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Let MSflow(Mn,k) and MSdiff(Mn,k) be Morse–Smale flows and diffeomorphisms respec-
tively the non-wandering set of those consists of k fixed points on a closed n-manifold Mn .
For k = 3, we show that the only values of n possible are n ∈ {2,4,8,16}, and M2 is the
projective plane. For n � 4, Mn is simply connected and orientable. We prove that the
closure of any separatrix of f t ∈ MSflow(Mn,3) is a locally flat n

2 -sphere while there is

f t ∈ MSflow(Mn,4) such that the closure of separatrix of f t is a wildly embedded codimen-
sion two sphere. This allows us to classify flows from MSflow(M4,3). For n � 6, one proves
that the closure of any separatrix of f ∈ MSdiff(Mn,3) is a locally flat n

2 -sphere while there

is f ∈ MSdiff(M4,3) such that the closure of any separatrix is a wildly embedded 2-sphere.
© 2013 Elsevier B.V. All rights reserved.

0. Introduction

In 1960, Steve Smale [31] introduced a class of dynamical systems (flows and diffeomorphisms) called later Morse–Smale
systems. It was proved that Morse–Smale systems are structurally stable and have zero entropy [26,28,30]. In this sense,
Morse–Smale systems are simplest structurally stable systems. One can define Morse–Smale systems as being those that are
structurally stable and have non-wandering sets that consist of a finite number of orbits. There are deep connections be-
tween dynamics and the topological structure of support manifolds [8,18,24,31,32]. On a closed manifold, any Morse–Smale
system has at least one attracting orbit and at least one repelling orbit. Thus, the simplest Morse–Smale system has the non-
wandering set consisting of two points: a sink and source. In this case, the supporting n-manifold is an n-sphere Sn , and
any orientation preserving Morse–Smale systems are conjugate i.e., have the same dynamics (of north–south type) [17,29].
It is natural to study Morse–Smale systems whose non-wandering sets consist of three fixed points. The existence of such
systems follows from [15], where one proved the existence of closed manifolds admitting Morse functions with exactly
three critical points, and [31] where one proved that any gradient flow can be approximated by Morse–Smale gradient
flow.

Our first theorem (that is a generalization of [15]) describes closed manifolds admitting Morse–Smale systems with the
non-wandering set consisting of three fixed points.

Theorem 1. Suppose a closed n-manifold Mn admits a Morse–Smale system U (diffeomorphism or flow) such that the non-wandering
set of U consists of three fixed points. Then

• the only values of n possible are n ∈ {2,4,8,16};
• M2 is the projective plane;
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• for n � 4, the homotopy groups π1(Mn) = · · · = π n
2 −1(Mn) = 0, and hence, Mn is simply connected and orientable;

• Mn is a compactification of Rn by an n
2 -sphere.

The first step of the proof is based on the following result.

Theorem 2. Let S be a Morse–Smale system on a closed n-manifold Mn, such that the non-wandering set NW(S) of S consists of three
fixed points. Then NW(S) consists of a sink ω, a source α, and a saddle s0 . In addition, (a) n is even, and every (stable and unstable)
separatrix of s0 is n

2 -dimensional; (b) M2 is the projective plane; (c) for n � 4, Mn is a simply connected and orientable manifold.
Moreover, the topological closure of the unstable and stable separatrices Sepu(s0), Seps(s0) are a topologically embedded n

2 -spheres
W u(s0) ∪ {ω} = Sω , W s(s0) ∪ {α} = Sα respectively.

Later on, the proof of Theorem 1 connects with the possibility for the closure of separatrices to be wildly embedded. Such
possibility for simple Morse–Smale systems was discovered by Pixton [25] who constructed the gradient-like Morse–Smale
diffeomorphism f : S3 → S3 with two sinks, a source, and saddle such that the closure of 2-dimensional separatrix of the
saddle is a wildly embedded 2-sphere while the closure of the 1-dimensional separatrix forms a half of the wildly embedded
Artin–Fox arc [6]. The similar examples were constructed in [7,10], where the classification of gradient-like Morse–Smale
diffeomorphisms was considered. The effect of wildly embedding looks the most interesting when the number of fixed
points is minimal, and there are no heteroclinic intersections. It follows from [25,9] that four is the minimal number of
fixed points when the effect of wildly embedding holds for 3-dimensional Morse–Smale diffeomorphisms. One can easy
prove that the closure of separatrix is locally flat for any 2-dimensional Morse–Smale systems (diffeomorphisms and flows)
and 3-dimensional Morse–Smale flows.

The second step of the proof of Theorem 1 is based on the following theorem that is interesting itself.

Theorem 3. Let S be a Morse–Smale system on a closed n-manifold Mn, n � 6, such that the non-wandering set NW(S) of S consists
of a sink ω, a source α, and a saddle s0 . Then the spheres W u(s0) ∪ {ω} = Sω , W s(s0) ∪ {α} = Sα are locally flat.

The following theorem shows the difference between flows and diffeomorphisms for the dimension n = 4. Denote
by MSflow(Mn,k) the set of Morse–Smale flows the non-wandering set of those consists of k fixed points on a closed
n-manifold Mn . Note that a flow f t ∈ MSflow(Mn,k) is gradient one [31]. Similarly, denote by MSdiff(Mn,k) the set of Morse–
Smale diffeomorphisms the non-wandering set of those consists of k fixed points.

