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On the Kobayashi Pseudometric, Complex
Automorphisms and Hyperkähler Manifolds

Fedor Bogomolov, Ljudmila Kamenova, Steven Lu
and Misha Verbitsky

Abstract We define the Kobayashi quotient of a complex variety by identifying1

points with vanishing Kobayashi pseudodistance between them and show that if a2

complex projective manifold has an automorphism whose order is infinite, then the3

fibers of this quotient map are nontrivial. We prove that the Kobayashi quotients4

associated to ergodic complex structures on a compact manifold are isomorphic. We5

also give a proof of Kobayashi’s conjecture on the vanishing of the pseudodistance6

for hyperkähler manifolds having Lagrangian fibrations without multiple fibers in7

codimension one. For a hyperbolic automorphism of a hyperkähler manifold, we8
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2 F. Bogomolov et al.

prove that its cohomology eigenvalues are determined by its Hodge numbers, com-9

pute its dynamical degree and show that its cohomological trace grows exponentially,10

giving estimates on the number of its periodic points.11

1 Introduction12

Kobayashi conjectured that a compact Kähler manifold with semipositive Ricci cur-13

vature has vanishing Kobayashi pseudometric. In a previous paper [16] Kamenova–14

Lu–Verbitsky have proved the conjecture for all K3 surfaces and for certain hyper-15

kähler manifolds that are deformation equivalent to Lagrangian fibrations. Here we16

give an alternative proof of this conjecture for hyperkähler Lagrangian fibrations17

without multiple fibers in codimension one, see Sect. 3.18

Theorem 1.1 Let f : M −→ B = CP
n be a hyperkähler Lagrangian fibration with-19

out multiple fibers in codimension one over B. Then the Kobayashi pseudometric20

dM vanishes identically on M and the Royden–Kobayashi pseudonorm | |M vanishes21

identically on a Zariski open subset of M .22

In Sect. 4, we explore compact complex manifolds M having an automorphism23

of infinite order. If such a manifold is projective, we show that the Kobayashi24

pseudometric is everywhere degenerate. For each point x ∈ M we define the subset25

Mx ⊂ M of points in M whose pseudo-distance to x is zero. Define the relation26

x ∼ y on M given by dM(x, y) = 0. There is a well defined set-theoretic quotient27

map � : M −→ S = M/∼, called the Kobayashi quotient map. We say that | |M28

is Voisin-degenerate at a point x ∈ M if there is a sequence of holomorphic maps29

ϕn : Drn → M such that ϕn(0) → x, |ϕ′
n(0)|h = 1 and rn → ∞.30

Theorem 1.2 Let M be a complex projective manifold with an automorphism f of31

infinite order. Then the Kobayashi pseudo-metric dM is everywhere degenerate in32

the sense that Mx �= {x} for all x ∈ M . The Royden–Kobayashi pseudo-norm | |M33

is everywhere Voisin-degenerate. Moreover, every fiber of the map � : M −→ S34

constructed above contains a Brody curve and is connected.35

Define the Kobayashi quotient MK of M to be the space of all equivalence36

classes {x ∼ y | dM(x, y) = 0} equipped with the metric induced from dM .37

In Sect. 5, we show that the Kobayashi quotients for ergodic complex structures38

are isometric, equipped with the natural quotient pseudometric. This generalizes the39

key technical result of [16] for the identical vanishing of dM for ergodic complex40

structures on hyperkähler manifolds.41

Theorem 1.3 Let (M, I ) be a compact complex manifold, and (M, J ) its defor-42

mation. Assume that the complex structures I and J are both ergodic. Then the43

corresponding Kobayashi quotients are isometric.44
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On the Kobayashi Pseudometric, Complex … 3

Finally in Sect. 6, we prove that the cohomology eigenvalues of a hyperbolic45

automorphism of a hyperkähler manifold are determined by its Hodge numbers. We46

compute its dynamical degree in the even cases and give an upper bound in the odd47

cases.48

Theorem 1.4 Let (M, I ) be a hyperkähler manifold, and T a hyperbolic automor-49

phism acting on cohomology as γ. Denote by α the eigenvalue of γ on H 2(M, R)50

with |α| > 1. Then all eigenvalues of γ have absolute value which is a power of α1/2.51

Moreover, the maximal of these eigenvalues on even cohomology H 2d(M) is equal52

to αd , and finally, on odd cohomology H 2d+1(M) the maximal eigenvalue of γ is53

strictly less than α
2d+1

2 .54

As a corollary we obtain that the trace Tr(γN ) grows asymptotically as αnN . We55

also show that the number of k-periodic points grows as αnk .56

The work on this paper started during the Simons Symposium “Geometry over57

nonclosed fields” held in March, 2015. The authors are grateful to the Simons Foun-58

dation for providing excellent research conditions.59

2 Preliminaries60

Definition 2.1 A hyperkähler (or irreducible holomorphic symplectic) manifold M61

is a compact complex Kähler manifold with π1(M) = 0 and H 2,0(M) = Cσ where62

σ is everywhere non-degenerate.63

Recall that a fibration is a connected surjective holomorphic map. On a64

hyperkähler manifold the structure of a fibration, if one exists, is limited by Mat-65

