

© Springer International Publishing Switzerland 2015
G. Amato et al. (Eds.): SISAP 2015, LNCS 9371, pp. 0–5, 2015.
DOI: 10.1007/978-3-319-25087-8_30

Query-Based Improvement Procedure
and Self-Adaptive Graph Construction Algorithm

for Approximate Nearest Neighbor Search

Alexander Ponomarenko()

National Research University Higher School of Economics, Nizhny Novgorod, Russia
aponomarenko@hse.ru

Abstract. The nearest neighbor search problem is well known since 60s. Many
approaches have been proposed. One is to build a graph over the set of objects
from a given database and use a greedy walk as a basis for a search algorithm.
If the greedy walk has an ability to find the nearest neighbor in the graph start-
ing from any vertex with a small number of steps, such a graph is called a na-
vigable small world. In this paper we propose a new algorithm for building
graphs with navigable small world properties. The main advantage of the pro-
posed algorithm is that it is free from input parameters and has an ability to
adapt on the fly to any changes in the distribution of data. The algorithm is
based on the idea of removing local minimums by adding new edges. We real-
ize this idea to improve search properties of the structure by using the set of
queries in the execution stage. An empirical study of the proposed algorithm
and comparison with previous works are reported in the paper.

Keywords: Nearest neighbor search · Non-metric search · Approximate search

1 Introduction

The nearest neighbor search problem has naturally appeared in many fields of science.
The problem is formulated as follows. Let be a domain, be a finite set
of objects (database), be a distance function. We need to prepro-
cess in such a way that for a given query the k-closest objects from can

be found as fast as possible. Many methods have been proposed for searching an
exact nearest neighbor as well as an approximate. Some recent methods are [6], [7].
Also a good overview of methods for the exact nearest neighbor search can be found
in [1] and an empirical comparison of several approximate state of the art methods
can be found in [3]. One of the recent promising approaches for the approximate
nearest neighbor search problem is to build a graph over the set of objects

 and use the greedy walk algorithm as a base for the search algorithm. Thus, the
search of k-closest objects takes the form of the search of vertices in the graph ,
where each object from the set uniquely corresponds to a different vertex of the
graph. Several works based on this approach have been proposed [2,4,5]. Methods [2, 5]

D DX ⊂
);0[: +∞→× RDDd

X Dq∈ X

),(EXG

X
G

X

Query-Based Improvement Procedure and Self-Adaptive Graph Construction Algorithm 1

are based on the idea of connecting a set of approximate Voronoi regions into a network
where one region corresponds to one data point. Voronoi regions are approximated
by k-closest points together with a set of points for which the current point is one
of the k-closest. The main drawback of this method is that it requires initial setting
of the parameter k which in turn requires a priori knowledge about the properties of
the input data set (a small value of the parameter leads to a small accuracy of search;
too large value causes excessive search complexity and needs more memory to store
the graph).

In this paper we explore an idea how to form a graph without any a priori know-
ledge of input data. Instead of finding k-closest neighbors we explicitly try to build a
graph in such a way that the greedy walk algorithm is able to find a new data point
starting from any other random vertex of the current graph . Moreover we propose
a way to improve search properties of the structure with a similar idea by using the set
of incoming queries.

2 Greedy Walk Algorithm

As mentioned above we use an approach where each object from the set is uni-
quely mapped to a different vertices of the graph . Thus, the search of k-closest
objects takes the form of the search of vertices in the graph. As a search algorithm we
suggest to use a simple greedy walk algorithm. The pseudo code of the greedy walk
algorithm is presented below. The greedy walk algorithm is quite simple. It starts
from some vertex ; calculates the distance between the query and each neighbor

of ; goes to the vertex for which the distance is minimal; calculates the

distance

between the query and each object from neighbors

of vertex

 and so on, until the algorithm cannot improve the distance to the query. The

vertices in which the greedy walk stops we call “local minimums”. Note that the
Greedy_Walk algorithm with local minimum also returns the set . This set
contains all vertices that were contacted during a search (lines 2 and 5).