Theorem 4. (1) Given any f t ∈ MSflow(M4,3), the spheres W u(s0) ∪ {ω} = Sω and W s(s0) ∪ {α} = Sα are locally flat. (2) There is
f ∈ MSdiff(M4,3) such that the spheres Sω , Sα are wildly embedded.

The last theorem allows to us to prove the following theorem concerning the topological equivalence.

Theorem 5. Any flows f t ∈ MSflow(M4
1,3), gt ∈ MSflow(M4

2,3) are topologically equivalent. In particular, M4
1 homeomorphic to M4

2 .

Remark that Theorem 1 can be obtained from [15,32] for the flows MSflow(Mn,3). Indeed, one can prove that a flow
f t ∈ MSflow(Mn,3) is gradient-like. Due to [32], Mn can be endowed with a Riemannian structure such that f t becomes
a gradient flow i.e., f t is defined by a Morse function. Now the result follows from [15]. However, Theorem 2 shows that
there exist Morse–Smale diffeomorphisms f ∈ MSdiff(Mn,3) that are not embedded in a flow.

We see that the closure of separatrices for Morse–Smale flows with three fixed points are always locally flat. For Morse–
Smale flows with four fixed points, we prove that the closure of separatrices can be wildly embedded. To be precise, the
following result holds.

Theorem 6. Given any n � 4, there are a closed n-manifold Mn and gradient polar flow f t ∈ MSflow(Mn,4) such that f t has no
heteroclinic intersections, and the closure of some separatrix of f t is a codimension two wildly embedded sphere.

The structure of the paper is the following. In Section 1, we formulate the main definitions, give some previous results,
and describe the special neighborhood of saddle fixed point. In Section 2, we prove Theorems 1, 2, 3, the first item of
Theorem 4, and Theorem 5. At last, in Section 3, we construct the corresponding examples that are essential parts of last
item of Theorem 4, and Theorem 6.

1. Main definitions and previous results

Basic definitions of dynamical systems one can find in [4,30,33]. A dynamical system (diffeomorphism or flow) is Morse–
Smale if it is structurally stable and the non-wandering set consists of a finitely many periodic orbits (in particular, each
periodic orbit is hyperbolic and, stable and unstable manifolds of periodic orbits intersect transversally). Many definitions
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for Morse–Smale diffeomorphisms and flows are similar. So, we shall give mainly the notation for diffeomorphisms giving
the exact notation for flows if necessary.

Let f : Mn → Mn be a Morse–Smale diffeomorphism of n-manifold Mn . A periodic (in particular, fixed) point σ is called
a saddle periodic point (in short, saddle) if 1 � dim W u(σ ) � n − 1, 1 � dim W s(σ ) � n − 1 where W u(σ ) and W s(σ )

are unstable and stable manifolds of σ respectively. A component of W u(σ ) \ σ denoted by Sepu(σ ) is called an unstable
separatrix of σ . If dim W u(σ ) � 2, then Sepu(σ ) is unique. The similar notation holds for a stable separatrix. Following [1],
one says that the saddle σ is of type (μ,ν), if μ = dim W u(σ ), ν = dim W s(σ ). The number μ (ν) is called an unstable
(stable) Morse index.

1.1. Special neighborhood

Here, we describe some constructions on the boundary of the special neighborhood for later use. Let Rn be Euclidean
space endowed with coordinates (x1, . . . , xn), and a vector field �V s defined by the system

ẋ1 = −x1, . . . , ẋk = −xk, ẋk+1 = xk+1, . . . , ẋn = xn. (1)

We assume that k � 2, n − k � 2. The origin O = (0, . . . ,0) is a saddle of �V s whose k-dimensional stable separatrix W s(O )

and (n − k)-dimensional unstable separatrix W u(O ) are the following

W s(O ) = {
(x1, . . . , xn)

∣∣ xk+1 = 0, . . . , xn = 0
} = Rk ⊂ Rn,

W u(O ) = {
(x1, . . . , xn)

∣∣ x1 = 0, . . . , xk = 0
} def= Rn

k+1 ⊂ Rn.

Lemma 1. The function F (x1, . . . , xn) = ∑k
i=1 x2

i

∑n
j=k+1 x2

j is integral one for the system (1).

Proof. Taking in mind (1), one gets

dF

dt
=

n∑
ν=1

∂ F

∂xν
ẋν =

k∑
i=1

(2xi)ẋi

n∑
j=k+1

x2
j +

n∑
j=k+1

(2x j)ẋ j

k∑
i=1

x2
i

= −2
k∑

i=1

x2
i

n∑
j=k+1

x2
j + 2

n∑
j=k+1

x2
j

k∑
i=1

x2
i = 2F (x1, . . . , xn) − 2F (x1, . . . , xn) ≡ 0. �

By Lemma 1, F = 1 defines an (n − 1)-manifold, denoted Hn−1, that divides Rn into the two open sets{�x = (x1, . . . , xn)
∣∣ F (�x) < 1

} def= U0,
{�x = (x1, . . . , xn)

∣∣ F (�x) > 1
} def= U∞.

