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IDENTIFICATION OF MONETARY POLICY SHOCKS WITHIN A SVAR

USING RESTRICTIONS CONSISTENT WITH A DSGE MODEL

NIKOLAY AREFIEV

Abstract. I identify and estimate the monetary policy rule and the monetary policy shocks within a

structural vector autoregression model for the US economy. I make two contributions to the literature.

First, for identification I propose to use restrictions consistent with the literature on dynamic stochastic

general equilibrium (DSGE) models. Typical DSGE model produces more restrictions than is required for

the identification, so overidentifying restrictions can be tested against the data. The second contribution is a

new method of testing the overidentifying restrictions. This method divides the set of identifying restrictions

into subsets, and tests each subset independently of the others. This method does not reject most restrictions

produced by the DSGE model. The only rejections provide evidence that the Federal Reserve uses delayed

information about the inflation in policy making. The proposed approach to identification helps explain

and solve the price puzzle problem reported in the previous literature.

Keywords: graphical identification; sparse SVAR; price puzzle.

JEL codes: C30, E52.

1. Introduction

The purpose of this paper is to identify and estimate the monetary policy rule and the response of the

economy to monetary policy shocks within a Structural Vector Autoregression (SVAR) model for the US

economy. The literature on SVARs usually identifies monetary policy shocks using restrictions imposed

on the matrix of contemporaneous effects and on the impulse response functions (Sims, 1980, 1986, 1992;
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Blanchard and Quah, 1993; Christiano et al., 1999; Zha, 1999; Hanson, 2004; Uhlig, 2005; Sims and Zha,

2006). However, restrictions on the matrix of contemporaneous effects are not consistent with the literature

on Dynamic Stochastic General Equilibrium (DSGE) models (Smets and Wouters, 2003, 2007; Christiano

et al., 2005). These models predict that the matrix of contemporaneous effects is dense. Instead, DSGE

models imply restrictions on the matrices of lagged effects, and I propose to use those restrictions for

identification.

The DSGE-based restrictions overidentify the SVAR, so many of them can be tested against the data. I

introduce the Transformed Concentration Network (TCNW), and use it to test the overidentifying restric-

tions. There are alternative tests for these restrictions, such as the J -test (Sargan (1958); Hansen (1982))

and the likelihood ratio test. However, these tests do not specify which identifying assumptions are tested,

and which are not. In the case where the overidentifying restrictions are not rejected, there may exist a

continuum of other observationally equivalent models, which pass these tests equally well. If the identifying

assumptions are rejected, these tests are not informative on which assumptions are violated. The method

proposed in this paper has the following two advantages. First, for a large class of models it guarantees that

if the identification restrictions are not correct, they are asymptotically rejected in almost all parameter

points. Therefore, if the identifying assumptions are accepted, the parameters of the other observationally

equivalent models passing these tests equally well lay in a parameter space of measure zero. For other

models, including the model considered in this paper, the method can distinguish between the identification

assumptions that can be empirically verified and the assumptions that are justified only theoretically. So

the method points at the identifying assumptions that cannot be asymptotically rejected even if they are

incorrect. The second advantage is that if the identifying restrictions are rejected, the TCNW indicates the

subset of the assumptions that do not hold.

The method proposed in this paper stems from the literature on causality and probabilistic graphical

models. The theory of probabilistic graphical models has a lot of successful applications in computer science

(see Koller, 2009; Pearl, 2009; Chen and Pearl, 2014), and it become popular in econometrics1. However,

the approach developed in this literature has a firm theoretical background only for recursive models. The

method proposed in this paper is designed to work not only with recursive but also with cyclical models.

The estimated TCNW is consistent with most identifying assumptions predicted by the DSGE model.

Many identifying restrictions for the monetary policy rule equation are testable, and most of them are not

rejected by the TCNW. The only restriction that was rejected is that the Federal Reserve does not use

1See Ahelegbey et al. (2014); Kwon and Bessler (2011); Bryant and Bessler (2015); Demiralp et al. (2014); Hoover (2005);
Oxley et al. (2009); Phiromswad (2014); Reale and Wilson (2001); Wilson and Reale (2008); Fragetta and Melina (2013).
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delayed information about the GDP deflator inflation and the commodity price inflation in policy decisions.

