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Abstract The notion of a boundary graph class was recently introduced for a clas-
sification of hereditary graph classes according to the complexity of a considered
problem. Two concrete graph classes are known to be boundary for several graph
problems. We formulate a criterion to determine whether these classes are boundary
for a given graph problem or not. We also demonstrate that the classes are simultane-
ously boundary for some continuous set of graph problems and they are not simulta-
neously boundary for another set of the same cardinality. Both families of problems
are constituted by variants of the maximum induced subgraph problem.

Keywords Computational complexity · Boundary graph class · Maximum induced
subgraph problem

1 Introduction

All graphs considered in this paper are simple, i.e. undirected unlabeled graphs with-
out loops and multiple edges. A class of graphs is a set of simple graphs. A class
of graphs is called hereditary, if it is closed under deletions of vertices. In other
words, if a hereditary class contains a graph G, then every induced subgraph of G

must belong to the class. Many graph classes interesting from theoretical and prac-
tical viewpoints are hereditary. For instance, planar graphs, bipartite graphs, perfect
graphs, line graphs, graphs of bounded vertex degree hold this property.
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It is known that a hereditary (and only hereditary) class X can be defined by a
set of its forbidden induced subgraphs Y , i.e. graphs that do not belong to X . It is
denoted by X = F ree(Y ). For any hereditary class of graphs X there exists a unique
minimal under inclusion set of forbidden induced subgraphs. It is accepted to denote
by F orb(X ). The sets Y and F orb(X ) might be different. For example, if X is the
set of all bipartite graphs, then all graphs with a Hamiltonian odd cycle make up a set
of its forbidden induced subgraphs, but the minimal set with this property coincides
with the set of all odd chordless cycles (due to the theorem of Kõnig).

The set F orb(X ) can be finite and infinite. If this set is finite, then X is called
finitely defined. The classes of line graphs (Harary 1969) and bounded degree graphs
are finitely defined. On the other hand, planar and perfect graphs make up classes
with infinite sets of minimal forbidden induced subgraphs (Chudnovsky et al. 2006;
Kuratowski 1930).

Many graph problems are known to be NP-complete in the set of all graphs and
the same remains true under substantial restrictions of this graph class. At the same
time, some “areas of tractability” are known, i.e. classes of graphs with polynomial-
time solvability of a problem. Sometimes, the computational status of a considered
problem can be open for some class. For instance, the maximum independent set
problem is NP-complete for planar graphs (Garey et al. 1974), it is solvable in poly-
nomial time for bipartite graphs and its complexity remains open for graphs without
induced cordless path and cycle with five vertices (Mosca 2008). When does a diffi-
cult problem become easy? The notion of a boundary graph class helps us to answer
this question within the family of hereditary graph classes. This notion was originally
introduced by Alekseev for the maximum independent set problem (Alekseev 2004).
It was applied for the minimum dominating set problem later (Alekseev et al. 2004).
Study of boundary graph classes for some graph problems was extended in another
papers (Alekseev et al. 2007; Alekseev and Malyshev 2008), where the notion was
formulated in its most general form. Let us give the necessary definitions.

Let Π be an NP-complete graph problem. A hereditary graph class X is called Π -
easy, if Π is polynomial-time solvable for graphs in X , and Π -tough, otherwise. We
assume that P �= NP and this condition is not explicitly included in formulations of
statements. An example of such a formulation will be: if a problem Π is NP-complete
for graphs in X , then X is Π -tough. A class of graphs is said to be Π -limit, if this
class is the limit of an infinite monotonously decreasing chain of Π -tough classes. In
other words, X is Π -limit, if there is an infinite sequence X1 ⊇ X1 ⊇ . . . of Π -tough
classes, such that X = ⋂∞

k=1 Xk . A minimal under inclusion Π -limit class is called
Π -boundary.

The following theorem certifies the significance of the boundary class notion
(Alekseev 2004).

Theorem 1 A finitely defined class is Π -tough if and only if it contains some Π -
boundary class.