Clearly, U0 is an invariant neighborhood of O , called special, Fig. 2.
Fix k � 2 and denote by T n−2

r the set of points whose coordinates satisfy the equations

x2
1 + · · · + x2

k = r2, r2(x2
k+1 + · · · + x2

n

) = 1.

Then T n−2
r ⊂ Hn−1 and T n−2

r is naturally homeomorphic to the product of the spheres Sk−1
1,k (r) × Sn−k−1

k+1,n ( 1
r ) where

Sk−1
1,k (r) =

{
(x1, . . . , xk,0, . . . ,0)

∣∣∣ k∑
i=1

x2
i = r2

}
⊂ Rk,

Sn−k−1
k+1,n

(
1

r

)
=

{
(0, . . . ,0, xk+1, . . . , xn)

∣∣∣ n∑
j=k+1

x2
j = 1

r2

}
⊂ Rn

k+1.

The sphere Sk−1
1,k (r) bounds the disk Dk

1,k = {(x1, . . . , xk,0, . . . ,0) | ∑k
i=1 x2

i � r2} ⊂ Rk . For r = 1, denote Sk−1
1,k (1) by Sk−1

1,k .

Similarly, Sn−k−1
k+1,n (1) = Sn−k−1

k+1,n . One can check that every trajectory of �V s belonging to Hn−1 intersects T n−2
r at a unique

point. Therefore, Hn−1 is homeomorphic to T n−2
r × R.

Let Hn−1
c (0 � τ � 1) be the union of trajectory arcs of �V s that start at Sk−1

1,k × Sn−k−1
k+1,n and finish at Sk−1

1,k ( 1√
e
) ×

Sn−k−1
k+1,n (

√
e ). Another words,

Hn−1(0 � τ � 1) =
⋃

0�τ�1

fτ
(

Sk−1
1,k × Sn−k−1

k+1,n

)
.

Certainly, Hn−1(0 � τ � 1) ⊂ Hn−1.
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1.2. Flatness and wildness

For 1 � m � n, we presume Euclidean space Rm to be included naturally in Rn as the subset whose final (n − m)

coordinates each equals 0. Let e : Mm → Nn be an embedding of closed m-manifold Mm in the interior of n-manifold Nn .
One says that e(Mm) is locally flat at e(x), x ∈ Mm , if there exists a neighborhood U (e(x)) = U and a homeomorphism
h : U → Rn such that h(U ∩ e(Mm)) = Rm ⊂ Rn. Otherwise, e(Mm) is wild at e(x) [14]. The similar notation is used for a
compact Mm , in particular Mm = [0;1].

For the reference, we formulate the following lemma proved in [19] (see also [17,20]).

Lemma 2. Let f : Mn → Mn be a Morse–Smale diffeomorphism, and Sepτ (σ ) a separatrix of dimension 1 � d � n − 1 of a saddle σ .
Suppose that Sepτ (σ ) has no intersections with other separatrices. Then Sepτ (σ ) belongs to unstable (if τ = s) or stable (if τ = u)
manifolds of some node periodic point, say N, and the topological closure of Sepτ (σ ) is a topologically embedded d-sphere that equals
W τ (σ ) ∪ {N}.

Note that a separatrix Sepτ (σ ) is a smooth manifold. Hence, Sepτ (σ ) is locally flat at every point [14]. However a priori,
clos Sepτ (σ ) = W τ (σ ) ∪ {N} could be wild at the unique point N .

The crucial statement for the proof of Theorem 4 concerning flows, and Theorem 5 is the following statement.

Lemma 3. Let M4∗ be a compact 4-manifold whose boundary consists of two 3-spheres S3
1 and S3

2 , ∂M4∗ = S3
1 ∪ S3

2 . Suppose that there

is a vector field �V on M4∗ such that:

1. �V has a unique fixed point s∗ which is a hyperbolic saddle of type (2,2);
2. �V is transversal to ∂M4∗ , to be precise, with �V |S3

1
pointing into M4∗ and �V |S3

2
out of M4∗;

3. Every trajectory of �V , except the trajectories belonging to the separatrices W s(s∗), W u(s∗) of the saddle s∗ , intersects the both
spheres S3

1 , S3
2;

4. The stable separatrix W s(s∗) and unstable separatrix W u(s∗) intersects the spheres S3
1 , S3

2 along the closed curves W s(s∗) ∩
S3

1 = C1 , W u(s∗) ∩ S3
2 = C2 respectively.

Then each of the curves C1 , C2 is unknotted in S3
1 , S3

2 respectively.

Proof. The curves C1, C2 bound in W s(s∗), W u(s∗) the closed disks D1, D2 respectively. Since S3
1, S3

2 are transversal to �V ,
s∗ is inside of each D1, D2, and s∗ = D1 ∩ D2.

Suppose the contradiction, and assume that C1 is knotted in S3
1 (the case when C2 is knotted in S3

2 is similar). Due to the

extended version of Grobman–Hartman theorem, there is a neighborhood U of D1 ∪ D2 such that �V |U is locally equivalent
to the vector field defined by the linear part of �V at s∗ . By Proposition 2.15 [27], �V |U is equivalent to �V s when n = k = 2.