This discovery motivates me to relax the respective restrictions when I estimate the SVAR model. This

identification produces impulse response functions consistent with the macroeconomic theory without any

anomalies such as the price puzzle.

I use the TCNW to diagnose the reasons of for the price puzzle problem reported in the previous literature.

The price puzzle is a prediction of an estimated SVAR model that right after the restrictive monetary policy

shock the inflation initially significantly rises and only then start to decline (Sims (1992); Christiano et al.

(1999); Zha (1999); Hanson (2004); Keating et al. (2014)). This result is at odds with the macroeconomic

theory, which predicts that the restrictive policy shock leads to a decline in inflation.

I argue that the price puzzle problem arises because of misspecification, where a high dimensional mon-

etary policy rule is estimated within a low dimensional model. In low dimensional models the estimated

monetary policy shocks are contaminated with the residuals that arise from the dimensionality reduction.

The dimensionality reduction can produce many different biases, including the price puzzle bias. This expla-

nation is consistent with those of Bernanke and Federal Reserve Board (2005). In addition to the discussion

provided by Bernanke et al., I show exactly how the dimensionality reduction produces the price puzzle bias

in low dimensional models.

The remaining part of the paper is organized as follows. In Section 2 I specify the SVAR model. In

Section 3 I show how the structure of a typical DSGE model helps to choose restrictions for identification of

the SVAR. In Section 4 I introduce the TCNW, and use it to verify the identifying restrictions. In Section 5

I diagnose the reasons for he price puzzle reported in the previous literature. Section 6 reports the estimated

impulse response functions, Section 7 concludes.

2. Model

2.1. SVAR. The Structural Vector Autoregression (SVAR) model is:

(1) A0Yt =

p∑
l=1

AlYt−l + εt,

where Y is n × 1 vector of endogenous variables, Ai are matrices of parameters, p is the number of lags,

and ε is the vector of structural shocks. Vector Y has been centralized, so the constant term in (1) is

zero. The structural shocks are assumed to be orthogonal, and the standard deviation is normalized to

one, so the covariance matrix is the identity matrix, E
(
εtε

T
t

)
= I. The main diagonal of A0 is normalized

to be positive. I combine matrices Ai into matrix A = [A0 −A1, . . . ,−Ap], and vectors Yt−i into vector
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Xt =
[
Y Tt Y Tt−1 Y

T
t−2 . . . Y Tt−p

]T
, so model (1) can be rewritten as:

(2) AXt = εt

Let Zt be the predetermined part of Xt: Zt =
[
Y Tt−1 Y

T
t−2 . . . Y Tt−p

]T
, and AL the respective part of A:

AL = − [A1, A2 . . . ,Ap]. Matrix A0 is referred to as the matrix of contemporaneous effects, and AL is

matrix of lagged effects. I assume that the unconditional distribution of Zt can be modeled as:

(3) SZt = εt,

where S is nonsingular square matrix of size pn×pn. The covariance of ε is normalized to the identity matrix,

E
(
εtε

T
t

)
= I. Residuals εt and εt are independent. Define Et =

[
εTt εTt

]t
. By construction, E(EET ) = I.

The whole model can be written as:

(4) PXt = Et,

where

P =

 A0 AL

0n×n S


2.2. Data and specification. Vector Y includes the federal interest rate r, the inflation rate π measured

as the growth rate of the GDP deflator, the commodity price inflation rate πc, the GDP growth rate g, the

capacity utilization rate c, and the unemployment rate u. This choice of variables is explained in Section 5.

The data on π, πc, g, c, and u come seasonally adjusted, and the data on r, π, πc and g are annualized.

I use the US quarterly data from 1967:Q1 to 2007:Q4. I exclude the period of unconventional monetary

policy, which began in 2008. I include 2 lags for the following reasons. Model selection criteria, such as BIC,

AIC and others, suggest chosing between 1 and 4 lags. If I use only one lag, I cannot reliably identify the

monetary policy rule, because there is no evidence that the contemporaneous or the first lag inflation affects

the federal interest rate. Models with 2, 3, and 4 lags produce similar results, so a particular decision within

these three models does not affect the conclusions. I choose 2 lags to simplify the identification procedure.