The theorem shows that knowledge of all Π -boundary classes leads to a complete
classification of finitely defined graph classes with respect to the complexity of Π .
Unfortunately, for no one graph problem the structure of boundary classes is com-
pletely known. Only separate results on fragments of this sets have been obtained.
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Fig. 1 The butterfly

For instance, Alekseev (2004) proved that some class of graphs is boundary for the
independent set problem. Namely, he showed that the class of forests with at most
3 leaves in each connected component is boundary for the problem. We denote this
class by S . The class S is a boundary class for the dominating set problem and the
line graphs of graphs in S constitute a boundary class for this problem (Alekseev
et al. 2004). The set of such kind line graphs is denoted by T . Let’s notice that one
more boundary class has been revealed for the problem in the same paper. The classes
S and T are known to be simultaneously boundary for several graph problems (see
also Alekseev and Malyshev 2008; Malyshev 2009b). On the other hand, there are
problems, for which neither S nor T are boundary. For example, it is true for the
Hamiltonian cycle problem (Korpeilainen et al. 2011) and for the vertex (edge) k-
colorability problem under any choice of k ≥ 3 (Malyshev 2009a, 2009c, 2009d).

Among graph classes, being boundary for at least one graph problem, only S
and T are boundary for problems of diverse nature. Therefore, it would be informa-
tive to know more about common features of such problems. For a systematic study
of the problems we formulate a criterion to determine whether S or T is boundary for
a given graph problem or not. Based on this tool, we answer the interesting question
about the “capacity” of graph problems with boundary classes S and T . Namely, we
demonstrate that the classes are simultaneously boundary for a continuous set of vari-
ants of the maximum induced subgraph problem. We also prove that these classes are
not boundary for a set of variants of the mentioned problem with the same cardinality.
We believe that the criterion will be helpful to answer another issues concerning S
and T as boundary classes.

2 Notation

As usual, Cn,Kn and Kp,q stand respectively for the cordless cycle with n vertices,
the complete graph with n vertices and the complete bipartite graph with p vertices
in the first part and q vertices in second. The graph K4 − e is a result of an edge
deletion from K4. The butterfly is a graph with vertices x1, x2, x3, x4, x5 and edges
(x2, x3), (x4, x5), (x1, x2), (x1, x3), (x1, x4), (x1, x5) (see Fig. 1).

The complemental graph of G (denoted by G) is a graph on the same set of vertices
and two vertices of G are adjacent if and only if they are not adjacent in G. The
disjoint union of k copies of a graph G is denoted by kG.

Each connected component of every graph in S is a graph of the form Si,j,k

(i ≥ 0, j ≥ 0, k ≥ 0) and each connected component of every graph in T is a graph
of the form Ti,j,k (i ≥ 0, j ≥ 0, k ≥ 0) (see Fig. 2).
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Fig. 2 The graphs Si,j,k and Ti,j,k

Fig. 3 The bed Bi and the barbell Bari

The bed Bi (i ≥ 1) is a graph with the set of vertices {x1, x2, y1, y2, z1, z2,

. . . , zi+1} and the set of edges {(x1, z1), (z1, x2), (z1, z2), (z2, z3), . . . , (zi , zi+1),

(y1, zi+1), (zi+1, y2)}. The barbell Bari (i ≥ 1) is the line graph of Bi+1. Both these
graphs are drawn in Fig. 3.

The set F orb(S) consists of all cycles, all beds and the graph K1,4. This follows
directly from the facts that all graphs in Free({K1,4,C3,C4, . . . ,B1,B2, . . .}) must
be subcubic (i.e. have the vertex degrees not exceeding 3) forests and every tree in
the class can not contain two vertices of the degree 3. From the Theorem 8.4 of
the Harary’s monograph it follows that all graphs in Free({K1,3,K4 − e}) are line.
Knowing this and the minimal forbidden subgraphs for S , it is easy to show that the
same set for T is constituted by all cycles of length at least 4, all barbells and the
graphs K1,3,K4,K4 − e,butterfly.