By conditions, the exterior of C1 in S3
1 is homeomorphic to the exterior of C2 in S3

2. Hence, C2 is knotted in S3
2, [16].

Moreover, S3
2 can be considered as a result of knot surgery of S3

1 along the knot C1. Because of this surgery is not trivial,
S3

2 is not homeomorphic to a 3-sphere [16,22]. The contradiction follows the statement. �
2. Proof of main results

Proof of Theorem 2. The time-one-shift along the trajectories of a flow f t ∈ MSflow(Mn,3) gives Morse–Smale diffeomor-
phism f from MSdiff(Mn,3). Therefore, it is sufficient to prove Theorem 2 for diffeomorphisms. By a connectedness of Mn ,
the non-wandering set of f consists of a sink ω, a source α, and a saddle σ .

Obviously, n � 2 because a Morse–Smale diffeomorphism of a circle has an even number of fixed points. First, we
consider a 2-manifold M2 admitting a Morse–Smale diffeomorphism with three fixed points: ω, α, and σ . The stable and
unstable manifolds of σ are 1-dimensional. Since a Morse–Smale diffeomorphism has no heteroclinic points, the union
of stable manifold W s(σ ) and the source α forms the closed simple curve C ⊂ M2. The set M2 \ C is the basin of ω,
M2 \ C = W s(ω). By [33], W s(ω) is a disk. Hence, M2 is the projective plane.

Since f ∈ MSdiff(Mn,3) has only one saddle, f has no heteroclinic intersections. It follows from [9] that if a Morse–Smale
diffeomorphism of a closed 3-manifold has no heteroclinic intersections, then the number of periodic points cannot be three
and five. As a consequence, dim Mn = n �= 3.

Now, n � 4. Recall Morse inequalities for Morse–Smale diffeomorphisms. Let M j be the number of periodic points p ∈
Per( f ) those stable Morse index equals j = dim W s(p), and βi = rank Hi(Mn,Z) the Betti numbers. According to [31],

M0 � β0, M1 − M0 � β1 − β0, M2 − M1 + M0 � β2 − β1 + β0, . . . , (2)
n∑

i=0

(−1)i Mi =
n∑

i=0

(−1)iβi . (3)
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Let f ∈ MSdiff(Mn,3), n � 4, and let us show that 2 � d = dim Sepτ (σ ) � n − 2. Suppose the contradiction. By Lemma 2,

W s(σ ) ∪ {α} def= S1
α , W u(σ ) ∪ {ω} def= Sn−1

ω are topologically embedded circle and (n − 1)-sphere respectively. Since n � 4,
there is a neighborhood Uω of Sn−1

ω homeomorphic to Sn−1
ω × (−1;+1) [11,14]. Without loss of generality, one can assume

that f (Uω) ⊂ Uω . The sphere Sn−1
ω does not divide Mn because of Sn−1

ω intersects S1
α at a unique point σ . As a consequence,

Mn
1 = Mn \ Uω is a connected manifold with two boundary components each homeomorphic Sn−1

ω . Gluing n-balls to these
components, one gets a closed manifold Mn

2. Since f (Uω) ⊂ Uω , one can extend f to Mn
2 such that f will have a source

and two sinks. This is impossible.
By [17], the absence of 1-dimensional separatrices implies that a Morse–Smale diffeomorphism has unique source and

unique sink, and Mn is orientable. We show above that k �= 1 and k �= n − 1. As a consequence, M1 = Mn−1 = 0, and Mn is
simply connected.

Suppose σ is of type (n − k,k). Then M0 = Mn = Mk = 1. For f −1, one holds M0 = Mn = Mn−k = 1. For j �= 0, n, k, n − k,
one holds M j = 0. Since the left parts of (3) for f and f −1 are equal, (−1)k = (−1)n−k . Hence, n = 2m is even, where m � 2.

Let us show that k = m. Suppose the contradiction. Assume for definiteness that k > m. It follows from (2) that β1 =
· · · = βn−k−1 = 0 because of M1 = · · · = Mn−k−1 = 0. The Poincare duality implies that β1 = · · · = βk−1 = 0. Hence, βi = 0 for
all i = 1, . . . ,n − 1. Then (3) becomes 1 + (−1)k + (−1)n = 1 + (−1)n . This is impossible. �
Proof of Theorem 3. It remains to prove that Sk

ω = W u(s0)∪{ω}, Sk
α = W s(s0)∪{α} are locally flat provided n � 6. It follows

from [13] (see [34,12]) that k-manifold has no isolated wild points provided n � 5, k �= n − 2. As a consequence, Sk
ω , Sk

α are
locally flat k-spheres. This completes the proof of Theorem 3. �
Proof of Theorem 1. Before, we proved that M2 is the projective plane, and n is even. It follows from Theorem 2 that Mn is
a simply connected and orientable manifold provided n � 4. Keeping the notation of Theorem 2, we see that Mn is the union
of the basin W u(ω) of the sink ω and the topological closure of the separatrix Seps(s0) that is a topologically embedded
n
2 -spheres. Since W u(ω) homeomorphic to Rn , Mn is a compactification of Rn by an n