3. Identification

I use the structure of a typical DSGE model to formulate restrictions for identification of the SVAR

model. DSGE models usually include a lot of frictions. A typical set of included frictions consists of Calvo

pricing (Calvo, 1983; Clarida et al., 1999; Bils and Klenow, 2004), consumption habit formation (Abel, 1990;
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Campbell and Cochrane, 1999; Fuhrer, 2000), capital or investment adjustment costs, and search-and-match

at the labor market (Pissarides, 2000; Merz, 1995; Gertler et al., 2008). Each friction produces an equation,

where the dependent variables is expressed as a function of other contemporary variables, its own expected

value, and its own lagged values. The New Keynesian Phillips curve is a good example:

(5) πt = α1π
E
t+1 + α2MCt + α3πt−1 + α4πt−2 + επt

where πE
t+1 is the expected inflation, MC is the marginal cost function, επt is the inflation structural shock,

and α1, . . . , α4 are parameters. The marginal cost function depends on contemporary variables, such as the

capacity utilization or the GDP growth rate, but it does not depend on any lagged variables. The state in

the DSGE model is represented by Yt, so the expected inflation is a function of all variables entering into

vector Yt, but as the marginal cost function, it also does not depend on any lagged variable. Therefore, all

coefficients in the row for π in matrix A0 may be not zero, but only the coefficients before the lagged values

of π are not constrained in the matrices of lagged effects.

The other equations associated with frictions have a similar structure. The dependent variable in each

such equation is a function of its own expected value. Since the expected value can be represented as a

function of Yt, all coefficients in the respective row of A0 must be unconstrained. It also depends on its own

lags, but not on the lagged values of the other variables. For this reason I do not impose any restrictions

on the matrix of contemporaneous effects, and I make the following three identifying assumptions for the

matrices of lagged effects.

First, I assume each variable may depend on its own first or second lags. Therefore, the main diagonals

of A1 and A2 are not constrained. The assumption that the diagonals of A1 and A2 are unconstrained is

similar to the Minnesota prior introduced by Litterman (1979); however, the motivation for this assumption

is different. The motivation for the Minnesota prior is that the logarithms of most variables follow a process

close to the random walk. However, I consider most variables in growth rates, where the random walk is

converted into the white noise. Instead, I motivate this assumption by frictions.

Second, in Section 4.4 I provide evidence that the Federal Reserve uses delayed information about the GDP

deflator inflation and the commodity price inflation when it sets the interest rate. Because of informational

delays, the interest rate may depend on the first and second lags of the inflation and commodity price

inflation, so I remove the constraints on coefficients before π and πc in the equation for r in matrices A1

and A2.
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Table 1. Summary of identification restrictions

A0 A1 A2

r u c g π πc Lr Lu Lc Lg Lπ Lπc L2r L2u L2c L2g L2π L2πc

r * * * * * * * * * 0 * * * 0 0 0 * *
u * * * * * * 0 * * 0 0 0 0 * 0 0 0 0
c * * * * * * 0 * * 0 0 0 0 0 * 0 0 0
g * * * * * * 0 * * * 0 0 0 0 0 * 0 0
π * * * * * * 0 * * 0 * 0 0 0 0 0 * 0
πc * * * * * * 0 * * 0 0 * 0 0 0 0 0 *
“0” for the coefficients constrained to zero, “*” for the unconstrained coefficients.

Each row represents the corresponding equation in (1), columns correspond to variables included (“*”)

or excluded (“0”) from this equation.