We denote the set of graphs without induced beds B1,B2, . . . ,Bi , induced cycles
C3,C4, . . . ,Ci and induced graphs K1,4, kSj,j,j by U(i, j, k) (i ≥ 3, j ≥ 1, k ≥ 1).
In other words, U(i, j, k) = F ree({Bs | 1 ≤ s ≤ i}∪{Cs | 3 ≤ s ≤ i}∪{K1,4, kSj,j,j }).
The set of graphs F ree({Bars | 1 ≤ s ≤ i − 1} ∪ {Cs | 4 ≤ s ≤ i} ∪ {K1,3,K4,

K4 − e,butterfly, kTj,j,j }) (i ≥ 4, j ≥ 1, k ≥ 1) is denoted by W (i, j, k). It is easy
to see that W (i, j, k) consists of the line graphs of graphs in U (i, j + 1, k). Observe
that the inclusions F orb(U (i, j, k)) ⊆ F orb(S) ∪ {kSj,j,j } and F orb(W (i, j, k)) ⊆
F orb(T ) ∪ {kTj,j,j } hold.

The classes of planar and subcubic graphs are denoted by P lanar and Deg(3)

correspondingly. For a class of graphs X the formula co(X ) stands for the set
{G | G ∈ X }.

All graph definitions and notions, not formulated in this paper, can be found in the
books of Bondy and Murty (2008), Diestel (2010) and Harary (1969).
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3 The criterion and some auxiliary results

The following statement has been proved by Alekseev and Malyshev (2008).

Theorem 2 A Π -limit class B is Π -boundary if and only if for every G ∈ B there
exists such a finite set of graphs A ⊆ F orb(B) that F ree(A ∪{G}) is a Π -easy class.

The Theorem 2 will be applied further to a proof of necessary and sufficient condi-
tions that describe graph problems, for which S and T are boundary. The last theorem
provides the following criteria for these classes.

Theorem 3 The class S is Π -boundary if and only if it is Π -limit and for any j

and k there is a number i, such that the class U (i, j, k) is Π -easy. The class T is
Π -boundary if and only if it is Π -limit and for any j and k there is a number i, such
that the class W (i, j, k) is Π -easy.

Proof The proofs for S and T are similar. We will concentrate only on the proof for
the class S .

Let us prove the necessity. Assume, S is Π -boundary. Since for any j and k the
graph G = kSj,j,j belongs to S , then, by the Theorem 2, there is a finite set of graphs
A ⊆ F orb(S), such that F ree(A ∪{G}) is Π -easy. Let i be a maximal number among
lengths of chordless cycles and beds, contained in A (if A does not contain such
cycles and beds, then i = 3). Then, U (i, j, k) ⊆ F ree(A ∪{kSj,j,j }). Hence, the class
U (i, j, k) will also be Π -easy.

Let us prove the sufficiency. Any graph G ∈ S is an induced subgraph of kSj,j,j

for some k and j . Therefore, the inclusions F orb(U (i, j, k)) \ {kSj,j,j } ⊆ F orb(S)

and F ree(F orb(U (i, j, k)) ∪ {G}) ⊆ U (i, j, k) are true. From the last inclusion,
finiteness of F orb(U (i, j, k)), Π -easiness of U (i, j, k) and the Theorem 2 it follows
that S is Π -boundary. �

The Theorem 3 might be a helpful tool for proving or disproving whether the
classes S and T are boundary or not. It permits to reveal two continuous sets of graph
problems, such that both specified classes are boundary for every problem of the first
set, but they are not boundary for any problem in the second one. We will define both
families of such problems below. They are concrete representatives of the general
maximum induced subgraph problem. The essence of its statement in the optimiza-
tion form consists in finding an induced subgraph with some special properties and
the largest possible number of vertices in a given graph. We will consider the problem
only in the recognition form further. More formally, we are given a graph G and some
graph property (class of graphs) X . An induced subgraph of G is said to be induced
X -subgraph, if it belongs to X . A maximal number of vertices in X -subgraphs of
G is denoted by nX (G). An X -subgraph of G with the largest value of nX (G) is
called maximal. The maximum induced subgraph problem with respect to X or the
maximum induced X -subgraph problem (the ISUBGRAPH[X ], for short) is to verify
for a given graph G and a natural k the validity of the inequality nX (G) ≤ k. Many
famous graph problems are maximum induced subgraph problems (under a corre-
sponding choice of X ) or polynomially equivalent to them. For instance, it is true for
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the independent set problem (X is the set of all empty graphs) and for the maximum
induced cycle problem (X is the set of all chordless cycles).