2 -sphere.
The existence of closed manifolds Mn admitting a Morse–Smale system (diffeomorphism or flow) the non-wandering set

of whose consists of three fixed points follows from [15].
Now, let n � 6. By Theorem 3, the spheres W u(s0) ∪ {ω} = Sω , W s(s0) ∪ {α} = Sα are locally flat. Hence, the tubular

neighborhood T of Sω is a locally trivial bundle B over Sω and the fiber n
2 -ball B

n
2 [21]. Since the non-wandering set

consists of three fixed points, the boundary ∂T belongs to W u(α) that homeomorphic to Rn . Because of the n
2 -sphere

Sω is simply connected, the bundle T is orientable. It follows that T admits a vector field that is transversal to ∂T and
directed to the center of B

n
2 at each fiber of T . This implies that one can define a flow ϕt on W u(α) such that α is a

source and any point of W u(α) \ {α} is a wandering point of ϕt . Obviously, there is an (n − 1)-sphere Σn−1 ⊂ W u(α) \ {α}
that does not bound a ball in W u(α) \ {α}. In [23], one considered connected components of wandering set of topological
flows, and it was proved that if a connected component contains an embedded (n − 1)-sphere that does not bound a ball,
the connected component is homeomorphic to the prime product Σn−1 × (0,1). As a consequence, ∂T homeomorphic to
(n − 1)-sphere Sn−1. Therefore, B induces the fiber bundle of Sn−1 over an n

2 -sphere with a fiber ( n
2 − 1)-sphere. It is well

known that for n � 6, such bundles are Hopf bundles existing for n − 1 = 7 and n − 1 = 15 [2].
It follows from above results that the n

2 -sphere Sω is the retract of Mn \ {α}. Hence, the homotopy groups

π1
(
Mn) = π1

(
Mn \ {α}) = 0, . . . , π n

2 −1
(
Mn) = π n

2 −1
(
Mn \ {α}) = 0.

This completes the proof of Theorem 1. �
The proof of the first item of Theorem 4. Here, we have to prove that given any f t ∈ MSflow(M4,3), the spheres W u(s0) ∪
{ω} = Sω and W s(s0) ∪ {α} = Sα are locally flat. There are neighborhoods Uα , Uω of α and ω respectively homeomorphic
to a 4-ball such that ∂Uα ∩ W s(σ ) (resp., ∂Uω ∩ W u(σ )) is a simple closed curve, say Cα (resp., Cω). By Lemma 3, Cα

(resp., Cω) is unknotted in ∂Uα (resp., ∂Uω). This implies that Sω and Sα are locally flat. �
Proof of Theorem 5. Let ω f , α f , σ f be the sink, source, and saddle of f t respectively. There are neighborhoods U (ω f ),
U (α f ) of α f , σ f respectively such that the boundaries ∂U (ω f ), ∂U (α f ) are transverse to f t , and σ f /∈ U (ω f ) ∪ U (α f ).
Without loss of generality, one can assume that the both U (ω f ) and U (α f ) homeomorphic to a 4-ball. The similar notation
holds for gt .

By Proposition 2.15 [27], there are neighborhoods V (σ f ), V (σg) of σ f , σg respectively such that each flow f t |V (σ f ) ,
gt |V (σg ) is equivalent to f t

s |U0 , where U0 is the special neighborhood. In particular, each intersection V (σ f ) ∩ ∂U (α f ) = T f ,
V (σg) ∩ ∂U (αg) = T g is a solid torus. We see that there is a homeomorphism h : V (σ f ) → V (σg) taking the trajectories of
f t |V (σ f ) to the trajectories of gt |V (σg ) . Since T f and T g are transversal to the flows f t and f g respectively, h induces the
homeomorphism T f → T g denoted again by h. Obviously, h takes Sepu(σ f ) to Sepu(σg). Therefore, h takes Sepu(σ f ) ∩ T f to
Sepu(σg) ∩ T g . According to the flow structure in the special neighborhood U0, the both Sepu(σ f ) ∩ T f and Sepu(σg) ∩ T g
are axes of solid tori T f and T g respectively.

By Lemma 3, the curves Sepu(σ f )∩T f and Sepu(σg)∩T g are unknotted in the 3-spheres ∂U (α f ) and ∂U (αg) respectively.
Hence, the complements to T f and T g are solid tori, and h can be extended to a homeomorphism ∂U (α f ) → ∂U (αg). It
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Fig. 1. Pixton–Bonatti–Grines constructions.

Fig. 2. Special neighborhood.

follows that there is a homeomorphism h∗ : M4 \ (α f ∪ω f ) → M4 \ (αg ∪ωg) taking the trajectories to the trajectories. Then
h∗ is easily extended to M4 to get a homeomorphism taking the trajectories of f t to the trajectories of gt . �
3. Examples

The proof of the second item of Theorem 4. Here we follow [7,25]. For the convenience of the Reader, we briefly review the
constructions in [7,25].

Let f t
NS be the north–south type flow on the 3-sphere S3, Fig. 1(a). If S3 thought of R3 completed by the infinity point,

f t
NS is defined by the system ẋ1 = x1, ẋ2 = x2, ẋ3 = x3. The origin O = α = north is a source, and the infinity point ω = south

is a sink. Let fNS = f 1
NS be the shift-time t = 1 along the trajectories.