sushita’s theorem.66

Theorem 2.2 (Matsushita, [21]) Let M be a hyperkähler manifold and f : M −→ B67

a fibration with 0 < dim B < dim M . Then dim B = 1
2 dim M and the general fiber68

of f is a Lagrangian abelian variety. The base B has at worst Q-factorial log-terminal69

singularities, has Picard number ρ(B) = 1 and −K B is ample.70

Remark 2.3 B is smooth in all of the known examples. It is conjectured that B is71

always smooth.72

Theorem 2.4 (Hwang [15]) In the settings above, if B is smooth then B is isomor-73

phic to CP
n , where dimC M = 2n.74

Definition 2.5 Given a hyperkähler manifold M , there is a non-degenerate integral
quadratic form q on H 2(M, Z), called the Beauville–Bogomolov–Fujiki form (BBK
form for short), of signature (3, b2 − 3) and satisfying the Fujiki relation

∫
M
α2n = c · q(α)n for α ∈ H 2(M, Z),
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4 F. Bogomolov et al.

with c > 0 a constant depending on the topological type of M . This form generalizes75

the intersection pairing on K3 surfaces. For a detailed description of the form we76

refer the reader to [2, 6, 13].77

Remark 2.6 Given f : M −→ CP
n , h the hyperplane class on CP

n , and α = f ∗h,78

then α is nef and q(α) = 0.79

Conjecture 2.7 [SYZ] If L is a nontrivial nef line bundle on M with q(L) = 0, then80

L induces a Lagrangian fibration, given as above.AQ1 81

Remark 2.8 This conjecture is known for deformations of Hilbert schemes of points82

on K3 surfaces (Bayer–Macrì [1]; Markman [20]), and for deformations of the gen-83

eralized Kummer varieties Kn(A) (Yoshioka [36]).84

Definition 2.9 The Kobayashi pseudometric on M is the maximal pseudometric85

dM such that all holomorphic maps f : (D, ρ) −→ (M, dM) are distance decreasing,86

where (D, ρ) is the unit disk with the Poincaré metric.87

Definition 2.10 A manifold M is Kobayashi hyperbolic if dM is a metric, otherwise88

it is called Kobayashi non-hyperbolic.89

Remark 2.11 In [17], it is asked whether a compact Kähler manifold M of semi-90

positive Ricci curvature has identically vanishing pseudometric, which we denote91

by dM ≡ 0. The question applies to hyperkähler manifolds but was unknown even92

for the case of surfaces outside the projective case. But Kamenova–Lu–Verbitsky93

(in [16]) have recently resolved completely the case of surfaces with the following94

affirmative results.95

Theorem 2.12 [16] Let S be a K3 surface. Then dS ≡ 0.96

Remark 2.13 A birational version of a conjecture of Kobayashi [17] would state97

that a compact hyperbolic manifold be of general type if its Kobayashi pseudometric98

is nondegenerate somewhere (i.e. nondegenerate on some open set). This was open99

for surfaces but now resolved outside surfaces of class VII.100

Theorem 2.14 [16] Let M be a hyperkähler manifold of non-maximal Picard rank101

and deformation equivalent to a Lagrangian fibration. Then dM ≡ 0.102

Theorem 2.15 [16] Let M be a hyperkähler manifold with b2(M) ≥ 7 (expected to103

always hold) and with maximal Picard rank ρ = b2 − 2. Assume the SYZ conjecture104

for deformations of M . Then dM ≡ 0.105

Remark 2.16 Except for the proof of Theorem 2.15, we indicate briefly a proof106

of these theorems below. Theorem 2.15 is proved in [16] using the existence of107

double Lagrangian fibrations on certain deformations of M . Here we give a different108

proof of vanishing of the Kobayashi pseudometric for certain hyperkähler Lagrangian109

fibrations without using double fibrations.110
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On the Kobayashi Pseudometric, Complex … 5

Definition 2.17 Let M be a compact complex manifold and Diff0(M) the connected111

component to identity of its diffeomorphism group. Denote by Comp the space112

of complex structures on M , equipped with a structure of Fréchet manifold. The113

Teichmüller space of M is the quotient Teich := Comp / Diff0(M). The Teichmüller114

space is finite-dimensional for M Calabi–Yau [11]. Let Diff+(M) be the group of115

orientable diffeomorphisms of a complex manifold M . The mapping class group116

� := Diff+(M)/ Diff0(M) acts on Teich. An element I ∈ Teich is called ergodic if117

the orbit � · I is dense in Teich, where118

� · I = {I ′ ∈ Teich : (M, I ) ∼ (M, I ′)}.119

Theorem 2.18 (Verbitsky, [32]) If M is hyperkähler and I ∈ Teich, then I is ergodic120

if and only if ρ(M, I ) < b2 − 2.121

Remark 2.19 For a K3 surface (M, I ) not satisfying the above condition on the122

Picard rank ρ, it is easily seen to admit Lagrangian (elliptic) fibrations over CP
1