Recall that an edge in a graph is said to be a bridge, if its removal from the graph
leads to increasing the number of connected components. An addition of a bridge im-
plies insertion of an edge to a graph, connecting vertices from its different connected
components. An s-subdivision of an edge consists in replacing this edge by a path of
length s + 1. An s-contraction of a path with s + 2 vertices (all intermediate vertices
of which have the degrees equal to two) in a graph is to replace the path by an edge.
It is obvious that the s-subdivision operation is inverse to the s-contraction operation.

Let X be an arbitrary hereditary graph class, such that:

• The intersection of X with the set of subcubic graphs is constituted by all planar
subcubic graphs. To put it in another way, X ∩ Deg(3) = Deg(3) ∩ P lanar.

• The inclusion X ⊆ F ree({K5}) holds.

Let us show that there is a continuous set of graph classes with the described prop-
erty. To do this we consider the set S ′ of all homeomorphic to K3,3 graphs, the set S ′′
of all homeomorphic to K5 graphs and some subset Ñ of the set of all naturals N. The
result of actions of s-subdivisions (s ∈ Ñ) on edges of K5 is denoted by S(Ñ). In other
words, a graph G belongs to S(Ñ) if and only if there exist numbers n1, n2, . . . , nk ∈
Ñ and edges e1, e2, . . . , ek ∈ E(K5), such that applying an n1-subdivision to e1, an
n2-subdivision to e2, . . . , an nk-subdivision to ek leads to a graph, isomorphic to G.
Obviously, S(Ñ) ⊆ S′′ and P lanar = F ree(S′ ∪ S′′). As any graph in S(Ñ) is not
subcubic, then F ree(S′ ∪ S(Ñ) ∪ {K5}) ∩ Deg(3) = Deg(3) ∩ P lanar. Therefore,
the set {Free(S′ ∪ S(Ñ) ∪ {K5}): Ñ ⊆ N} contains only different classes, satisfying
the conditions formulated above. This set is continuous, because the power set of N

is continuous.
The ISUBGRAPH[X ] is NP-complete, because the problems

ISUBGRAPH[P lanar] and ISUBGRAPH[X ] coincide for subcubic graphs and the
ISUBGRAPH[P lanar] is NP-complete for these graphs (Faria et al. 2001).

Lemma 1 If a graph G′ is obtained from G ∈ Deg(3) by means of an s-subdivision
of some edge, then nX (G′) = nX (G) + s.

Proof The class of planar graphs is closed under additions of isolated vertices, ad-
ditions of bridges, k-subdivisions and k-contractions for any k ∈ N. Any induced
X -subgraph of G is planar subcubic. These observations will be used in the argu-
mentation below.

Assume that G′ is a result of a replacement of e = (a, b) by a path P of length
s+1 in the graph G. Let H ∈ X be an induced subgraph of G with a maximal number
of vertices. Create an induced subgraph H ′ of the graph G′ as follows. If e ∈ E(H),
then the whole path P is included in H ′. If e /∈ E(H) and a ∈ V (H) (b ∈ V (H)),
then P is also included in H ′, except its end vertex b (a). Finally, if a �∈ V (H), b /∈
V (H), then P ′ is included in H ′, except both end vertices. The graph H ′ is obtained
from H either by an s-subdivision, or by additions of isolated vertices and bridges.
Therefore, H ′ ∈ X . It is obvious that nX (G′) ≥ |V (H ′)| ≥ |V (H)|+ s = nX (G)+ s,
i.e. nX (G′) ≥ nX (G) + s.
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Let’s prove the validity of the inverse inequality. Let H ′ be a maximal induced X -
subgraph of G′. Since the class P lanar is closed under additions of isolated vertices
and bridges and H ′ has a maximal number of vertices, this subgraph contains either
all vertices of P , or all, except one end vertex, or all, except both its end vertices. The
path P is s-contracted in H ′ in the first case. All intermediate vertices of P are deleted
from H ′ in the rest cases and if a ∈ V (H ′), b ∈ V (H ′), then any of these vertices
is also deleted. Clearly that the obtained graph H belongs to X . Hence, nX (G) ≥
|V (H)| ≥ |V (H ′)| − s = nX (G′) − s, i.e. nX (G) ≥ nX (G′) − s. This finishes the
proof of the Lemma 1. �

The Lemma 1 is a keynote tool at the proof of the following assertion.