Take the Artin–Fox configuration consisting of three arcs, see Fig. 1(b). One can assume that the Artin–Fox curve lAF is
the union of shifts f m

NS , m ∈ Z, so that lAF connects ω and α, and lAF is invariant under fNS . Well known that the Artin–
Fox closed arc lAF ∪ {α} ∪ {ω} is wild at ω and α [6,14]. Let T be a tubular neighborhood of lAF such that T is invariant
under fNS . Actually, T is an infinite cylinder that can be thought of the support of Cherry type flow gt with a saddle, say σ ,
of type (2,1) and an attracting node, Fig. 1(c). One can assume that the shift-time-one g1 = g on ∂T coincides with the
restriction fNS|∂T . The Pixton–Bonatti–Grines diffeomorphism f : S3 → S3 equals fNS on S3 \ T and equals g on T . It is
easy to see that f is a gradient-like Morse–Smale diffeomorphism such that the closure of unstable separatrix of σ is a
topologically embedded 2-sphere that is wild at ω.

Developing this idea we consider a 4-sphere S4 being the result after the rotation R of 3-sphere S3 such that R(ω) = ω,
R(α) = α. Instead of T , one takes R(T ), and instead of Cherry type flow gt we take the flow on the special neighbor-
hood U0 with a unique saddle of type (2,2).

Here, we keep the notation of Section 1 for n = 4, k = 2. Given a 2-torus T 2 that is the boundary of solid torus P 3 =
S1 × D2, T 2 = ∂ P 3 = S1 × ∂ D2, any curve {·} × ∂ D2 is called a meridian, and S1 × {·} is a parallel. Recall that a 3-sphere S3

can be obtained after a gluing of two copy of solid torus P 3, S3 = P 3 ∪ν P 3, where the glue mapping ν : T 2 → T 2 takes a
meridian to parallel and vise versa. This representation of S3 is a standard Heegaard splitting of genus 1.

Given any t ∈ R, we introduce 2-torus

T2
t = {

(x1, x2, x3, x4)
∣∣ x2

1 + x2
2 = exp(−2t), x2

3 + x2
4 = exp 2t

} ⊂ H3

that is the boundary of the following solid tori

P 3
12,t = {

(x1, x2, x3, x4)
∣∣ x2

1 + x2
2 = exp(−2t), x2

3 + x2
4 � exp 2t

}
,

P 3
34,t = {

(x1, x2, x3, x4)
∣∣ x2

1 + x2
2 � exp(−2t), x2

3 + x2
4 = exp 2t

}
,

that form a standard Heegaard splitting P 3
12,t ∪id P 3

34,t of genus 1. The 3-sphere P 3
12,t ∪id P 3

34,t bounds the 4-ball, say B4
0.

Moreover, P 3
12,t0

and P 3
34,t0

divide U0 into three domains B4
0, U12(t � t0), U34(t � t0), Fig. 2, where
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Fig. 3. Artin–Fox configuration.

U 4
12(t � t0) = {

(x1, x2, x3, x4)
∣∣ x2

1 + x2
2 > exp(−2t0), x2

3 + x2
4 < exp 2t0,

(
x2

1 + x2
2

)(
x2

3 + x2
4

)
< 1

}
,

U 4
34(t � t0) = {

(x1, x2, x3, x4)
∣∣ x2

1 + x2
2 < exp(−2t0), x2

3 + x2
4 > exp 2t0,

(
x2

1 + x2
2

)(
x2

3 + x2
4

)
< 1

}
.

We see that a 2-torus T2
t0

divides H3 into two parts T2
t�t0

= ⋃
t�t0

T2
t , T2

t�t0
= ⋃

t�t0
T2

t such that ∂U12(t � t0) = T2
t�t0

and

∂U34(t � t0) = T2
t�t0

.

Let us introduce the coordinates (t, u, v) on H3 = ∂U0 as follows

x1 = e−t cos 2πu, x2 = e−t sin 2πu, x3 = et cos 2π v, x4 = et sin 2π v, (4)

where u, v ∈ [0;1) are cyclic coordinates on meridians or parallels on T2
t . Later on, (t, u, v) becomes (t2, u2, v2).

Take the copy of R4 endowed with the coordinates (x1, x2, x3, x4), and the flow f t
NS that is defined by (7) for n = 4. The

diffeomorphism

fNS = f 1
NS : (x1, x2, x3, x4) → (ex1, ex2, ex3, ex4)

is a shift-time-one along the trajectories of f t
NS . Clearly, the family of spheres

S3
m = {

(x1, . . . , x4): x2
2 + x2

2 + x2
3 + x2

4 = e2m}
, S2

m = S4
m ∩ {x4 = 0}

is invariant under fNS .