123

without multiple fibers, and it is projective. Then d(M,J ) ≡ 0 by Theorem 3.2 below,124

for example.125

Proposition 2.20 Let (M, J ) be a compact complex manifold with d(M,J ) ≡ 0.126

Let I ∈ Teich be an ergodic complex structure deformation equivalent to J . Then127

d(M,I ) ≡ 0.128

Proof Here we shall reproduce the proof from [16]. Consider the diameter function129

diam : Teich −→ R�0, the maximal distance between two points. It is upper semi-130

continuous (Corollary 1.23 in [16]). Since the complex structure J is in the limit131

set of the orbit of the ergodic structure I , by upper semi-continuity 0 � diam(I ) �132

diam(J ) = 0. �133

3 (Royden–)Kobayashi Pseudometric on Abelian134

Fibrations135

The following lemma is a generalization of Lemma 3.8 in [8] to the case of abelian136

fibrations. The generalization is given for example in the Appendix of [16]. Recall137

that an abelian fibration is a connected locally projective surjective Kähler morphism138

with abelian varieties as fibers.139

Lemma 3.1 Let π : T −→ C be an abelian fibration over a non-compact complex140

curve C which locally has sections and such that not all components of the fibers are141

multiple. Then T has an analytic section over C . This is the case if π has no multiple142

fibers.143

Proof There is a Neron model N for T and a short exact sequence

0 −→ F −→ O(L) −→ O(N ) −→ 0
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6 F. Bogomolov et al.

where L is a vector bundle, F is a sheaf of groups Z
2n with degenerations, i.e., sheaf144

of discrete subgroups with generically maximal rank, and O(N ) is the sheaf of local145

sections of N (whose general fibers are abelian varieties). Thus T corresponds to146

an element θ in H 1(C,O(N )). There is an induced exact sequence of cohomolo-147

gies: H 1(C,O(L)) −→ H 1(C,O(N )) −→ H 2(C, F). Note that H 1(C,O(L)) = 0148

since C is Stein, and H 2(C, F) = 0 since it is topologically one-dimensional. Thus149

θ = 0 and hence there is an analytic section. The last part of the lemma is given by150

Proposition 4.1 of [16]. �151

Theorem 3.2 Let f : M −→ B = CP
n be a hyperkähler Lagrangian fibration with-152

out multiple fibers in codimension one over B. Then dM ≡ 0 and | |M vanishes on a153

nonempty Zariski open subset of M .154

Proof The fibers of f are projective, and furthermore, there is a canonical polar-155

ization on them (see [25, 26], respectively). This also follows from [31], Theorem156

1.10, which implies that the given fibration is diffeomorphic to another fibration157

f : M ′ −→ B with holomorphically the same fibers and the same base, but with158

projective total space M ′. Standard argument (via the integral lattice in the “local”159

Neron–Severi group) now shows that f is locally projective.160

By assumption, there are no multiple fibers outside a codimension 2 subset S ⊂ B161

whose complement U contains at most the smooth codimension-one part D0 of the162

discriminant locus of f where multiplicity of fibers are defined locally generically.163

Since the pseudometric is unchanged after removing codimension 2 subsets [18], it164

is enough to restrict the fibration to that over U .165

Let C = P
1 be a line in B = P

n contained in U (and intersecting D0 transversely).166

Then f restricts to an abelian fibration X = f −1(C) over C without multiple fibers167

and so Lemma 3.1 applies to give a section over the affine line A1 = C \ (∞).168

As S is codimension two or higher, we can connect any two general points in169

U by a chain of such A1’s in U . One can thus connect two general points x and y170

on M by a chain consisting of fibers and sections over the above A1’s. Since the171

Kobayashi pseudometric vanishes on each fiber and each such section, the triangle172

inequality implies dM(x, y) = 0. Therefore dM vanishes on a dense open subset of173

M and hence dM ≡ 0 by the continuity of dM .174

The same argument gives the vanishing statement of | |M via Theorem A.2175

of [16]. �176

Remark 3.3 In the theorem above, it is sufficient to assume that B is nonsingular177

and that dB ≡ 0, true if B is rationally connected. In fact, if one assumes further178

the vanishing of | |B on a nonempty Zariski open, then the same is true for | |M ,179

generalizing the corresponding theorems in [16]. The reader should have no difficulty180

to see these by the obvious modifications of the above proof.181
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On the Kobayashi Pseudometric, Complex … 7