Lemma 2 The classes S and T are ISUBGRAPH[X ]-limit.

Proof Let G be a graph in Deg(3). Perform a k-subdivision (k ≥ 4) of every
edge of G. The obtained graph G′ does not contain the beds B1,B2, . . . ,Bk and
the cycles C3,C4, . . . ,Ck as induced subgraphs. By the Lemma 1, nX (G′) =
nX (G) + k. This implies that for any k ∈ N, k > 3 the ISUBGRAPH[X ] for graphs
in Deg(3) is polynomially reduced to the same problem for graphs in Sk−3 =
Deg(3) ∩ F ree({B1,B2, . . . ,Bk,C3,C4, . . . ,Ck}). As Deg(3) is a tough class for
the maximum induced X -subgraph problem, for any k ≥ 1 the class Sk is also
ISUBGRAPH[X ]-tough. Observe that S1 ⊇ S2 ⊇ . . . and

⋂∞
k=1 Sk = S . There-

fore, {Sk} is an infinite monotonously decreasing sequence of ISUBGRAPH[X ]-
tough classes, converging to S . Hence, by the definition, S is a limit class for the
ISUBGRAPH[X ].

Let G ∈ S1 and H be the line graph of G. Clearly that H ∈ Deg(3) and nX (H)

is equal to a maximum number of edges in subgraphs of G, belonging to X . Such
subgraphs must be only planar. The edge analogue of the ISUBGRAPH[P lanar] (i.e.
the maximum planar subgraph problem) is NP-complete for subcubic graphs (Faria
et al. 2006). Consequently, the problem ISUBGRAPH[X ] is NP-complete for the line
graphs of graphs in S1. Let us denote the set of such line graphs by T1.

Now, let G be a graph in T1. It is easy to see that performance of a k-subdivison of
every its non-triangular edge (i.e. an edge, not belonging to a triangle) has resulted in
the line graph of some graph in Sk . This fact and the reasonings from the first para-
graph follow that the considered problem is NP-complete for the line graphs of graphs
in Sk (the set of such graphs is denoted by Tk). So, the class Tk is ISUBGRAPH[X ]-
tough, the inclusions T1 ⊇ T2 ⊇ . . . hold and the equality

⋂∞
k=1 Tk = T is true. There-

fore, T is a limit class for the ISUBGRAPH[X ]. �

The classes co(S) and co(T ) are ISUBGRAPH[co(X )]-limit. This is a trivial
corollary from the following general fact and the Lemma 2.

Lemma 3 For any graph class Y a class of graphs B is ISUBGRAPH[Y ]-boundary
if and only if co(B) is ISUBGRAPH[co(Y )]-boundary.

Proof For any graph G we have nY (G) = nco(Y )(G). This implies that for
any graph class Z the computational statuses of the ISUBGRAPH[Y ] for Z
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and the ISUBGRAPH[co(Y )] for co(Z) are the same. It follows that an infi-
nite monotonous decreasing chain of ISUBGRAPH[Y ]-tough classes, converg-
ing to B, exists if and only if there is a chain with the same properties, con-
taining only ISUBGRAPH[co(Y )]-tough classes and converging to co(B). Thus,
B is ISUBGRAPH[Y ]-boundary if and only if co(B) is ISUBGRAPH[co(Y )]-
boundary. �

4 Boundary graph classes for the maximum induced X -subgraph and
co(X )-subgraph problems

The classes S and T are known to be simultaneously boundary for many graph prob-
lems (Alekseev 2004; Alekseev et al. 2004, 2007; Alekseev and Malyshev 2008;
Malyshev 2009b). Two following issues are rather interesting in the view of these
circumstances. How many graph problems exist with boundary classes S and T ? Are
there exist many problems, for which neither S nor T is boundary? In fact, the sets
of graph problems with the described properties are continuous. This is proved in the
two theorems below.

Theorem 4 The classes S and T are ISUBGRAPH[X ]-boundary. The classes co(S)

and co(T ) are ISUBGRAPH[co(X )]-boundary.