Now we construct the special Artin–Fox curve as follows. On S2
0, one takes the points Y 0

0 ( 1
2 ;0;

√
3

2 ;0), Y 0
1 (0;0;1;0),

Y 0
2 (

√
3

2 ;0; 1
2 ;0). Between the spheres S3

0 and fNS(S3
0) = S3

1, one takes arcs d1, d2, d3 forming Artin–Fox configuration such
that d1 connects Y 0

0 , Y 0
1 , and d2 connects fNS(Y 0

1 ), fNS(Y 0
2 ), and d3 connects Y 0

2 , fNS(Y 0
0 ), Fig. 3(a). One can assume that the

union

l◦ def=
⋃
k∈Z

f k
NS(d1 ∪ d2 ∪ d3)

is a simple arc connecting the origin O = N and the infinity point S such that l = {S, N} ∪ l◦ is Artin–Fox curve [6]. Here,
we consider the 3-sphere S3 the both as R3 completed by the infinity point S , and as the natural part of the 4-sphere S4.
Without loss of generality, we can suppose that l intersects transversally all spheres S3

m , m ∈ Z.
Let R be the rotation of the half-space R3+ about 2-plane x4 = 0 = x3 that is defined as

x1 = x1, x2 = x2, x3 = x3 cos 2π v − x4 sin 2π v, x4 = x3 sin 2π v + x4 cos 2π v, (5)

where v ∈ [0,1]. Since S and N are fixed under R and l◦ = l \ ({S, N}) ⊂ R3+ , R(l) = lR is a topologically embedded
2-sphere. It follows from [3,13] that lR is wild at S and N .

One can introduce the smooth injective parametrization θ : R → l◦ such that l intersects every S3
m , m ∈ Z, at three points

l◦(m), l◦(m+ 1
3 ), l◦(m+ 2

3 ) with parameters t = m, m+ 1
3 , m+ 2

3 respectively. Since l is invariant under fNS , there is a tubular
neighborhood T (l◦) of l◦ such that T (l◦) is invariant under fNS , and T (l◦) is diffeomorphic to R × D2, and T (l◦) intersects
every S3

m , m ∈ Z, at three disks

Dm,0 = {m} × D2, Dm+ 1
3 ,1 =

{
m + 1

3

}
× D2, Dm+ 2

3 ,2 =
{

m + 2

3

}
× D2,

where Y 0
i ∈ D i

3 ,i , i = 1,2,3.

Clearly, R(R × D2)AF is a neighborhood of R(l◦) = l◦R which is homeomorphic to R × D2 × S1 the boundary of those is
R × S1 × S1. Therefore, this boundary is endowed with the coordinates (t, u, v) defined by (5). Here, we denote (t, u, v) by
(t1, u1, v1).
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Put by definition, I = int(R × D2)AF ∪ {N, S}, M1 = S4 \ I , and M2 = clos U0. We see that ∂M1 is homeomorphic to
R× S1 × S1 � ∂M2 = H3. Recall that H3 endowed with the coordinates (t2, u2, v2). The mapping Ξ : ∂M2 → ∂M1 is defined
as follows:

t1 = t2, u1 = u2 − v2, v1 = v2. (6)

According to [21], the set M4∗ = M1 ∪Ξ M2 is a non-compact manifold. Clearly, the set M ′
1 = S4 \ int(R × D2)AF is compact,

and M1 = M ′
1 \ {N, S}.

The tori T2
0, T2

1 divide H3 into three sets T2
t�1, T2

0�t�1, T2
t�0 where T2

0�t�1 is compact while the others are

non-compact. Denote by Ξt�1, Ξ0�t�1, Ξt�0 the restriction of Ξ on T2
t�1, T2

0�t�1, T2
t�0 respectively. Similarly, the

circles ({0} × ∂ D2)AF , ({1} × ∂ D2)AF divide the boundary of (R × D2)AF into three cylinders C0�t�1 = ([0,1] × S1)AF ,
Ct�1 = ([1,+∞) × S1)AF , Ct�0 = ((−∞;0] × S1)AF where C0�t�1 is compact while the others are not. Denote R(C0�t�1),
R(Ct�1), R(Ct�0) by

C0�t�1,R � [0,1] × S1 × S1, Ct�1,R � [1,+∞) × S1 × S1, Ct�0,R � (−∞,0] × S1 × S1

respectively.
Clearly, R(S2

m) = S3
m ⊂ R4 \ {N, S}. Let K (� m) = {(x1, x2, x3, x4): x2

2 + x2
2 + x2

3 + x2
4 � e2m} be the exterior of S3

m , and
K (� m) the interior of S3

m with the hole N . Denote by K (m1,m2) the closed annulus between the spheres S3
m1

, S3
m2

.
Because of (6), M4∗ = M1 ∪Ξ M2 is the union of the following sets:

1) U12(t � 0) ∪Ξt�0 [K (� 0) \ I ] def= BN ,

2) U34(t � 1) ∪Ξt�1 [K (r � 1) \ I ] def= B S ,

3) B4(0 � t � 1) ∪Ξ0�t�1 [K (−1,1) \ I ] def= B∗ .

It follows from (6) that the set

S∗,−m ∪Ξ |t�0

(
P 3

12,−m ∪ P 3
12,−m+ 1

3
∪ P 3

12,−m+ 2
3

) def= S3
m,∗

is a 3-sphere, since the lens L(1,−1), L(1,1) are the 3-sphere S3 = L(1,0). Note that if l deforms outside of some compact
part to being rays, l becomes a locally flat arc. It follows that the set K N (−m,−m − 1) between S3

m,∗ , S3
m+1,∗ can be

embedded in R4. This implies that KN (−m,−m − 1) homeomorphic to the annulus S3 × [0;1], and hence BN can be
completed by a point to be a smooth manifold. Similarly, B S . We see that M4 = M ′

1 ∪Ξ M2 admits a structure of closed
smooth 4-manifold.