The third identification assumption for the matrices of lagged effects is the following. Observe that the

model described only by the previous inclusions may be misspecified for the following reason. Consider the

following production function:

(6) Q = A (cK)
α

(L (1− u))
1−α

,

where Q is the output, A is the stochastic productivity parameter, K is the capital, L is the total labour

force, and α is parameter. Product cK gives the amount of capital used in production, and L(1− u) gives

the number of employed workers. Assuming that K and L are approximately constant in the short run, the

first-difference log-linearized version of (6) is:

(7) g = ∆ lnA+ α∆c− (1− α)∆u

where ∆ is the first difference operator. If I do not relax the constraints before the lagged values of u

and c in the equation for g, I would estimate the model where g depends on c and u, but not on the first

differences of c and u, so the model would be misspecified. To fix this problem, in each equation that includs

the contemporaneous values of u or c I add the lagged values of the respective variables. That is, I copy all

inclusions from the second and third columns of A0 into the respective columns of A1.

4. Checking identification using transformed concentration network

In this section I introduce the transformed concentration matrix, and then use it to define the Transformed

Concentration Network (TCNW). Then I show how the TCNW can be used for testing the identifying

restrictions, and apply it to test the identifying restrictions summarized in Table 1.
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4.1. Concentration and transformed concentration matrices. The concentration matrix, also known

as the precision matrix, is defined as the inverse covariance matrix:

(8) C = E(XXT )−1

From (4) I obtain:

(9) I = E
(
EET

)
= E

(
PXXTPT

)
= PC−1PT

Matrix manipulations gives:

C = PTP

=

AT
0 A0 AT

0 AL

AT
LA0 AT

LAL + STS

 ≡
C11 C12

C21 C22

(10)

The transformed concentration matrix is defined as:

(11) C̃ =

AT
0 A0 AT

0 AL

AT
LA0 AT

LAL

 ≡
C11 C12

C21 C̃22


The concentration matrix can be estimated using its definition (8). The transformed concentration can be

estimated using the following lemma:

Lemma 1. C̃22 = C21C
−1
11 C12

Proof. By definition (11), I have: C21C
−1
11 C12 = AT

LA0

(
AT

0 A0

)−1
AT

0 AL = AT
LAL = C̃22 �

4.2. Transformed concentration network. I use the the transformed concentration matrix introduced

in the previous section to define the transformed concentration network as:

Definition 1 (TCNW). The Transformed Concentration Network (TCNW) is an undirected graph, which

nodes are the random variables of the structural model, and where nodes xi and xj are adjacent if and only

if the respective coefficient of the transformed concentration matrix is not zero: c̃ij 6= 0.

The transformed concentration network is useful for analysis of identification assumptions because of the

following property:

Proposition 1 (TCNW and the model’s structure). Consider any two random variables of the structural

model, say xi and xj, i 6= j.
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• If xi is excluded from each structural equation where xj is included then c̃ij = 0, and edge xixj is

absent in the TCNW.

• If there exists at least one equation where xi and xj are both included, then c̃ij 6= 0 in almost all

parameter points, and edge xixj is present in the TCNW in almost all parameter points.

Proof. Consider block C11 = AT
0 A0 of the transformed concentration matrix. Let a0ij and cij be elements

of A0 and C11. By the rule of matrix multiplication, I have: cij =
∑n
k=1 a

0
kia

0
kj . Variable xi is included

into the kth equation if and only if a0ki 6= 0. If xj is excluded from each equation where xi is included, then

for each k such that a0ki 6= 0 I have a0kj = 0, so each summand is zero, and cij = 0. If there exists equation

k where both variables are included then a0kia
0
kj 6= 0, and the sum is zero only if this summand is exactly

offset by the other non-zero summands, which does not happen in almost all parameter points.

The proof for blocks C12, C21 and C̃22 is the same as for block C11. �

Let marker for a particular equation be a variable, which is included only into this structural equation.

For example, Lr is marker for the first structural equation in Table 1, associated with the Taylor rule. I use

the following two properties of the markers to check the identifying assumptions, which directly follow from

Proposition 1:

Corollary 1.1 (Markers). In almost all parameter points, marker associated with structural equation i is

adjacent in the TCNW only to the variables included into equation i. Markers associated with different

structural equations are not adjacent.

Corollary 1.2 (Sufficient condition for full testable identification). Assume that there exists at least one

marker associated with each structural equation. Then each inclusion and exclusion restriction used for the

identification of the structural model can be tested in almost all parameter points.