4 Automorphisms of Infinite Order182

We first sketch the proof of Kobayashi’s theorem that Kobayashi hyperbolic mani-183

folds have only finite order automorphisms (Theorem 9.5 in [17]).184

Theorem 4.1 Let M be a Kobayashi hyperbolic manifold. Then its group of bira-185

tional transformations is finite.186

Proof First, notice that a birational self-map is a composition of a blow-up, an187

automorphism and a blow-down. Since M contains no rational curves, any birational188

self-map is holomorphic, and we need to prove the finiteness of the automorphism189

group.190

Observe that the automorphisms of a hyperbolic manifold are isometries of the191

Kobayashi metric. Also the group of isometries of a compact metric space is com-192

pact with respect to the compact open topology by a theorem of Dantzig and Van193

der Waerden, see for example [18, Theorem 5.4.1]. On the other hand, compact194

Kobayashi hyperbolic manifolds have no holomorphic vector fields, because each195

such vector field gives an orbit which is an entire curve. This means that the group of196

holomorphic automorphisms Aut(M) of M is discrete as it is a complex Lie group in197

the compact open topology acting holomorphically on M by the work of Bochner–198

Montgomery [4, 5]. Since Aut(M) is discrete and compact, this means it is finite.199

�200

Consider the pseudo-distance function dM : M × M −→ R, defined by the201

Kobayashi pseudo-distance dM(x, y) on pairs (x, y). It is a symmetric continuous202

function which is bounded for compact M . Since it is symmetric, we can consider203

dM as a function on the symmetric product Sym2 M with dM = 0 on the diagonal.204

Lemma 4.2 There is a compact space S with a continuous map � : M −→ S and205

there is a distance function dS on S making S into a compact metric space such that206

dM = dS ◦ ψ, where ψ : Sym2 M −→ Sym2 S is the map induced by �.207

Proof The subset Mx ⊂ M of points y ∈ M with dM(x, y) = 0 is compact and con-208

nected. The relation x ∼ y on M given by dM(x, y) = 0 is symmetric and transitive209

so that Mx = My if and only if x ∼ y. So there is a well defined set-theoretic quo-210

tient map � : M −→ S = M/∼. Note that the set S is equipped with a natural metric211

induced from dM . Indeed, dM(x ′, y′) is the same for any points x ′ ∈ Mx , y′ ∈ My ,212

and hence dM induces a metric dS on S. This metric provides a topology on S, and213

since the set Ux,ε = {y ∈ M | dM(x, y) < ε} is open, the map � : M −→ S is con-214

tinuous. Thus the metric space S is also compact. This completes the proof of the215

lemma. �216

Remark 4.3 The natural quotient considered above was already proposed in [17]217

albeit little seems to be known about its possible structure. In particular, it is known218

that even when M is compact, S may not have the structure of a complex variety219

[14]. As we note in Remark 4.12, Campana conjectured that the Kobayashi metric220
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8 F. Bogomolov et al.

quotient of a Kähler manifold has birational general type, and hence, a dense subset221

of the metric quotient should carry a complex (even quasi-projective) structure for222

such manifolds.223

Remark 4.4 If there is a holomorphic family of varieties Xt smooth over a parameter224

space T of say dimension 1, then the relative construction also works by considering225

the problem via that of the total space over small disks in T . In particular, there is a226

monodromy action on the resulting family of compact metric spaces St by isometries227

over T , c.f. Sect. 5.228

Let M be a complex manifold and h a hermitian metric on M with its associated229

norm | |h .230

Recall that a theorem of Royden says that the Kobayashi pseudo-metric dM can231

be obtained by taking the infimum of path-integrals of the infinitesimal pseudonorm232

| |M , where233

|v|M = inf

{
1

R
| f : DR → M holomorphic, R > 0, f ′(0) = v

}
.234

Here DR is the disk of radius R centred at the origin. Recall also that | |M is upper-235

semicontinuous [29].236

Definition 4.5 We say that | |M is Voisin-degenerate at a point x ∈ M if there is a
sequence of holomorphic maps ϕn : Drn → M such that

ϕn(0) → x, |ϕ′
n(0)|h = 1 and rn → ∞.

Observe that the locus Z M of M consisting of points where | |M is Voisin-237

degenerate is a closed set.238

Remark 4.6 If (x, v) ∈ Tx M is a point in the tangent bundle of M at x which239

is Voisin-degenerate, then it does not necessarily follow that |v|M = 0, because the240

Kobayashi pseudometric is semicontinuous but might not be continuous at that point.241

However, the other implication is true: by upper semicontinuity, if |v|M = 0, then242

for any sequence (xn, vn) −→ (x, v) we have |vn|M −→ 0, i.e., the point x is Voisin243

degenerate in a strong sense.244

The following theorem is essentially [35, Proposition 1.19].245

Theorem 4.7 Consider the equivalence relation x ∼ y on M given by dM(x, y) = 0246

where dM is the Kobayashi pseudo-metric on M . Then every non-trivial orbit (that247

is, a non-singleton equivalence class) of this relation consists of Voisin-degenerate248

points, and the union of such orbits is a closed set. If, further, M is compact, then249

each nontrivial orbit contains the image of a nontrivial holomorphic map C → M .250

We also need the following theorem.251
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On the Kobayashi Pseudometric, Complex … 9

Theorem 4.8 Assume M is compact. Then each orbit of the equivalence relation252

given above is connected.253

Proof Let Mx be the orbit passing through x as before and

Mx (n) =
{

y ∈ X
∣∣ dX (x, y) � 1

n

}
.