The shift-time-one diffeomorphisms fNS : M1 → M1, f 1
s : M2 → M2 induce the diffeomorphism f : M4 → M4 with two

nodes, say α and ω, and a saddle. By construction, the spheres Sω , Sα are wildly embedded. This completes the proof of
Theorem 4. �
Proof of Theorem 6. First, we introduce the special Morse–Smale flows MSflow

k,n−k(Mn,4) ⊂ MSflow(Mn,k), where k � 2,

n − k � 2. In Rn , consider the linear vector field �Vn defined by the system

ẋ1 = x1, ẋ2 = x2, ẋn−1 = xn−1, ẋn = xn. (7)

Clearly, O = (0, . . . ,0) is a repelling node, and (n − 1)-sphere Sn−1
j = {�x = (x1, . . . , xn) | x2

1 + · · · + x2
n = j2} is transversal

to �Vn for any j ∈ N. Let Sk−1
1 be a smoothly embedded in Sn−1

1 (k − 1)-sphere. Denote by T (Sk−1
1 ) ⊂ Sn−1

1 a closed tubular

neighborhood of Sk−1
1 diffeomorphic to Sk−1

1 × Dn−k . Let Q n be the union of rays starting at O = (0, . . . ,0) through T (Sk−1
1 ).

Actually, each ray is the node O and a trajectory through T (Sk−1
1 ). Since ∂T (Sk−1

1 ) is diffeomorphic to Sk−1 × Sn−k−1, the

boundary of the set R
def= Rn \ (O ∪ int Q n) is diffeomorphic to Sk−1 × Sn−k−1 × R where the last factor R corresponds to

the time parameter of (7).
Recall that ∂U0 = Sk−1 × Sn−k−1 × R where the last factor R corresponds to the time parameter of (1). Let η : ∂U0 → ∂ R

be the natural identification. Then (clos U0) ∪η R is a manifold. Because of η is a homotopy identity on the fac-

tor Sk−1 × Sn−k−1, one can extend the structure of smooth manifold to O ∪ (clos U0) ∪η R
def= Rn such that the set

(Sn−1
1 \ T (Sk−1

1 )) ∪η (Sk−1
1,k × Dn−k

k+1,n) is homeomorphic to Sn−1
1 that bounds the neighborhood of O in Rn homeomorphic

to Rn .
Let A be a closed annulus bounded by Sn−1

1 , Sn−1
2 in Rn , and Bn

2 ⊂ Rn the closed n-ball bounded by Sn−1
2 . By construc-

tion, η glue Hn−1(0 � τ � 1) with ∂(A \ Q n). Therefore, η glue ∂(Sn−1
2 \ Q n) with

∂

(
Dk

1,k

(
r√
e

)
× Sn−k−1

k+1,n

(√
e

r

))
= Sk−1

1,k

(
r√
e

)
× Sn−k−1

k+1,n

(√
e

r

)
.



Author's personal copy

506 V.S. Medvedev, E.V. Zhuzhoma / Topology and its Applications 160 (2013) 498–507

Put by definition,

Dn(τ � 0) =
⋃

0�τ�1

fτ

(
Dk

1,k

(
r√
e

)
× Sn−k−1

k+1,n

(√
e

r

))
, Bn = Dn(τ � 0) ∪η ∂

(
Bn

2 \ Q n).
The set Bn is a part of Rn with the piecewise smooth boundary

∂ Bn = (
Sn−1

2 \ Q n) ∪η

(
Dk

1,k

(
r√
e

)
× Sn−k−1

k+1,n

(√
e

r

))
.

The vector fields �V s , �Vn define the vector field �v on int Bn . Smoothing the boundary of Bn and �v to get a smooth vector
field (denoted by �v again) that is transversal to ∂ Bn . By construction, �v has the repelling node O and the saddle, say s0, of
the type (n − k,k). Note that Sk−1

1,k = W s(s0) ∩ Sn−1
1 = Sk−1

1,k , Sn−k−1
k+1,n = W u(s0) ∩ ∂ Bn = Sn−k−1

k+1,n . Take the copy B ′
n of Bn with

the vector field −�v . Clearly, −�v has an attracting node, say O ′ , and saddle, say s′
0, of the type (k,n − k). The intersection of

W s(s′
0) with ∂ B ′

n is a sphere Sn−k−1,∗
k+1,n . Without loss of generality, one can assume that Sn−k−1,∗

k+1,n ∩ Sn−k−1,∗
k+1,n = ∅ because of

k � 2.

Let Bn ∪ψ B ′
n

def= Mn be the manifold obtained by the identification ψ of the boundaries of Bn , B ′
n [21]. The fields �v ,

−�v define on Mn the Morse–Smale vector field �V that induces the Morse–Smale flow denoted by f t
k,n−k(Sk−1

1,k ). Obviously,

f t
k,n−k(Sk−1

1,k ) ∈ MSt
k,n−k(Mn,4). For k = n − 2 and n � 4, take Sk−1

1 = Sn−3
1 to be smoothly embedded and knotted codimen-

sion two sphere. Well known that such spheres exist [14]. According to [5,3,13], the spheres W s(s0) ∪ O , W u(s′
0) ∪ O ′ are

wild at O and O ′ respectively. This completes the proof of Theorem 6. �
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