4.3. Estimation of the TCNW. There are two steps of the estimation of the TCNW. At the first step

I use block bootstrap to test individual hypotheses associated with particular edges in the TCNW. At the

second step I make a correction for the multiple hypothesis testing problem.

Consider the first step. For each i and j, i 6= j, the individual null hypothesis is that the respective entry

of the transformed concentration matrix is zero, H0 : c̃ij = 0, and the alternative is H1 : c̃ij 6= 0.

At each iteration of the bootstrap procedure I repeat the following steps:

(1) Construct a resample X1 by shuffling overlapping blocks of X of length2 4.

2There is no consensus in the literature how to choose the length of one block for the block bootstrap procedure. I use the

recommendation to include approximately 3
4

3
√
T observations into each block, where T is the total number of observations.
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(2) Centralize X1, that is, subtract the mean.

(3) Calculate the empirical concentration matrix, C1 =
(
XT

1 X1

T−1

)−1

, where T is the number of obser-

vations.

(4) Calculate the transformed concentration matrix using Lemma 1.

Let freqij be the number of iteration of the bootstrap procedure where c̃ij is positive minus the number

of iterations where c̃ij is negative divided by the total number of iterations where (XTX) is not singular.

The p-value associated with the null hypothesis is calculated using:

(12) pvalueij = 1−
∣∣freqij

∣∣
The p-value is not calculated for i = j.

At the second step I use the procedure of Benjamini and Hochberg (1995) to account for the multiple

hypothesis testing problem. Let m = n(p+1) be the number of variables in vector X, where n is the number

of variables in Yt, and p is the number of lags. There are N = m (m− 1) /2 individual hull hypotheses,

so a multiple hypothesis testing procedure is required. Let total discoveries be the number of rejected null

hypotheses, and false discoveries be the number of wrongly rejected null hypotheses. The false discovery

rate is defined as the ratio of the false discoveries to the total discoveries if the number of total discoveries

is positive, and defined to be zero if the number of total discoveries is zero. Benjamini and Hochberg (1995)

prove that the following procedure controls the expected false discovery rate below or at level q∗: estimate

individual p-values p1, p2, . . . , pN , sort p-values in increasing order p1 ≤ p2,≤ . . . ,≤ pN , find the largest k

for which pk <
k
N q

∗, reject the null hypotheses associated with p1, . . . , pk, and accept the null hypotheses

associated with pk+1, . . . , pN . The q-value associated with the ith null hypothesis is defined as the minimal

value of q∗ for which the ith null hypothesis is rejected.

Benjamini and Hochberg (1995) assume independence of individual null hypotheses, but this assumption

may be violated when the TCNW is estimated. That is, when two null hypothesis are true and one of them

is rejected, this may be more likely that the other hypothesis is also rejected. To see why, assume the model

has been generated by T independent realizations of E written into n × T matrix Ê , and let Ê be defined

by Ê =
(
Ê ÊT

)−1

. By construction, the expected value of Ê is the identity matrix. Each element of the

empirical transformed concentration matrix can be expressed as ˆ̃cij =
∑
k,l pik · pjl · êkl, where êkl is the

respective entry of Ê. If the null hypothesis is correct for some c̃i1j1 and c̃i2j2 , then E (c̃i1j1) = E (c̃i2j2) = 0.

However, if for a particular realization of the residuals the linear combination of êkl defining ˆ̃ci1j1 is outside

the confidence interval, this may be more likely that another linear combination of êkl, defining ˆ̃ci2j2 , is also
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Table 2. Markers

Equation index,
Equation name Markers

structural shock
1. εr Taylor rule Lr, L2r
2. εu Unemployment equation L2u
3. εc Capacity utilization equation L2c
4. εg GDP growth rate equation Lg, L2g
5. επ Phillips curve for GDP deflator inflation no markers
6. επc Phillips curve for the commodity price inflation no markers

outside of the confidence interval. Therefore, the test statistics may have positive dependency. Benjamini

and Yekutieli (2001) prove that the procedure described above correctly controls the expected false discovery

rate at the level below or equal to q∗ in the case of positive dependency.