Then each Mx (n) is compact and connected and Mx = ∩n Mx (n). If Mx is not con-
nected, then there are disjoint open sets U, V in M separating Mx leading to the
contradiction

∅ = (U ∪ V )c ∩ Mx = ∩n[(U ∪ V )c ∩ Mx (n)] �= ∅,

each (U ∪ V )c ∩ Mx (n) being nonempty compact as Mx (n) is connected. �254

We want to exploit the existence of an automorphism of an infinite order for255

the analysis of Kobayashi metric. The following general lemma provides with a256

necessary argument for a projective manifold.257

Lemma 4.9 Let X be a complex projective manifold and [C] an ample class of258

curves on X . Let U be an open domain in X and wh the volume form of a Kähler259

metric h on X . Then for a sufficently big n there is a curve C1 ∈ [nC] such that260

Volh(C ∩ U ) � (wh(U )/wh(X) − ε) Volh(C) for arbitrary small ε.261

Proof The result evidently holds for Pn and Fubini-Study metric on Pn since Pn is262

homogeneous with respect to the Fubini-Study metric. In this case it follows from263

the integral volume formula for the family of projective lines, parametrized by the264

Grassmanian which surjects onto Pn . It immediately implies the existence of lines265

which satisfy the inequality.266

Similar formula holds for the family of algebraic curves of any given degree. In267

particular we obtain an infinitesimal version of the formula which therefore holds268

for any metric on projective space. Using a finite map of an n-dimensional projective269

manifold X onto CPn we can derive the same formula for the Kähler pseudometrics270

induced from CPn and then use its local nature for any X . �271

Lemma 4.10 Let f be an automorphism of infinite order on a complex projective272

manifold X of dimension n. Assume that there is a domain U in X , a smooth Kähler273

metric g on X and positive constants c, c′ such that cg � ( f m)∗g � c′g on U for all274

powers f m of f . Then f is an isometry of (X, h) for some Kähler metric h on X275

and hence some power of f is contained in a connected component of the group of276

complex isometries of (X, h). In particular, X has a faithful holomorphic action by277

an abelian variety.278

Proof Let h be the pull back of the Fubini-Study metric on X of the embedding279

corresponding to a very ample line bundle L on X . Note that we can assume that280

ag � ( f m)∗h � a′g on Ū for some positive constants a, a′ which are independent281
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10 F. Bogomolov et al.

of the parameter m. Note that
∫

X ( f m)∗hn does not depend on m since the class of282

the volume hn maps into itself. Therefore, we have283

μ′
∫

X
hn <

∫
Ū
( f m)∗hn < μ

∫
X

hn (4.1)284

for some μ and μ′ independent of m. Let c be a class of ample (i.e., very movable)285

curves. Then, for a sufficiently big multiple Nc of the class c, there are curves C ∈ Nc286

with
∫

C
⋂

Ū h > ν(h, c), and similarly we have
∫

C
⋂

Ū ( f m)∗h > ν(( f m)∗h, c), where287

(h, c) is a pairing of the homology class c and the class of kahler metric h. Since288

a
∫

C
⋂

Ū
g <

∫
C

⋂
Ū
( f m)∗h < a′

∫
C

⋂
Ū

g,289

we obtain that (( f m)∗h, c) is bounded from above by a′(g, c) and from below by290

by a(g, c) for any ample class. Since ample classes generate the dual N1(X)R of291

NS(X) ⊗ R we obtain that ( f m)∗h as linear functional on N1(X) ⊗ R is contained292

in a bounded subset.293

A slightly more direct argument for this last boundedness is as follows. Since each
f m∗h represents a Kähler class, it is sufficient to bound them from above as linear
functionals on ample classes c of curves. Note that the first inequality in Eq. 4.1 says
that w f m∗h(U ) > μ′wh(X) with μ′ independent of m. By the previous lemma, one
can therefore choose Cm ∈ c such that

(( f m)∗h, c) = Vol( f m )∗h(Cm) � δ

∫
Cm

⋂
Ū
( f m)∗h < δa′

∫
Cm

⋂
Ū

g � γ(g, c),

where δ is independent of m and γ = δa′.294

Since there are only a finite number of integral classes in any bounded set in295

NS(X)R, it follows that f m0 leaves invariant the Káhler class of h for some m0 �= 0296

and we may therefore assume that f itself leaves it invariant. In the case of Ricci-297

flat X , f must therefore be an isometry with respect to the unique Ricci-flat metric298

in the Kähler class given by Yau’s solution to the Calabi conjecture. In general,299

if H 1(X, C) = 0, then f is induced from a projective action on P N under a map300

X → P N . If H 1(X, C) �= 0, then we have a map from X × Pic0(X) to a projective301

family of projective spaces {P(H 0(Lt )
∨), t ∈ Pic0(X)} over Pic0(X) and Lt defines302

a very ample invariant invertible sheaf on X × Pic0(X) over Pic0(X). Hence, f has303

to be a complex isometry on X which completes the proof of this result. �304

Theorem 4.11 Let M be a projective manifold with an automorphism f of infi-305

nite order. Then the Kobayashi pseudo-metric dM is everywhere degenerate in the306

sense that Mx �= {x} for all x ∈ M . Also the Kobayashi–Royden pseudo-norm | |M307

is everywhere Voisin-degenerate. Moreover, every fiber of the map � : M −→ S308

constructed above contains a Brody curve and is connected.309
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On the Kobayashi Pseudometric, Complex … 11

