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Abstract. The nearest neighbor search problem is well known since 60s. Many 
approaches have been proposed. One is to build a graph over the set of objects 
from a given database and use a greedy walk as a basis for a search algorithm. 
If the greedy walk has an ability to find the nearest neighbor in the graph start-
ing from any vertex with a small number of steps, such a graph is called a na-
vigable small world. In this paper we propose a new algorithm for building 
graphs with navigable small world properties. The main advantage of the pro-
posed algorithm is that it is free from input parameters and has an ability to 
adapt on the fly to any changes in the distribution of data. The algorithm is 
based on the idea of removing local minimums by adding new edges. We real-
ize this idea to improve search properties of the structure by using the set of 
queries in the execution stage. An empirical study of the proposed algorithm 
and comparison with previous works are reported in the paper. 

Keywords: Nearest neighbor search · Non-metric search · Approximate search 

1 Introduction 

The nearest neighbor search problem has naturally appeared in many fields of science. 
The problem is formulated as follows. Let  be a domain,  be a finite set 
of objects (database),  be a distance function. We need to prepro-
cess in such a way that for a given query  the k-closest objects from can 

be found as fast as possible. Many methods have been proposed for searching an 
exact nearest neighbor as well as an approximate. Some recent methods are [6], [7]. 
Also a good overview of methods for the exact nearest neighbor search can be found 
in [1] and an empirical comparison of several approximate state of the art methods 
can be found in [3]. One of the recent promising approaches for the approximate 
nearest neighbor search problem is to build a graph over the set of objects 

 and use the greedy walk algorithm as a base for the search algorithm. Thus, the 
search of k-closest objects takes the form of the search of vertices in the graph , 
where each object from the set uniquely corresponds to a different vertex of the 
graph. Several works based on this approach have been proposed [2,4,5]. Methods [2, 5 ] 
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are based on the idea of connecting a set of approximate Voronoi regions into a network 
where one region corresponds to one data point. Voronoi regions are approximated  
by k-closest points together with a set of points for which the current point is one  
of the k-closest. The main drawback of this method is that it requires initial setting  
of the parameter k which in turn requires a priori knowledge about the properties of 
the input data set (a small value of the parameter leads to a small accuracy of search; 
too large value causes excessive search complexity and needs more memory to store 
the graph). 

In this paper we explore an idea how to form a graph without any a priori know-
ledge of input data. Instead of finding k-closest neighbors we explicitly try to build a 
graph in such a way that the greedy walk algorithm is able to find a new data point 
starting from any other random vertex of the current graph . Moreover we propose 
a way to improve search properties of the structure with a similar idea by using the set 
of incoming queries. 

2 Greedy Walk Algorithm 

As mentioned above we use an approach where each object from the set  is uni-
quely mapped to a different vertices of the graph . Thus, the search of k-closest 
objects takes the form of the search of vertices in the graph. As a search algorithm we 
suggest to use a simple greedy walk algorithm. The pseudo code of the greedy walk 
algorithm is presented below. The greedy walk algorithm is quite simple. It starts 
from some vertex ; calculates the distance between the query and each neighbor 

of ; goes to the vertex  for which the distance is minimal; calculates the 

distance 
 
between the query and each object from neighbors 

 
of vertex 

 and so on, until the algorithm cannot improve the distance to the query. The 

vertices in which the greedy walk stops we call “local minimums”. Note that the 
Greedy_Walk algorithm with local minimum also returns the set . This set  
contains all vertices that were contacted during a search (lines 2 and 5).   

Greedy_Walk( , , ) 

1   

2   

3  while  do 

4      

5      

6  end while 
7  return  ,  
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3 Insertion Algorithm 

The insertion algorithm is based on the idea, that each time when we insert a new 
vertex to the graph , we can explicitly check the possibility of finding the new 
vertex starting from other vertices by the greedy algorithm. We also exploit a trick of 
keeping alive old links. Since time this links starting to be used as long links by the 
greedy search algorithm. So, this trick allows us to produce the navigable small world 
property for our graph.  

At first we will describe the Get_Local_Minimums function. It returns the set 
of local minimums in which randomly started greedy walks stop. The 
Get_Local_Minimums algorithm has parameter which means how many 
times we allow a randomly started greedy walk not to bring a new local minimum. 
Also the Get_Local_Minimums function returns the set  which we consider 
as global view of the all greedy walks. 