4.4. Verifying identification restrictions. Now I use the TCNW to test the identification restrictions

summarized in Table 1. Based on these restrictions, the markers available for each structural equation

are listed in Table 2. Each of the first four equations has at least one marker, so the theoretical TCNW

suffices to distinguish between these equations. The Phillips curves for the GDP deflator inflation and for

the commodity price inflation, however, do not have markers. Moreover, in Table 1 I see that each variable

entering into one of the Phillips curve equation also enters into the Taylor rule. Therefore, identification

restrictions summarized in Table 1 produce a TCNW that can separate the Taylor rule from the 2nd, 3rd,

and 4th equation, but the TCNW cannot separate the Taylor rule from the Phillips curve equations. That

is, the identification of the Taylor rule is only partially testable.

The estimated concentration network is depicted in Figure 1. Black edges in this figure are significant at

the 10% q-value level, and the thicker is the edge the lower is the associated q-value. Gray solid edges are

significant at the 10% p-value level, but they are not significant when I make the correction for the multiple

hypothesis testing. Gray dashed and dotted edges are not significant even individually.

Observe that L2r and Lg are not adjacent significantly to any other node. Using the terminology of

instrumental variables, these instruments are either weak or irrelevant, so they cannot be used as markers.

However, even without these instruments each of the first four structural equations has a marker listed in

Table 2.

To check the identifying assumptions summarized in Table 1, verify that the properties of the markers

predicted by Corollary 1.1 are not rejected. Namely, make the following two checks. First, verify that the

markers associated with different equations are not adjacent. Second, verify that the marker associated with

each equation is adjacent only to the variables included into this equation. In Figure 1 I see that some edges
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Figure 1. Transformed concentration network.
Notation p is used for the p-values associated with individual hypotheses, and q is the upper bound
for the expected false discovery rate.

r

u

c

gπ

πc

Lr

Lu

Lc

Lg
Lπ

Lπc

L2r

L2u

L2c

L2g

L2π

L2πc

0.5 < q and p ≤ 0.5
0.1 < p and q ≤ 0.5
0.1 < q and p ≤ 0.1
0.05 < q and q ≤ 0.1
0.01 < q and q ≤ 0.05
0.005 < q and q ≤ 0.01
q ≤ 0.005

predicted by the identifying assumptions summarized in Table 1 are not significant; however, the imposed

exclusion restrictions are not rejected by the TCNW.

How does the interest rate respond to the inflation shocks? The TCNW in Figure 1 provides no evidence

that there is at least one structural equation that includes the contemporary values of r and π. For example,

if the contemporary value of inflation where included into the monetary policy rule equation, π would be
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adjacent to r and Lr. Similarly, if r where included into the Phillips curve equation, it would be adjacent

to π and Lπ. There is no these edges in the estimated TCNW, so, the direct effects between r and π are

either weak or absent. However, there is a weak evidence that r is affected by the second lag of π: edge

r − L2π is significant at 10% p-value level, although it is not significant when I make the correction for the

multiple hypothesis testing procedure. Theory, however, predicts that r responds to shocks in π, so r must

be adjacent to at least one of the lags of π. I interpret this observation as a weak evidence that the federal

reserve uses the delayed information about π in its policy decisions.

A similar reason applies to the commodity price inflation. The commodity price inflation is not adjacent

to the contemporaneous values of r or L2r. However, edge r − Lπc is significant at 1% q-value level. I

interpret this observation as a strong evidence that the federal reserve uses delayed information about πc in

policy making.

5. Price puzzle diagnostics

As Bernanke and Federal Reserve Board (2005) argue, the monetary policy rule cannot be identified

within low dimensional models. In Figure 1, the lagged interest rate, which is marker for the Taylor rule

equation, is adjacent to Lπc, and there is weak evidence that it is adjacent to u, c, and L2π. Therefore,

there is weak evidence that the Taylor responds in different way to four different signals, which implies that

it includes at least 5 variables. If I estimate a model with less than 5 variables, then this four-dimensional

signal is compressed to fit a lower dimensional space before it reaches the interest rate. The residuals of this

compression are added with some weights to the residuals of the estimated monetary policy rule equation, so

the residuals of the estimated monetary policy equation are contaminated with other shocks. The estimated

IRFs for the monetary policy shock in this case are biased.