Proof The map f : M −→ M commutes with the projection onto S, and hence,310

induces an isometry on S. Since the action of f has infinite order on S, there is a311

sequence of powers f Ni which converges to the identity on S by the compactness of312

the group Isom(S) of isometries of S (in the compact open topology) and by setting313

Ni = ni − ni−1 for a convergent subsequence f ni in Isom(S). We assume arguing314

by contradiction that dM is non-degenerate at a point x ∈ M . Let U be the maximal315

subset in M where � is a local isomorphism. Since the subsets Mx are connected,316

then U is exactly the subset where � is an embedding. The set U is invariant under317

f and is open by Theorem 4.7. Hence, f Ni converges to the trivial action on U . The318

boundary ∂U of U is a compact subset in M with ∂U �= Ū and dM(x, ∂U ) > 0 for319

any point x ∈ U . Thus, a compact subset Uε which consists of points x ∈ U with320

dM(x, ∂U ) � ε is f -invariant and the restriction of dM on Uε is a metric. It is also321

invariant under the action of f and by theorem of Royden ([28, Theorem 2]) we know322

that there are smooth Kähler metrics g, g′ on X with the property that g′ > dM � g on323

Uε. Applying Lemma 4.10 we obtain that f is an isometry on M with respect to some324

Kähler metric. Thus, either M has a nontrivial action of a connected algebraic group,325

and hence, trivial Kobayshi pseudometric, or f is of finite order which contradicts326

our assumption. Thus, we obtain a contradiction also with our initial assertion that327

dM is metric on some open subset in M .328

Note that a limit of Brody curves is again a nontrivial Brody curve by Brody’s329

classical argument. By Theorem 4.7, this implies that the map � : M −→ S is every-330

where degenerate, as it is degenerate in the complement of an everywhere dense open331

subset. �332

Remark 4.12 In [9, Conjecture 9.16], F. Campana conjectured that the Kobayashi333

quotient map of a complex projective manifold M should coincide (in the birational334

category) with the “core map” of M , with fibers which are “special” and the base335

which is a “general type” orbifold. Then Theorem 4.11 would just follow, because336

the automorphism group of a general type variety is finite. Then a general fiber337

of the Kobayashi quotient map contains infinitely many points, hence its fibers are338

positively dimensional.339

Remark 4.13 Note that both conditions of Lemma 4.10 are sharp. It was shown by340

McMullen [23] that there are Kahler non-projective K3 surfaces with automorphisms341

of infinite order which contain invariant domains isomorphic to the two-dimensional342

ball. There are also examples by Bedford and Kim [3] of rational projective surfaces343

X with automorphisms of infinite order which contain an invariant ball. In this case344

there are no invariant volume forms on the variety X .345

5 Metric Geometry of Kobayashi Quotients346

Definition 5.1 Let M be a complex manifold, and dM its Kobayashi pseudometric.347

Define the Kobayashi quotient MK of M as the space of all equivalence classes348

{x ∼ y | dM(x, y) = 0} equipped with the metric induced from dM .349
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12 F. Bogomolov et al.

The main result of this section is the following theorem.350

Theorem 5.2 Let (M, I ) be a compact complex manifold, and (M, J ) its defor-351

mation. Assume that the complex structures I and J are both ergodic. Then the352

corresponding Kobayashi quotients are isometric.353

Proof Consider the limit lim νi (I ) = J , where νi is a sequence of diffeomorphisms354

of M . For each point x ∈ (M, I ), choose a limiting point ν(x) ∈ (M, J ) of the355

sequence νi (x). Fix a dense countable subset M0 ⊂ M and replace the sequence356

νi by its subsequence in such a way that ν(m) := lim νi (m) is well defined for all357

m ∈ M0.358

By the upper-semicontinuity of the Kobayashi pseudometric, we have359

d(M,J )(ν(x), ν(y)) � d(M,I )(x, y). (5.1)360

Let C0 be the union of all ν(x) for all x ∈ M0. Define a map ψ : C0 −→ (M, I )361

mapping z = ν(x) to x (if there are several choices of such x , choose one in arbitrary362

way). By (5.1), the mapψ is 1-Lipschitz with respect to the Kobayashi pseudometric.363

We extend it to a Lipschitz map on the closure C of C0. For any x ∈ (M, J ), the364

Kobayashi distance between x and ψ(ν(x)) is equal zero, also by (5.1). Therefore, ψ365

defines a surjective map on Kobayashi quotients: � : CK −→ (M, I )K . Exchanging366

I and J , we obtain a 1-Lipshitz surjective map � : C ′
K −→ (M, J )K , where C ′

K is367

a subset of (M, I )K . Taking a composition of � and �, we obtain a 1-Lipschitz,368

surjective map from a subset of (M, I )K to (M, I )K . The following proposition369

shows that such a map is always an isometry, finishing the proof of Theorem 5.2. �370