Proof It is enough to prove only the first part of the statement due to the Lemma 3.
By the Lemma 2, both classes S and T are ISUBGRAPH[X ]-limit. Therefore, by the
Theorem 3, it is enough to show that for any j and k there is a number i∗, such that
the classes U (i∗, j, k) and W (i∗, j, k) are easy for the ISUBGRAPH[X ]. We will
show that it is true for i∗ = 2j + 4.

Clearly, any graph G in U (i∗, j, k) belongs to Deg(3). A vertex x of the degree 3
will be referred to as internal in the graph G, if there is no path, connecting x with a
pendent vertex (i.e. a vertex of the degree 1), all intermediate vertices of which have
the degrees equal to 2. The distance between any two its vertices of the degree 3 is at
least 2j + 2, otherwise G has either an induced cycle of length at most 2j + 4 ≤ i∗
or an induced bed of length at most 2j + 1 ≤ i∗. Any internal vertex x of G belongs
to some its induced subgraph, isomorphic to Sj,j,j . To show this let us consider three
shortest paths, connecting x with vertices of the degree 3 (some of such vertices
might be coinciding), each of them contains only one neighbor of x. These paths
have no common vertices, except x and, maybe, end vertices. Each path has at least
2j + 3 > j + 2 vertices. Hence, x and some vertices of the paths induce a subgraph
of G, isomorphic to Sj,j,j . Moreover, any two induced subgraphs Sj,j,j of the graph
have not common vertices and there are no edges, incident to vertices from different
these subgraphs, otherwise the distance between some vertices of the degree 3 is at
most 2j + 1. Therefore, G cannot contain k internal vertices, because every such
vertex belongs to an induced subgraph, isomorphic to Sj,j,j , and all these copies of
Sj,j,j induce kSj,j,j .

We can consider that G has not pendent vertices, because any such vertex oblig-
atory belongs to any maximal induced X -subgraph of G (due to the closeness of
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X ∩ Deg(3) with respect to additions of isolated vertices and bridges). If G′ is a result
of 1-contracting in G, nX (G) = nX (G′)+ 1 (by the Lemma 1). Therefore, the maxi-
mum induced X -subgraph problem is polynomially reduced to those graphs without
pendent vertices, that an 1-contraction can not be applied to them. The quantity of
internal vertices in G′ and G is the same, all vertices of G′ are internal. Therefore,
the ISUBGRAPH[X ] is solvable in polynomial time for the graphs, described above,
because all of them have at most k vertices. This implies that the maximum induced
X -subgraph problem for graphs in U (i∗, j, k) is also solved in polynomial time. So,
S is ISUBGRAPH[X ]-boundary.

The proof for the class T is almost completely analogous to the reasonings from
the previous paragraphs. This a cause for omitting it. �

Theorem 5 The classes S and T are not ISUBGRAPH[co(X )]-boundary. The
classes co(S) and co(T ) are not ISUBGRAPH[X ]-boundary.

Proof By the Lemma 3, it is enough to prove only the first part of the statement.
We will show that the classes S and T are not ISUBGRAPH[co(X )]-limit, hence,
they can not be boundary for this problem. Assume the opposite. Then, at least one
of such classes is boundary for the ISUBGRAPH[co(X )]. Let us consider the class
F ree({K4}). It contains the union of S and T and, by the Theorem 1, it is tough for
the ISUBGRAPH[co(X )].

Since X ⊆ F ree({K5}), for any graph G ∈ F ree({K4}) the inequality nX (G) ≤
R(4,5) − 1 holds, where R(m,n) is the Ramsey number, i.e. a minimal quan-
tity of vertices in a graph that contains either Km or Kn as a subgraph. More-
over, nX (G) ≤ 24, as R(4,5) = 25 (McKay and Radziszowski 1995). Therefore,
the ISUBGRAPH[X ] can be solved for G by a generation of all its subgraphs with
at most 24 vertices and by a verification whether such a subgraph belongs to X .
This procedure can be done in polynomial time. Therefore, the class F ree({K4}) is
ISUBGRAPH[X ]-easy. We have a contradiction. Hence, the assumption was false. �
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