A particular bias produced by the signal dimensionality reduction depends on particular restrictions used

for identification. In this Sections I explain how a set of restrictions consistent with the TCNW produces the

price puzzle bias in low dimensional models. That is, small models predict that in response to a restrictive

monetary policy shock the inflation rate does not decline monotonically, as the theory predicts, but it initially

goes up, and only then starts to decrease. The price puzzle has been reported in many low dimensional

SVAR models, which motivates me to diagnose the price puzzle problem using the TCNW introduced in

this paper.

5.1. Price puzzle bias in a three-variable model. Consider the model that includes the federal interest

rate r, the GDP growth rate g, and the inflation rate π. Observe that in TCNW depicted in Figure 1 there
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Figure 2. Transmission channel of monetary policy and signal loss in the three-variable model.

r
g

π“−” may be “±”
estimated “−”

is no evidence that r directly affects the contemporary value of π, so this effect is either weak or absent in

the true data-generated model. The same property holds for the TCNW estimated for the three-variable

model, and in all specifications that I have considered. To be precise, assume that the direct effect of r on

π is absent in the true data-generating model, that is, r 6→ π.

Consider the transmission mechanism from the monetary policy to the inflation rate depicted in Figure

2. By the identification assumption discussed above, there is no direct effect of r on π, so this effect is fully

mediated by g. In this case, the contemporaneous effect of r on π is the product of the effect of r on g and

of the effect of g on π. I interpret an exogenous increase in the federal interest rate as a restrictive monetary

policy shock, which decreases the output. Therefore, the effect of r on g is negative. The theory predicts

that the effect of g on π is ambiguous. If the GDP growth rate has increased because of an aggregate demand

shock, the inflation will go up, but if it has increased because of an aggregate supply shock, the inflation

will go down. In the estimated model, the effect of r on g and the effect of g on π are both negative.

In spite of the fact that the estimated effects of r on g and of g on π are consistent with the theory, the

contemporaneous effect of the monetary policy shock on the inflation rate, which equals to the product of

these two effects, is not consistent with the theory. An increase in the interest rate decreases the output, but

this effect is misclassified in the estimated model as a negative aggregate supply shock, so the model predicts

that the inflation will go up. This is how too low dimensionality of the estimated model can produce the

price puzzle.

5.2. A solution to the price puzzle problem. Consider the model with r, c, g and π, where I use the

same identification assumption, r 6→ π. In this model, the influence of r on π is mediated by two variables,

c and g, and since the mediator is two-dimensional, it can can distinguish between the aggregate demand

and aggregate supply shocks. The transmission mechanism from the monetary policy to the inflation rate

for this model is depicted in Figure 3. A shock that increases the GDP growth rate without affecting the

capacity utilization is interpreted as an aggregate supply shock, so the expected inflation decreases. If the

capacity utilization rate has increased but the GDP growth rate has not changed, this is interpreted as a

simultaneous positive aggregate demand shock and a negative aggregate supply shock, so the inflation will

go up. Since the mediator can distinguish between the aggregate demand and aggregate supply shocks, it
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Figure 3. Transmission channel of monetary policy in the four-variable model.

r

g

c

π

−

+

can correctly classify an exogenous increase in r as an aggregate demand shock, and the price puzzle effect

diminishes.

The IRFs for the four-variable model are closer to the prediction of the macroeconomic theory than the

IRFs for the three-variable model. In particular, the price puzzle effect is not significant in four-variable

model. Nevertheless, these impulse response functions are also not entirely consistent with the theory. From

the theoretical perspective I expect that in response to a restrictive monetary policy shock the capacity

utilization decreases. In the estimated model, however, it first jumps up, and only then smoothly decreases.