Proposition 5.3 Let M be a compact metric space, C ⊂ M a subset, and f :371

C −→ M a surjective 1-Lipschitz map. Then C = M and f is an isometry.372

Proposition 5.3 is implied by the following three lemmas, some which are exer-373

cises found in [7].374

Lemma 5.4 Let M be a compact metric space, C ⊂ M a subset, and f : C −→ M375

a surjective 1-Lipschitz map. Then M is the closure of C .376

Proof Suppose that M is not the closure C̄ of C . Take q ∈ M\C̄ , and let ε = d(q, C̄).377

Define pi inductively, p0 = q, f (pi+1) = pi . Let p ∈ C̄ be any limit point of378

the sequence {pi }, with limi pni = p. Since f m(pn) ∈ C for any m < n, one has379

f m(p) ∈ C̄ .380

Clearly, f ni (pni ) = q. Take ni such that d(p, pni ) < ε. Then d( f ni (p), q) < ε.381

This is a contradiction, because f n(p) ∈ C̄ and ε = d(q, C̄). �382

Lemma 5.5 Let M be a compact metric space, and f : M −→ M an isometric383

embedding. Then f is bijective.384

Proof Follows from Lemma 5.4 directly. �385
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On the Kobayashi Pseudometric, Complex … 13

Lemma 5.6 Let M be a compact metric space, and f : M −→ M a 1-Lipschitz,386

surjective map. Then f is an isometry.387

Proof Let d be the diameter of M , and let K be the space of all 1-Lipschitz functions388

μ : M −→ [0, d] with the sup-metric. By the Arzela–Ascoli theorem, K is compact.389

Now, f ∗ defines an isometry from K to itself, μ−→ μ ◦ f . For any z ∈ M , the func-390

tion dz(x) = d(x, z) belongs to K . However, d f (z) does not belong to the image of f ∗
391

unless d(z, x) = d( f (z), f (x)) for all x , because if d(z, x) < d( f (z), f (x)), one392

has ( f ∗)−1(d f (z))( f (x)) = d(z, x) > d( f (z), f (x)), hence ( f ∗)−1(d f (z)) cannot be393

Lipschitz. This is impossible by Lemma 5.5, because an isometry from K to itself394

must be bijective. Therefore, the map f : M −→ M is an isometry. �395

The proof of Proposition 5.3 easily follows from Lemmas 5.6 and 5.4. Indeed, by396

Lemma 5.4, f is a surjective, 1-Lipschitz map from M to itself, and by Lemma 5.6397

it is an isometry. �398

6 Eigenvalues and Periodic Points of Hyperbolic399

Automorphisms400

The following proposition follows from a simple linear-algebraic observation.401

Proposition 6.1 Let T be a holomorphic automorphism of a hyperkähler manifold402

(M, I ), and γ : H 2(M) −→ H 2(M) the corresponding isometry of H 2(M). Then403

γ has at most 1 eigenvalue α with |α| > 1, and such α is real.404

Proof Since T is holomorphic, γ preserves the Hodge decomposition

H 2(M, R) = H (2,0)+(0,2)(M, R) ⊕ H 1,1(M, R).

Since the BBF form is invariant under γ and is positive definite on H (2,0)+(0,2)(M, R),405

the eigenvalues of γ are |αi | = 1 on this space. On H 1,1(M, R), the BBF form has406

signature (+,−,−, ...,−), hence γ can be considered as an element of O(1, n).407

However, it is well known that any element of SO(1, n) has at most 1 eigenvalue α408

with |α| > 1, and such α is real. �409

Definition 6.2 An automorphism of a hyperkähler manifold (M, I ) or an automor-410

phism of its cohomology algebra preserving the Hodge type is called hyperbolic if411

it acts with an eigenvalue α, |α| > 1 on H 2(M, R).412

In holomorphic dynamics, there are many uses for the d-th dynamical degree413

of an automorphism, which is defined as follows. Given an automorphism T of a414

manifold M , we consider the corresponding action on H d(M, R), and d-th dynamical415

degree is logarithm of the maximal absolute value of its eigenvalues. In [27], K.416

Oguiso has shown that the dynamical degree of a hyperbolic automorphism is positive417
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14 F. Bogomolov et al.

for all even d, and computed it explicitly for automorphisms of Hilbert schemes of418

K3 which come from automorphisms of K3. For 3-dimensional Kähler manifolds,419

dynamical degree was computed by F. Lo Bianco [19].420

We compute the dynamical degree and the maximal eigenvalue of the automor-421

phism action on cohomology for all even d and give an upper bound for odd ones.422

We also compute asymptotical growth of the trace of the action of T N in cohomol-423

ogy, which could allow one to prove that the number of quasi-periodic points grows424

polynomially as the period grows. One needs to be careful here, because there could425

be periodic and fixed subvarieties, and their contribution to the Lefschetz fixed point426

formula should be calculated separately.427

Theorem 6.3 Let (M, I ) be a hyperkähler manifold, and T a hyperbolic automor-428

phism acting on cohomology as γ. Denote by α the eigenvalue of γ on H 2(M, R)429

with |α| > 1. Then all eigenvalues of γ have absolute value which is a power of α1/2.430