Get_Local_Minimums( , , ) 
01 ;  

02  while  do 
03   Random( )//put to  random vertex from  

04    Greedy_Walk( , , ) 

05    if  then ;   
08    else  
09  end while 
11  return ,   
 
Insert_By_Repairing( , , ) 

01  ;  

02  Get_Local_Minimums( , , ) 

03   

04  for each  do 
05     

06     

07     

08  end for 

Now we ready to describe Insert_By_Repairing procedure. At first, we collect 
in the set  all local minimums (line 02) which we found by a number of randomly 
started greedy walks. After that, we remove these local minimums in the following 
way. For every local minimum  in the set of all viewed vertices (points)  we 
select the vertex  such that the distance from  to  is less than the distance 
from to , and the distance from  to  is minimal. So, we make the local  
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Fig. 1. Recall after Improving by queries  
applying  Repair_By_Query procedure 

Fig. 2. The overall efficiency of the structure 
after applying Repair_By_Query procedure 

minimum to be able to route the greedy walk to the vertex  which is closer to 
the destination point  by adding edge between and .  

Finally, we present procedure Add_All which builds a data structure over the set
. It sequentially selects a random object from the set  and inserts it to the 

graph by running the Insert_By_Repairing  procedure.  

Add_All( , ) 
01   
02  while  do 

03    Random( );  
04    Insert_By_Repairing( , , ) 
05  end while 

4 Improvement Based on Queries 

The idea of repairing by removing local minimums can be extended to improving  
the search properties of the structure by queries at the query execution stage. In the 
procedure Repair_By_Query we do the same as in Insert_By_Repairing 
procedure with only one exception. We search the local minimums relative to the 
query object instead of the inserted one.     

Repair_By_Query( , , ) 

01  Get_Local_Minimums( , , ) 

02   

03  for each  do 
04     

05     

06      

07  end for 
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Fig. 3. Comparison with NN [5]  

 

Fig. 4. Vertex Degree Distribution 

5 Simulations 

5.1 Improvement Based on Queries 

We have performed simulations in order to verify the idea of improving the data 
structure using the stream of incoming queries. We have built a graph by Add_All  
algorithm with parameter = 9 on the set of 10,000 points uniformly distributed in 
the 30-dimensional unit hyper cube. After that, we generate 100 times 1000 queries 
with the same distribution. Each time after applying 1000 times the Re-
pair_By_Query procedure we have measured the value of recall for searching 5 
nearest neighbors. As a search algorithm we have used Multi_Search algorithm 
proposed in [5]. This algorithm uses the sequences of greedy based searches started 
from a random vertex and selects the best results. The parameter “m” is the number of 
searches. We have used m = 1, 2, and 4 correspondingly. As can been seen from Fig. 
1 the accuracy of each search has increased after applying the Repair_By_Query 
procedure. 

Also we have measured how the overall efficiency of the structure has changed 
when applying Repair_By_Query procedure. We have measured the values of 
improvement in efficiency (how many times less the algorithm needs to calculate 
distances than the exhaustive search) and values of recall after applying Re-
pair_By_Query procedure 100,000 and 1,000,000 times to the structure built over 
the set of 100,000 30-dimensional points by Insert_By_Repairing algorithm 
(Fig. 2). Unfortunately, it has not made a significant contribution to the overall effi-
ciency of the structure.  

5.2 Insertion by Repairing 

We have made the comparison of the search properties of the graphs produced by 
Insert_By_Repairing (parameter = 9) algorithm with the algorithm of con-
necting with k-nearest neighbors [5]. The parameters were w=10; k=12 and 20 accor-
dingly. The parameter “w” is the number of searches used by Multi_Search pro-
cedure at the construction stage As a data set we have used one million random points 
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uniformly distributed in the unit 30-dimensional hyper cube. As a distance function 
we use . The result of comparison is presented in Fig. 3 and a valuation of the 

distribution of the vertex degrees is presented in Fig. 4.   

6 Conclusion 

In this paper we have explored the idea of using information about local minimums 
during the insertion and during the search. We have proposed an algorithm which 
uses this information to improve the accuracy of the search procedure. Also based on 
this idea we have proposed a new graph construction algorithm. Despite that the pro-
posed algorithm cannot outperform the algorithm of connecting with k-nearest neigh-
bors, it demonstrates the idea that the information about local minimums can be used 
for data insertion. Moreover we suppose that this idea can be used for tuning parame-
ters of other data insertion algorithms, for example for tuning the parameter k in the 
algorithm of connection with k-nearest neighbors [5]. 
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