A possible explanation for this result is the confounding effect. For example, the unemployment rate and

the commodity price inflation may affect the contemporaneous values of r and c. If this is the reason why

I observe the jump in the capacity utilization rate, I need to include the confounders into the estimated

model to avoid the bias. When I include the unemployment rate and the commodity price inflation rate,

the positive jump in the capacity utilization rate disappears. The estimated model, therefore, includes r, u,

c, g, π, and πc.

6. Estimation of the impulse response functions

The parameters of the structural model are estimated using the maximum likelihood estimator. As

the starting point for the likelihood maximization I use parameters estimated by two-stage least squares

procedure. The confidence intervals are estimated by bootstrapping the residuals.

The estimated IRFs for the monetary policy shock are reported in Figure 4a.The black thick line in each

panel of Figure 4a represents the mean, the dashed lines lie with one standard deviation from the mean,

and the gray zone indicates the outside 90% bootstrap confidence intervals.

The estimated IRFs are consistent with the macroeconomic theory. As the theory predicts, a restrictive

monetary policy shock increases the unemployment and decreases the capacity utilization. The GDP growth

rate is below its long-run level just after the shock, but it rises above the long-run level two years later, so the

GDP level eventually recovers. The inflation rate immediately goes down. The commodity price inflation
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Figure 4. Estimated impulse response functions for the restrictive monetary policy shock.
The thick line in each panel is the expected impulse response function, the dashed lines lay within
one standard deviation from the mean, and the gray zone indicate the outside 90% confidence

intervals.
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also decreases immediately, but faster than the deflator inflation, which is consistent with the believe that

the commodity price inflation is a leading indicator for the deflator inflation (Garner (1989)).

To check the robustness of the identifying assumptions, I make the following two experiments. First, I

verify that relaxing a few random exclusions and adding a few random TCNW-consistent exclusions only

slightly modifies the estimated IRFs. Second, I consider the pure data-based identification, where I do not

use any theoretical identifying assumptions, and rely only on assumptions implied by the estimated TCNW.

Namely, I restrict to zero all coefficients associated with the edges insignificant at 10% q-value level. For

example, since the edge between the contemporaneous values of π and r is not significant in the TCNW

on Figure 1, parameters a051 and a015 associated with the direct effects r → π and π → r are restricted to
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zero. The threshold at the 10% q-value level is arbitrary, however, the estimated IRFs do not change too

much when I vary the threshold between 10% and 50%. I do not report the confidence intervals for the

pure data-based identification, because estimation of them would involve the sequential hypothesis testing

problem.

The IRFs for the pure data-based identification are shown in Figure4b. The IRFs for the data-based and

theoretical identification are slightly different in the magnitudes. Nevertheless, in the considered application,

the pure data-based identification produces a reasonable approximation for the theoretical identification.

7. Conclusions

I use restrictions produced by a typical DSGE model for identification of the SVAR. The literature on

SVARs usually imposes restrictions on the impulse response functions and on the matrix of contemporaneous

effects, making it sparse. The DSGE literature, however, predicts that the matrix of contemporaneous effects

is dense, but the matrix of lagged effects is sparse. I impose restrictions on the matrix of lagged rather than

contemporaneous effects, which is consistent with the DSGE literature.

A typical DSGE model produces more restrictions than is required for identification, so many identifying

restrictions are testable. I use the TCNW for testing the overidentified restrictions. In the considered

application, theoretically justified TCNW can separate the Taylor rule equation from three other equations

of the structural model.

In the estimated TCNW, there is no evidence that the Federal Reserve takes into account the contem-

porary values of inflation and commodity price inflation in policy making. However, there is weak evidence

that it uses delayed information about the inflation, and strong evidence that it uses delayed information

about the commodity price inflation.

The method reveals the misidentification problems producing the price puzzle in the previous literature.

The misidentification arises as a result of the loss of dimensionality of the structural model. Using theoretical

identification restrictions, which are not rejected by the data, I achieve a robust identification of the monetary

policy rule. The estimated IRFs are consistent with the theory, producing no anomalies such as the price

puzzle.

8. Computational details

The SVAR model was estimated in R (R Core Team, 2012) using packages igraph (Csardi and Nepusz,

2006) and NLopt (Johnson, 2014).
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