Greedy_Walk(, ,)

1

2

3 while do

4

5

6 end while
7 return ,

G

X
G

startv

startv currv

d q)(currvN

currv

P P

Dq∈),(EVG Vvstart ∈
startcurr vv ←

)(currvNPP ∪←
),()),((min

)(
curr

vNx
vqdxqd

curr

<
∈

)(
)),(min(arg

currvNx
curr xqdv

∈
←

)(currvNPP ∪←

currv P

2 A. Ponomarenko

3 Insertion Algorithm

The insertion algorithm is based on the idea, that each time when we insert a new
vertex to the graph , we can explicitly check the possibility of finding the new
vertex starting from other vertices by the greedy algorithm. We also exploit a trick of
keeping alive old links. Since time this links starting to be used as long links by the
greedy search algorithm. So, this trick allows us to produce the navigable small world
property for our graph.

At first we will describe the Get_Local_Minimums function. It returns the set
of local minimums in which randomly started greedy walks stop. The
Get_Local_Minimums algorithm has parameter which means how many
times we allow a randomly started greedy walk not to bring a new local minimum.
Also the Get_Local_Minimums function returns the set which we consider
as global view of the all greedy walks.

Get_Local_Minimums(, ,)
01 ;

02 while do
03 Random()//put to random vertex from

04 Greedy_Walk(, ,)

05 if then ;
08 else
09 end while
11 return ,

Insert_By_Repairing(, ,)

01 ;

02 Get_Local_Minimums(, ,)

03

04 for each do
05

06

07

08 end for

Now we ready to describe Insert_By_Repairing procedure. At first, we collect
in the set all local minimums (line 02) which we found by a number of randomly
started greedy walks. After that, we remove these local minimums in the following
way. For every local minimum in the set of all viewed vertices (points) we
select the vertex such that the distance from to is less than the distance
from to , and the distance from to is minimal. So, we make the local

G

τ

P

Dq∈),(EVG Ν∈τ
{}←L 0'←τ

ττ <'
←startv V startv V

←Pv, q G startv
Lv∉ 0'←τ vLL ∪←

1'' +← ττ

L P

Xx∈),(EVG Ν∈τ
xVV ∪← {}←P

←PL, x G τ
xPP ∪←

Lz∈
)},(),(:{' xzdxydPyP <∈←

)),((minarg' yzdx
P'y∈

←

)',(),'(xzzxEE ∪∪←

L

z P
'x 'x x

z x z 'x

Query-Based Improvement Procedure and Self-Adaptive Graph Construction Algorithm 3

Fig. 1. Recall after Improving by queries
applying Repair_By_Query procedure

Fig. 2. The overall efficiency of the structure
after applying Repair_By_Query procedure

minimum to be able to route the greedy walk to the vertex which is closer to
the destination point by adding edge between and .

Finally, we present procedure Add_All which builds a data structure over the set
. It sequentially selects a random object from the set and inserts it to the

graph by running the Insert_By_Repairing procedure.

Add_All(,)
01
02 while do

03 Random();
04 Insert_By_Repairing(, ,)
05 end while

4 Improvement Based on Queries

The idea of repairing by removing local minimums can be extended to improving
the search properties of the structure by queries at the query execution stage. In the
procedure Repair_By_Query we do the same as in Insert_By_Repairing
procedure with only one exception. We search the local minimums relative to the
query object instead of the inserted one.

Repair_By_Query(, ,)

01 Get_Local_Minimums(, ,)

02

03 for each do
04

05

06

07 end for

0

0,2

0,4

0,6

0,8

1

0E+00 2E+04 4E+04 6E+04 8E+04 1E+05

Re
ca

ll

Number of Queries
m=1 m=2 m=4

1

10

100

0,5 0,6 0,7 0,8 0,9 1

Im
pr

ov
. i

n
Ef

fic
ie

nc
y

Recall
100k queries 0 queries 1m queries

z 'x
x z 'x

X X

DX ⊂ Ν∈τ
{})({},←G

{}≠X
←x X xXX \←
←G x G τ

q
Dq∈),(EVG Ν∈τ

←PL, q G τ
)),((minarg qydx

Ly∈
←

xLz \∈
)},(),(:{' qzdqydPyP <∈←

)),((minarg' yzdx
P'y∈

←

)',(),'(xzzxEE ∪∪←

4 A. Ponomarenko

Fig. 3. Comparison with NN [5]