Moreover, the maximal of these eigenvalues on even cohomology H 2d(M) is equal431

to αd , and finally, on odd cohomology H 2d+1(M) the maximal eigenvalue of γ is432

strictly less than α
2d+1

2 .433

Remark 6.4 Since the Kähler cone of M is fixed by γ, α is positive; see e.g. [10].434

Remark 6.5 From Theorem 6.3, it follows immediately that Tr(γN ) grows asymp-435

totically as αnN .436

We prove Theorem 6.3 at the end of this section.437

Recall that the Hodge decomposition defines multiplicative action of U (1) on438

cohomology H∗(M), with t ∈ U (1) ⊂ C acting on H p,q(M) as t p−q . In [34], the439

group generated by U (1) for all complex structures on a hyperkähler manifold was440

computed explicitly, and it was found that it is isomorphic G = Spin+(H 2(M, R), q)441

(with center acting trivially on even-dimensional forms and as−1 on odd-dimensional442

forms; see [33]). Here Spin+ denotes the connected component.443

In [30], it was shown that the connected component of the group of automorphisms444

of H∗(M) is mapped to G surjectively and with compact kernel ([30, Theorem 3.5]).445

Therefore, to study the eigenvalues of automorphisms of H∗(M), we may always446

assume that they belong to G.447

Now, the eigenvalues of g ∈ G on its irreducible representations can always be448

computed using the Weyl character formula. The computation is time-consuming,449

and instead of using Weyl character formula, we use the following simple observation.450

Claim 6.6 Let G be a group, and V its representation. Then the eigenvalues of g451

and xgx−1 are equal for all x, g ∈ G. �452

To prove Theorem 6.3, we replace one-parametric group containing the hyperbolic453

automorphism by another one-parametric group adjoint to it in G, and describe this454

second one-parametric group in terms of the Hodge decomposition.455

Proposition 6.7 Let (M, I ) be a hyperkähler manifold, and γ an automorphism of456

the ring H∗(M). Assume that γ acts on H 2(M) with an eigenvalue α > 1. Then457
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On the Kobayashi Pseudometric, Complex … 15

all eigenvalues of γ have absolute value which is a power of α1/2. Moreover, the458

maximal of these eigenvalues on even cohomology H 2d(M) is equal to αd (with459

eigenspace of dimension 1), and on odd cohomology H 2d+1(M) it is strictly less460

than α
2d+1

2 .461

Proof Denote by G the group of automorphisms of H∗(M). As shown above, its462

Lie algebra is (so)(3, b2(M) − 3), hence the connected component of G is a simple463

Lie group.464

Write the polar decomposition γ = γ1 ◦ β, where γ1 ∈ G has eigenvalues465

α,α−1, 1, 1, ..., 1, β belongs to the maximal compact subgroup, and they commute.466

Clearly, the eigenvalues of β on V are of absolute value 1, and absolute values of467

eigenvalues of γ and γ1 are equal. Therefore, we can without restricting generality468

assume that γ = γ1 has eigenvalues α,α−1, 1, 1, ..., 1.469

Consider now the following one-parametric subgroup of the complexification470

GC ⊂ Aut(H∗(M, C)): ρ(t) acts on H p,q as t p−q , t ∈ R. The corresponding ele-471

ment of the Lie algebra has only two non-zero real eigenvalues in adjoint action.472

Clearly, all one-parametric subgroups of GC = Spin(H 2(M, C)) with this property473

are conjugate. This implies that γ is conjugate to an element ρ(α).474

By Claim 6.6, γ and ρ(α) have the same eigenvalues, and ρ(α) clearly has eigen-475

values α
d−i

2 ,α
d−i−1

2 , ...α
i−d

2 on H d(M). �476

Corollary 6.8

lim
n −→ ∞

log Tr( f n)
∣∣

H∗(M)

n
= d logα,477

where 2d = dimC M . In particular, the number of k-periodic points grows as αnk ,478

assuming that they are isolated. �479

Remark 6.9 The case when f admits non-isolated periodic points is treated in [12],480

who prove that the number of isolated k-periodic points still grows no faster than481

αnk ; the lower bound is still unknown.482

The same argument as in Proposition 6.7 also proves the following theorem.483

Theorem 6.10 Let M be a hyperkähler manifold, and γ ∈ Aut(H∗(M)) an auto-484

morphism of cohomology algebra preserving the Hodge decomposition and acting485

on H 1,1(M) hyperbolically. Denote by α the eigenvalue of γ on H 2(M, R) with486

|α| > 1. Replacing γ by γ2 if necessary, we may assume that α > 1. Then all eigen-487

values of γ have absolute value which is a power of α1/2. Moreover, the eigenspace488

of eigenvalue αk/2 on H d(M) is isomorphic to H
(d+k)

2 , (d−k)

2 (M). �489
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