e. al., 1095 

ed. (New York, Springer), pp. 365-380. 1096 

Fino, E., Araya, R., Peterka, D.S., Saliemo, S., Etchenique, R., and Yuste, R. (2009). RuBi-1097 

Glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. 1098 

Frontiers in Neural circuits 3. 1099 

 1100 

 1101 



Figure 1.TIF



Figure 2.TIF



Figure 3.TIF



Figure 4.TIF



Figure 5.TIF