Fig. 4. Vertex Degree Distribution

5 Simulations

5.1 Improvement Based on Queries

We have performed simulations in order to verify the idea of improving the data
structure using the stream of incoming queries. We have built a graph by Add_All
algorithm with parameter = 9 on the set of 10,000 points uniformly distributed in
the 30-dimensional unit hyper cube. After that, we generate 100 times 1000 queries
with the same distribution. Each time after applying 1000 times the Re-
pair_By_Query procedure we have measured the value of recall for searching 5
nearest neighbors. As a search algorithm we have used Multi_Search algorithm
proposed in [5]. This algorithm uses the sequences of greedy based searches started
from a random vertex and selects the best results. The parameter “m” is the number of
searches. We have used m = 1, 2, and 4 correspondingly. As can been seen from Fig.
1 the accuracy of each search has increased after applying the Repair_By_Query
procedure.

Also we have measured how the overall efficiency of the structure has changed
when applying Repair_By_Query procedure. We have measured the values of
improvement in efficiency (how many times less the algorithm needs to calculate
distances than the exhaustive search) and values of recall after applying Re-
pair_By_Query procedure 100,000 and 1,000,000 times to the structure built over
the set of 100,000 30-dimensional points by Insert_By_Repairing algorithm
(Fig. 2). Unfortunately, it has not made a significant contribution to the overall effi-
ciency of the structure.

5.2 Insertion by Repairing

We have made the comparison of the search properties of the graphs produced by
Insert_By_Repairing (parameter = 9) algorithm with the algorithm of con-
necting with k-nearest neighbors [5]. The parameters were w=10; k=12 and 20 accor-
dingly. The parameter “w” is the number of searches used by Multi_Search pro-
cedure at the construction stage As a data set we have used one million random points

1E+02

1E+03

1E+04

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Im
ro

v.
 in

 e
ffi

ci
en

cy

Recall
NN12 Rep. t=9 NN20

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+00 1E+01 1E+02 1E+03 1E+04

Ve
rt

ex
 D

eg
re

e

Number of Vertices
Nearest Neighbor k=12 w=10 Insert by Repair

τ

τ

Query-Based Improvement Procedure and Self-Adaptive Graph Construction Algorithm 5

uniformly distributed in the unit 30-dimensional hyper cube. As a distance function
we use . The result of comparison is presented in Fig. 3 and a valuation of the

distribution of the vertex degrees is presented in Fig. 4.

6 Conclusion

In this paper we have explored the idea of using information about local minimums
during the insertion and during the search. We have proposed an algorithm which
uses this information to improve the accuracy of the search procedure. Also based on
this idea we have proposed a new graph construction algorithm. Despite that the pro-
posed algorithm cannot outperform the algorithm of connecting with k-nearest neigh-
bors, it demonstrates the idea that the information about local minimums can be used
for data insertion. Moreover we suppose that this idea can be used for tuning parame-
ters of other data insertion algorithms, for example for tuning the parameter k in the
algorithm of connection with k-nearest neighbors [5].

Acknowledgements. The work was conducted at National Research University Higher School
of Economics and supported by RSF grant 14-41-00039.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces.
In: ACM computing surveys (CSUR) 33, vol. 3, pp. 273–321 (2001)

2. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Scalable distributed algorithm for
approximate nearest neighbor search problem in high dimensional general metric spaces.
In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 132–147. Springer,
Heidelberg (2012)

3. Ponomarenko, A., Avrelin, N., Naidan, B., Boytsov, L.: Comparative analysis of data
structures for approximate nearest neighbor search. In: DATA ANALYTICS 2014, The
Third International Conference on Data Analytics, pp. 125–130 (2014)

4. Lifshits, Y., Shengyu, Z.: Combinatorial algorithms for nearest neighbors, near-duplicates
and small-world design. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 318–326. Society for Industrial and Applied Mathematics
(2009)

5. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest neighbor
algorithm based on navigable small world graphs. Information Systems 45, 61–68 (2014)

6. Chávez, E., Graff, M., Navarro, G., Téllez, E.S.: Near neighbor searching with K nearest
references. Information Systems 51, 43–61 (2015)

7. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity spaces.
ACM Transactions on Database Systems (TODS) 32(4), 29 (2007)

2L

